summaryrefslogtreecommitdiff
path: root/thirdparty/bullet/Bullet3Dynamics/ConstraintSolver/b3Generic6DofConstraint.cpp
blob: 0d5bb2014bf618da4f0eb6e45d30a678754b11b6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans  http://continuousphysics.com/Bullet/

This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
/*
2007-09-09
Refactored by Francisco Le?n
email: projectileman@yahoo.com
http://gimpact.sf.net
*/

#include "b3Generic6DofConstraint.h"
#include "Bullet3Collision/NarrowPhaseCollision/shared/b3RigidBodyData.h"

#include "Bullet3Common/b3TransformUtil.h"
#include "Bullet3Common/b3TransformUtil.h"
#include <new>

#define D6_USE_OBSOLETE_METHOD false
#define D6_USE_FRAME_OFFSET true

b3Generic6DofConstraint::b3Generic6DofConstraint(int rbA, int rbB, const b3Transform& frameInA, const b3Transform& frameInB, bool useLinearReferenceFrameA, const b3RigidBodyData* bodies)
	: b3TypedConstraint(B3_D6_CONSTRAINT_TYPE, rbA, rbB), m_frameInA(frameInA), m_frameInB(frameInB), m_useLinearReferenceFrameA(useLinearReferenceFrameA), m_useOffsetForConstraintFrame(D6_USE_FRAME_OFFSET), m_flags(0)
{
	calculateTransforms(bodies);
}

#define GENERIC_D6_DISABLE_WARMSTARTING 1

b3Scalar btGetMatrixElem(const b3Matrix3x3& mat, int index);
b3Scalar btGetMatrixElem(const b3Matrix3x3& mat, int index)
{
	int i = index % 3;
	int j = index / 3;
	return mat[i][j];
}

///MatrixToEulerXYZ from http://www.geometrictools.com/LibFoundation/Mathematics/Wm4Matrix3.inl.html
bool matrixToEulerXYZ(const b3Matrix3x3& mat, b3Vector3& xyz);
bool matrixToEulerXYZ(const b3Matrix3x3& mat, b3Vector3& xyz)
{
	//	// rot =  cy*cz          -cy*sz           sy
	//	//        cz*sx*sy+cx*sz  cx*cz-sx*sy*sz -cy*sx
	//	//       -cx*cz*sy+sx*sz  cz*sx+cx*sy*sz  cx*cy
	//

	b3Scalar fi = btGetMatrixElem(mat, 2);
	if (fi < b3Scalar(1.0f))
	{
		if (fi > b3Scalar(-1.0f))
		{
			xyz[0] = b3Atan2(-btGetMatrixElem(mat, 5), btGetMatrixElem(mat, 8));
			xyz[1] = b3Asin(btGetMatrixElem(mat, 2));
			xyz[2] = b3Atan2(-btGetMatrixElem(mat, 1), btGetMatrixElem(mat, 0));
			return true;
		}
		else
		{
			// WARNING.  Not unique.  XA - ZA = -atan2(r10,r11)
			xyz[0] = -b3Atan2(btGetMatrixElem(mat, 3), btGetMatrixElem(mat, 4));
			xyz[1] = -B3_HALF_PI;
			xyz[2] = b3Scalar(0.0);
			return false;
		}
	}
	else
	{
		// WARNING.  Not unique.  XAngle + ZAngle = atan2(r10,r11)
		xyz[0] = b3Atan2(btGetMatrixElem(mat, 3), btGetMatrixElem(mat, 4));
		xyz[1] = B3_HALF_PI;
		xyz[2] = 0.0;
	}
	return false;
}

//////////////////////////// b3RotationalLimitMotor ////////////////////////////////////

int b3RotationalLimitMotor::testLimitValue(b3Scalar test_value)
{
	if (m_loLimit > m_hiLimit)
	{
		m_currentLimit = 0;  //Free from violation
		return 0;
	}
	if (test_value < m_loLimit)
	{
		m_currentLimit = 1;  //low limit violation
		m_currentLimitError = test_value - m_loLimit;
		if (m_currentLimitError > B3_PI)
			m_currentLimitError -= B3_2_PI;
		else if (m_currentLimitError < -B3_PI)
			m_currentLimitError += B3_2_PI;
		return 1;
	}
	else if (test_value > m_hiLimit)
	{
		m_currentLimit = 2;  //High limit violation
		m_currentLimitError = test_value - m_hiLimit;
		if (m_currentLimitError > B3_PI)
			m_currentLimitError -= B3_2_PI;
		else if (m_currentLimitError < -B3_PI)
			m_currentLimitError += B3_2_PI;
		return 2;
	};

	m_currentLimit = 0;  //Free from violation
	return 0;
}

//////////////////////////// End b3RotationalLimitMotor ////////////////////////////////////

