summaryrefslogtreecommitdiff
path: root/thirdparty/bullet/Bullet3Dynamics/shared/b3ConvertConstraint4.h
blob: 3e72f1c3f21430de461ae5d29d936975afb8111d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148


#include "Bullet3Collision/NarrowPhaseCollision/shared/b3Contact4Data.h"
#include "Bullet3Dynamics/shared/b3ContactConstraint4.h"
#include "Bullet3Collision/NarrowPhaseCollision/shared/b3RigidBodyData.h"

void b3PlaneSpace1(b3Float4ConstArg n, b3Float4* p, b3Float4* q);
void b3PlaneSpace1(b3Float4ConstArg n, b3Float4* p, b3Float4* q)
{
	if (b3Fabs(n.z) > 0.70710678f)
	{
		// choose p in y-z plane
		float a = n.y * n.y + n.z * n.z;
		float k = 1.f / sqrt(a);
		p[0].x = 0;
		p[0].y = -n.z * k;
		p[0].z = n.y * k;
		// set q = n x p
		q[0].x = a * k;
		q[0].y = -n.x * p[0].z;
		q[0].z = n.x * p[0].y;
	}
	else
	{
		// choose p in x-y plane
		float a = n.x * n.x + n.y * n.y;
		float k = 1.f / sqrt(a);
		p[0].x = -n.y * k;
		p[0].y = n.x * k;
		p[0].z = 0;
		// set q = n x p
		q[0].x = -n.z * p[0].y;
		q[0].y = n.z * p[0].x;
		q[0].z = a * k;
	}
}

void setLinearAndAngular(b3Float4ConstArg n, b3Float4ConstArg r0, b3Float4ConstArg r1, b3Float4* linear, b3Float4* angular0, b3Float4* angular1)
{
	*linear = b3MakeFloat4(n.x, n.y, n.z, 0.f);
	*angular0 = b3Cross3(r0, n);
	*angular1 = -b3Cross3(r1, n);
}

float calcRelVel(b3Float4ConstArg l0, b3Float4ConstArg l1, b3Float4ConstArg a0, b3Float4ConstArg a1, b3Float4ConstArg linVel0,
				 b3Float4ConstArg angVel0, b3Float4ConstArg linVel1, b3Float4ConstArg angVel1)
{
	return b3Dot3F4(l0, linVel0) + b3Dot3F4(a0, angVel0) + b3Dot3F4(l1, linVel1) + b3Dot3F4(a1, angVel1);
}

float calcJacCoeff(b3Float4ConstArg linear0, b3Float4ConstArg linear1, b3Float4ConstArg angular0, b3Float4ConstArg angular1,
				   float invMass0, const b3Mat3x3* invInertia0, float invMass1, const b3Mat3x3* invInertia1)
{
	//	linear0,1 are normlized
	float jmj0 = invMass0;  //b3Dot3F4(linear0, linear0)*invMass0;
	float jmj1 = b3Dot3F4(mtMul3(angular0, *invInertia0), angular0);
	float jmj2 = invMass1;  //b3Dot3F4(linear1, linear1)*invMass1;
	float jmj3 = b3Dot3F4(mtMul3(angular1, *invInertia1), angular1);
	return -1.f / (jmj0 + jmj1 + jmj2 + jmj3);
}

void setConstraint4(b3Float4ConstArg posA, b3Float4ConstArg linVelA, b3Float4ConstArg angVelA, float invMassA, b3Mat3x3ConstArg invInertiaA,
					b3Float4ConstArg posB, b3Float4ConstArg linVelB, b3Float4ConstArg angVelB, float invMassB, b3Mat3x3ConstArg invInertiaB,
					__global struct b3Contact4Data* src, float dt, float positionDrift, float positionConstraintCoeff,
					b3ContactConstraint4_t* dstC)
{
	dstC->m_bodyA = abs(src->m_bodyAPtrAndSignBit);
	dstC->m_bodyB = abs(src->m_bodyBPtrAndSignBit);

	float dtInv = 1.f / dt;
	for (int ic = 0; ic < 4; ic++)
	{
		dstC->m_appliedRambdaDt[ic] = 0.f;
	}
	dstC->m_fJacCoeffInv[0] = dstC->m_fJacCoeffInv[1] = 0.f;

	dstC->m_linear = src->m_worldNormalOnB;
	dstC->m_linear.w = 0.7f;  //src->getFrictionCoeff() );
	for (int ic = 0; ic < 4; ic++)
	{
		b3Float4 r0 = src->m_worldPosB[ic] - posA;
		b3Float4 r1 = src->m_worldPosB[ic] - posB;

		if (ic >= src->m_worldNormalOnB.w)  //npoints
		{
			dstC->m_jacCoeffInv[ic] = 0.f;
			continue;
		}

		float relVelN;
		{
			b3Float4 linear, angular0, angular1;
			setLinearAndAngular(src->m_worldNormalOnB, r0, r1, &linear, &angular0, &angular1);

			dstC->m_jacCoeffInv[ic] = calcJacCoeff(linear, -linear, angular0, angular1,
												   invMassA, &invInertiaA, invMassB, &invInertiaB);

			relVelN = calcRelVel(linear, -linear, angular0, angular1,
								 linVelA, angVelA, linVelB, angVelB);

			float e = 0.f;  //src->getRestituitionCoeff();
			if (relVelN * relVelN < 0.004f) e = 0.f;

			dstC->m_b[ic] = e * relVelN;
			//float penetration = src->m_worldPosB[ic].w;
			dstC->m_b[ic] += (src->m_worldPosB[ic].w + positionDrift) * positionConstraintCoeff * dtInv;
			dstC->m_appliedRambdaDt[ic] = 0.f;
		}
	}

	if (src->m_worldNormalOnB.w > 0)  //npoints
	{                                 //	prepare friction
		b3Float4 center = b3MakeFloat4(0.f, 0.f, 0.f, 0.f);
		for (int i = 0; i < src->m_worldNormalOnB.w; i++)
			center += src->m_worldPosB[i];
		center /= (float)src->m_worldNormalOnB.w;

		b3Float4 tangent[2];
		b3PlaneSpace1(src->m_worldNormalOnB, &tangent[0], &tangent[1]);

		b3Float4 r[2];
		r[0] = center - posA;
		r[1] = center - posB;

		for (int i = 0; i < 2; i++)
		{
			b3Float4 linear, angular0, angular1;
			setLinearAndAngular(tangent[i], r[0], r[1], &linear, &angular0, &angular1);

			dstC->m_fJacCoeffInv[i] = calcJacCoeff(linear, -linear, angular0, angular1,
												   invMassA, &invInertiaA, invMassB, &invInertiaB);
			dstC->m_fAppliedRambdaDt[i] = 0.f;
		}
		dstC->m_center = center;
	}

	for (int i = 0; i < 4; i++)
	{
		if (i < src->m_worldNormalOnB.w)
		{
			dstC->m_worldPos[i] = src->m_worldPosB[i];
		}
		else
		{
			dstC->m_worldPos[i] = b3MakeFloat4(0.f, 0.f, 0.f, 0.f);
		}
	}
}