1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
|
#include "b3CpuRigidBodyPipeline.h"
#include "Bullet3Dynamics/shared/b3IntegrateTransforms.h"
#include "Bullet3Collision/NarrowPhaseCollision/shared/b3RigidBodyData.h"
#include "Bullet3Collision/BroadPhaseCollision/b3DynamicBvhBroadphase.h"
#include "Bullet3Collision/NarrowPhaseCollision/b3Config.h"
#include "Bullet3Collision/NarrowPhaseCollision/b3CpuNarrowPhase.h"
#include "Bullet3Collision/BroadPhaseCollision/shared/b3Aabb.h"
#include "Bullet3Collision/NarrowPhaseCollision/shared/b3Collidable.h"
#include "Bullet3Common/b3Vector3.h"
#include "Bullet3Dynamics/shared/b3ContactConstraint4.h"
#include "Bullet3Dynamics/shared/b3Inertia.h"
struct b3CpuRigidBodyPipelineInternalData
{
b3AlignedObjectArray<b3RigidBodyData> m_rigidBodies;
b3AlignedObjectArray<b3Inertia> m_inertias;
b3AlignedObjectArray<b3Aabb> m_aabbWorldSpace;
b3DynamicBvhBroadphase* m_bp;
b3CpuNarrowPhase* m_np;
b3Config m_config;
};
b3CpuRigidBodyPipeline::b3CpuRigidBodyPipeline(class b3CpuNarrowPhase* narrowphase, struct b3DynamicBvhBroadphase* broadphaseDbvt, const b3Config& config)
{
m_data = new b3CpuRigidBodyPipelineInternalData;
m_data->m_np = narrowphase;
m_data->m_bp = broadphaseDbvt;
m_data->m_config = config;
}
b3CpuRigidBodyPipeline::~b3CpuRigidBodyPipeline()
{
delete m_data;
}
void b3CpuRigidBodyPipeline::updateAabbWorldSpace()
{
for (int i = 0; i < this->getNumBodies(); i++)
{
b3RigidBodyData* body = &m_data->m_rigidBodies[i];
b3Float4 position = body->m_pos;
b3Quat orientation = body->m_quat;
int collidableIndex = body->m_collidableIdx;
b3Collidable& collidable = m_data->m_np->getCollidableCpu(collidableIndex);
int shapeIndex = collidable.m_shapeIndex;
if (shapeIndex >= 0)
{
b3Aabb localAabb = m_data->m_np->getLocalSpaceAabb(shapeIndex);
b3Aabb& worldAabb = m_data->m_aabbWorldSpace[i];
float margin = 0.f;
b3TransformAabb2(localAabb.m_minVec, localAabb.m_maxVec, margin, position, orientation, &worldAabb.m_minVec, &worldAabb.m_maxVec);
m_data->m_bp->setAabb(i, worldAabb.m_minVec, worldAabb.m_maxVec, 0);
}
}
}
void b3CpuRigidBodyPipeline::computeOverlappingPairs()
{
int numPairs = m_data->m_bp->getOverlappingPairCache()->getNumOverlappingPairs();
m_data->m_bp->calculateOverlappingPairs();
numPairs = m_data->m_bp->getOverlappingPairCache()->getNumOverlappingPairs();
printf("numPairs=%d\n", numPairs);
}
void b3CpuRigidBodyPipeline::computeContactPoints()
{
b3AlignedObjectArray<b3Int4>& pairs = m_data->m_bp->getOverlappingPairCache()->getOverlappingPairArray();
m_data->m_np->computeContacts(pairs, m_data->m_aabbWorldSpace, m_data->m_rigidBodies);
}
void b3CpuRigidBodyPipeline::stepSimulation(float deltaTime)
{
//update world space aabb's
updateAabbWorldSpace();
//compute overlapping pairs
computeOverlappingPairs();
//compute contacts
computeContactPoints();
//solve contacts
//update transforms
integrate(deltaTime);
}
static inline float b3CalcRelVel(const b3Vector3& l0, const b3Vector3& l1, const b3Vector3& a0, const b3Vector3& a1,
const b3Vector3& linVel0, const b3Vector3& angVel0, const b3Vector3& linVel1, const b3Vector3& angVel1)
{
return b3Dot(l0, linVel0) + b3Dot(a0, angVel0) + b3Dot(l1, linVel1) + b3Dot(a1, angVel1);
}
static inline void b3SetLinearAndAngular(const b3Vector3& n, const b3Vector3& r0, const b3Vector3& r1,
b3Vector3& linear, b3Vector3& angular0, b3Vector3& angular1)
{
linear = -n;
angular0 = -b3Cross(r0, n);
angular1 = b3Cross(r1, n);
}
static inline void b3SolveContact(b3ContactConstraint4& cs,
const b3Vector3& posA, b3Vector3& linVelA, b3Vector3& angVelA, float invMassA, const b3Matrix3x3& invInertiaA,
const b3Vector3& posB, b3Vector3& linVelB, b3Vector3& angVelB, float invMassB, const b3Matrix3x3& invInertiaB,
float maxRambdaDt[4], float minRambdaDt[4])
{
b3Vector3 dLinVelA;
dLinVelA.setZero();
b3Vector3 dAngVelA;
dAngVelA.setZero();
b3Vector3 dLinVelB;
dLinVelB.setZero();
b3Vector3 dAngVelB;
dAngVelB.setZero();
for (int ic = 0; ic < 4; ic++)
{
// dont necessary because this makes change to 0
if (cs.m_jacCoeffInv[ic] == 0.f) continue;
{
b3Vector3 angular0, angular1, linear;
b3Vector3 r0 = cs.m_worldPos[ic] - (b3Vector3&)posA;
b3Vector3 r1 = cs.m_worldPos[ic] - (b3Vector3&)posB;
b3SetLinearAndAngular((const b3Vector3&)-cs.m_linear, (const b3Vector3&)r0, (const b3Vector3&)r1, linear, angular0, angular1);
float rambdaDt = b3CalcRelVel((const b3Vector3&)cs.m_linear, (const b3Vector3&)-cs.m_linear, angular0, angular1,
linVelA, angVelA, linVelB, angVelB) +
cs.m_b[ic];
rambdaDt *= cs.m_jacCoeffInv[ic];
{
float prevSum = cs.m_appliedRambdaDt[ic];
float updated = prevSum;
updated += rambdaDt;
updated = b3Max(updated, minRambdaDt[ic]);
updated = b3Min(updated, maxRambdaDt[ic]);
rambdaDt = updated - prevSum;
cs.m_appliedRambdaDt[ic] = updated;
}
b3Vector3 linImp0 = invMassA * linear * rambdaDt;
b3Vector3 linImp1 = invMassB * (-linear) * rambdaDt;
b3Vector3 angImp0 = (invInertiaA * angular0) * rambdaDt;
b3Vector3 angImp1 = (invInertiaB * angular1) * rambdaDt;
#ifdef _WIN32
b3Assert(_finite(linImp0.getX()));
b3Assert(_finite(linImp1.getX()));
#endif
{
linVelA += linImp0;
angVelA += angImp0;
linVelB += linImp1;
angVelB += angImp1;
}
}
}
}
static inline void b3SolveFriction(b3ContactConstraint4& cs,
const b3Vector3& posA, b3Vector3& linVelA, b3Vector3& angVelA, float invMassA, const b3Matrix3x3& invInertiaA,
const b3Vector3& posB, b3Vector3& linVelB, b3Vector3& angVelB, float invMassB, const b3Matrix3x3& invInertiaB,
float maxRambdaDt[4], float minRambdaDt[4])
{
if (cs.m_fJacCoeffInv[0] == 0 && cs.m_fJacCoeffInv[0] == 0) return;
const b3Vector3& center = (const b3Vector3&)cs.m_center;
b3Vector3 n = -(const b3Vector3&)cs.m_linear;
b3Vector3 tangent[2];
b3PlaneSpace1(n, tangent[0], tangent[1]);
b3Vector3 angular0, angular1, linear;
b3Vector3 r0 = center - posA;
b3Vector3 r1 = center - posB;
for (int i = 0; i < 2; i++)
{
b3SetLinearAndAngular(tangent[i], r0, r1, linear, angular0, angular1);
float rambdaDt = b3CalcRelVel(linear, -linear, angular0, angular1,
linVelA, angVelA, linVelB, angVelB);
rambdaDt *= cs.m_fJacCoeffInv[i];
{
float prevSum = cs.m_fAppliedRambdaDt[i];
float updated = prevSum;
updated += rambdaDt;
updated = b3Max(updated, minRambdaDt[i]);
updated = b3Min(updated, maxRambdaDt[i]);
rambdaDt = updated - prevSum;
cs.m_fAppliedRambdaDt[i] = updated;
}
b3Vector3 linImp0 = invMassA * linear * rambdaDt;
b3Vector3 linImp1 = invMassB * (-linear) * rambdaDt;
b3Vector3 angImp0 = (invInertiaA * angular0) * rambdaDt;
b3Vector3 angImp1 = (invInertiaB * angular1) * rambdaDt;
#ifdef _WIN32
b3Assert(_finite(linImp0.getX()));
b3Assert(_finite(linImp1.getX()));
#endif
linVelA += linImp0;
angVelA += angImp0;
linVelB += linImp1;
angVelB += angImp1;
}
{ // angular damping for point constraint
b3Vector3 ab = (posB - posA).normalized();
b3Vector3 ac = (center - posA).normalized();
if (b3Dot(ab, ac) > 0.95f || (invMassA == 0.f || invMassB == 0.f))
{
float angNA = b3Dot(n, angVelA);
float angNB = b3Dot(n, angVelB);
angVelA -= (angNA * 0.1f) * n;
angVelB -= (angNB * 0.1f) * n;
}
}
}
struct b3SolveTask // : public ThreadPool::Task
{
b3SolveTask(b3AlignedObjectArray<b3RigidBodyData>& bodies,
b3AlignedObjectArray<b3Inertia>& shapes,
b3AlignedObjectArray<b3ContactConstraint4>& constraints,
int start, int nConstraints,
int maxNumBatches,
b3AlignedObjectArray<int>* wgUsedBodies, int curWgidx)
: m_bodies(bodies), m_shapes(shapes), m_constraints(constraints), m_wgUsedBodies(wgUsedBodies), m_curWgidx(curWgidx), m_start(start), m_nConstraints(nConstraints), m_solveFriction(true), m_maxNumBatches(maxNumBatches)
{
}
unsigned short int getType() { return 0; }
void run(int tIdx)
{
b3AlignedObjectArray<int> usedBodies;
//printf("run..............\n");
for (int bb = 0; bb < m_maxNumBatches; bb++)
{
usedBodies.resize(0);
for (int ic = m_nConstraints - 1; ic >= 0; ic--)
//for(int ic=0; ic<m_nConstraints; ic++)
{
int i = m_start + ic;
if (m_constraints[i].m_batchIdx != bb)
continue;
float frictionCoeff = b3GetFrictionCoeff(&m_constraints[i]);
int aIdx = (int)m_constraints[i].m_bodyA;
int bIdx = (int)m_constraints[i].m_bodyB;
//int localBatch = m_constraints[i].m_batchIdx;
b3RigidBodyData& bodyA = m_bodies[aIdx];
b3RigidBodyData& bodyB = m_bodies[bIdx];
#if 0
if ((bodyA.m_invMass) && (bodyB.m_invMass))
{
// printf("aIdx=%d, bIdx=%d\n", aIdx,bIdx);
}
if (bIdx==10)
{
//printf("ic(b)=%d, localBatch=%d\n",ic,localBatch);
}
#endif
if (aIdx == 10)
{
//printf("ic(a)=%d, localBatch=%d\n",ic,localBatch);
}
if (usedBodies.size() < (aIdx + 1))
{
usedBodies.resize(aIdx + 1, 0);
}
if (usedBodies.size() < (bIdx + 1))
{
usedBodies.resize(bIdx + 1, 0);
}
if (bodyA.m_invMass)
{
b3Assert(usedBodies[aIdx] == 0);
usedBodies[aIdx]++;
}
if (bodyB.m_invMass)
{
b3Assert(usedBodies[bIdx] == 0);
usedBodies[bIdx]++;
}
if (!m_solveFriction)
{
float maxRambdaDt[4] = {FLT_MAX, FLT_MAX, FLT_MAX, FLT_MAX};
float minRambdaDt[4] = {0.f, 0.f, 0.f, 0.f};
b3SolveContact(m_constraints[i], (b3Vector3&)bodyA.m_pos, (b3Vector3&)bodyA.m_linVel, (b3Vector3&)bodyA.m_angVel, bodyA.m_invMass, (const b3Matrix3x3&)m_shapes[aIdx].m_invInertiaWorld,
(b3Vector3&)bodyB.m_pos, (b3Vector3&)bodyB.m_linVel, (b3Vector3&)bodyB.m_angVel, bodyB.m_invMass, (const b3Matrix3x3&)m_shapes[bIdx].m_invInertiaWorld,
maxRambdaDt, minRambdaDt);
}
else
{
float maxRambdaDt[4] = {FLT_MAX, FLT_MAX, FLT_MAX, FLT_MAX};
float minRambdaDt[4] = {0.f, 0.f, 0.f, 0.f};
float sum = 0;
for (int j = 0; j < 4; j++)
{
sum += m_constraints[i].m_appliedRambdaDt[j];
}
frictionCoeff = 0.7f;
for (int j = 0; j < 4; j++)
{
maxRambdaDt[j] = frictionCoeff * sum;
minRambdaDt[j] = -maxRambdaDt[j];
}
b3SolveFriction(m_constraints[i], (b3Vector3&)bodyA.m_pos, (b3Vector3&)bodyA.m_linVel, (b3Vector3&)bodyA.m_angVel, bodyA.m_invMass, (const b3Matrix3x3&)m_shapes[aIdx].m_invInertiaWorld,
(b3Vector3&)bodyB.m_pos, (b3Vector3&)bodyB.m_linVel, (b3Vector3&)bodyB.m_angVel, bodyB.m_invMass, (const b3Matrix3x3&)m_shapes[bIdx].m_invInertiaWorld,
maxRambdaDt, minRambdaDt);
}
}
if (m_wgUsedBodies)
{
if (m_wgUsedBodies[m_curWgidx].size() < usedBodies.size())
{
m_wgUsedBodies[m_curWgidx].resize(usedBodies.size());
}
for (int i = 0; i < usedBodies.size(); i++)
{
if (usedBodies[i])
{
//printf("cell %d uses body %d\n", m_curWgidx,i);
m_wgUsedBodies[m_curWgidx][i] = 1;
}
}
}
}
}
b3AlignedObjectArray<b3RigidBodyData>& m_bodies;
b3AlignedObjectArray<b3Inertia>& m_shapes;
b3AlignedObjectArray<b3ContactConstraint4>& m_constraints;
b3AlignedObjectArray<int>* m_wgUsedBodies;
int m_curWgidx;
int m_start;
int m_nConstraints;
bool m_solveFriction;
int m_maxNumBatches;
};
void b3CpuRigidBodyPipeline::solveContactConstraints()
{
int m_nIterations = 4;
b3AlignedObjectArray<b3ContactConstraint4> contactConstraints;
// const b3AlignedObjectArray<b3Contact4Data>& contacts = m_data->m_np->getContacts();
int n = contactConstraints.size();
//convert contacts...
int maxNumBatches = 250;
for (int iter = 0; iter < m_nIterations; iter++)
{
b3SolveTask task(m_data->m_rigidBodies, m_data->m_inertias, contactConstraints, 0, n, maxNumBatches, 0, 0);
task.m_solveFriction = false;
task.run(0);
}
for (int iter = 0; iter < m_nIterations; iter++)
{
b3SolveTask task(m_data->m_rigidBodies, m_data->m_inertias, contactConstraints, 0, n, maxNumBatches, 0, 0);
task.m_solveFriction = true;
task.run(0);
}
}
void b3CpuRigidBodyPipeline::integrate(float deltaTime)
{
float angDamping = 0.f;
b3Vector3 gravityAcceleration = b3MakeVector3(0, -9, 0);
//integrate transforms (external forces/gravity should be moved into constraint solver)
for (int i = 0; i < m_data->m_rigidBodies.size(); i++)
{
b3IntegrateTransform(&m_data->m_rigidBodies[i], deltaTime, angDamping, gravityAcceleration);
}
}
int b3CpuRigidBodyPipeline::registerPhysicsInstance(float mass, const float* position, const float* orientation, int collidableIndex, int userData)
{
b3RigidBodyData body;
int bodyIndex = m_data->m_rigidBodies.size();
body.m_invMass = mass ? 1.f / mass : 0.f;
body.m_angVel.setValue(0, 0, 0);
body.m_collidableIdx = collidableIndex;
body.m_frictionCoeff = 0.3f;
body.m_linVel.setValue(0, 0, 0);
body.m_pos.setValue(position[0], position[1], position[2]);
body.m_quat.setValue(orientation[0], orientation[1], orientation[2], orientation[3]);
body.m_restituitionCoeff = 0.f;
m_data->m_rigidBodies.push_back(body);
if (collidableIndex >= 0)
{
b3Aabb& worldAabb = m_data->m_aabbWorldSpace.expand();
b3Aabb localAabb = m_data->m_np->getLocalSpaceAabb(collidableIndex);
b3Vector3 localAabbMin = b3MakeVector3(localAabb.m_min[0], localAabb.m_min[1], localAabb.m_min[2]);
b3Vector3 localAabbMax = b3MakeVector3(localAabb.m_max[0], localAabb.m_max[1], localAabb.m_max[2]);
b3Scalar margin = 0.01f;
b3Transform t;
t.setIdentity();
t.setOrigin(b3MakeVector3(position[0], position[1], position[2]));
t.setRotation(b3Quaternion(orientation[0], orientation[1], orientation[2], orientation[3]));
b3TransformAabb(localAabbMin, localAabbMax, margin, t, worldAabb.m_minVec, worldAabb.m_maxVec);
m_data->m_bp->createProxy(worldAabb.m_minVec, worldAabb.m_maxVec, bodyIndex, 0, 1, 1);
// b3Vector3 aabbMin,aabbMax;
// m_data->m_bp->getAabb(bodyIndex,aabbMin,aabbMax);
}
else
{
b3Error("registerPhysicsInstance using invalid collidableIndex\n");
}
return bodyIndex;
}
const struct b3RigidBodyData* b3CpuRigidBodyPipeline::getBodyBuffer() const
{
return m_data->m_rigidBodies.size() ? &m_data->m_rigidBodies[0] : 0;
}
int b3CpuRigidBodyPipeline::getNumBodies() const
{
return m_data->m_rigidBodies.size();
}
|