//////////////////////////// b3TranslationalLimitMotor ////////////////////////////////////

int b3TranslationalLimitMotor::testLimitValue(int limitIndex, b3Scalar test_value)
{
	b3Scalar loLimit = m_lowerLimit[limitIndex];
	b3Scalar hiLimit = m_upperLimit[limitIndex];
	if (loLimit > hiLimit)
	{
		m_currentLimit[limitIndex] = 0;  //Free from violation
		m_currentLimitError[limitIndex] = b3Scalar(0.f);
		return 0;
	}

	if (test_value < loLimit)
	{
		m_currentLimit[limitIndex] = 2;  //low limit violation
		m_currentLimitError[limitIndex] = test_value - loLimit;
		return 2;
	}
	else if (test_value > hiLimit)
	{
		m_currentLimit[limitIndex] = 1;  //High limit violation
		m_currentLimitError[limitIndex] = test_value - hiLimit;
		return 1;
	};

	m_currentLimit[limitIndex] = 0;  //Free from violation
	m_currentLimitError[limitIndex] = b3Scalar(0.f);
	return 0;
}

//////////////////////////// b3TranslationalLimitMotor ////////////////////////////////////

void b3Generic6DofConstraint::calculateAngleInfo()
{
	b3Matrix3x3 relative_frame = m_calculatedTransformA.getBasis().inverse() * m_calculatedTransformB.getBasis();
	matrixToEulerXYZ(relative_frame, m_calculatedAxisAngleDiff);
	// in euler angle mode we do not actually constrain the angular velocity
	// along the axes axis[0] and axis[2] (although we do use axis[1]) :
	//
	//    to get			constrain w2-w1 along		...not
	//    ------			---------------------		------
	//    d(angle[0])/dt = 0	ax[1] x ax[2]			ax[0]
	//    d(angle[1])/dt = 0	ax[1]
	//    d(angle[2])/dt = 0	ax[0] x ax[1]			ax[2]
	//
	// constraining w2-w1 along an axis 'a' means that a'*(w2-w1)=0.
	// to prove the result for angle[0], write the expression for angle[0] from
	// GetInfo1 then take the derivative. to prove this for angle[2] it is
	// easier to take the euler rate expression for d(angle[2])/dt with respect
	// to the components of w and set that to 0.
	b3Vector3 axis0 = m_calculatedTransformB.getBasis().getColumn(0);
	b3Vector3 axis2 = m_calculatedTransformA.getBasis().getColumn(2);

	m_calculatedAxis[1] = axis2.cross(axis0);
	m_calculatedAxis[0] = m_calculatedAxis[1].cross(axis2);
	m_calculatedAxis[2] = axis0.cross(m_calculatedAxis[1]);

	m_calculatedAxis[0].normalize();
	m_calculatedAxis[1].normalize();
	m_calculatedAxis[2].normalize();
}

static b3Transform getCenterOfMassTransform(const b3RigidBodyData& body)
{
	b3Transform tr(body.m_quat, body.m_pos);
	return tr;
}

void b3Generic6DofConstraint::calculateTransforms(const b3RigidBodyData* bodies)
{
	b3Transform transA;
	b3Transform transB;
	transA = getCenterOfMassTransform(bodies[m_rbA]);
	transB = getCenterOfMassTransform(bodies[m_rbB]);
	calculateTransforms(transA, transB, bodies);
}

void b3Generic6DofConstraint::calculateTransforms(const b3Transform& transA, const b3Transform& transB, const b3RigidBodyData* bodies)
{
	m_calculatedTransformA = transA * m_frameInA;
	m_calculatedTransformB = transB * m_frameInB;
	calculateLinearInfo();
	calculateAngleInfo();
	if (m_useOffsetForConstraintFrame)
	{  //  get weight factors depending on masses
		b3Scalar miA = bodies[m_rbA].m_invMass;
		b3Scalar miB = bodies[m_rbB].m_invMass;
		m_hasStaticBody = (miA < B3_EPSILON) || (miB < B3_EPSILON);
		b3Scalar miS = miA + miB;
		if (miS > b3Scalar(0.f))
		{
			m_factA = miB / miS;
		}
		else
		{
			m_factA = b3Scalar(0.5f);
		}
		m_factB = b3Scalar(1.0f) - m_factA;
	}
}

bool b3Generic6DofConstraint::testAngularLimitMotor(int axis_index)
{
	b3Scalar angle = m_calculatedAxisAngleDiff[axis_index];
	angle = b3AdjustAngleToLimits(angle, m_angularLimits[axis_index].m_loLimit, m_angularLimits[axis_index].m_hiLimit);
	m_angularLimits[axis_index].m_currentPosition = angle;
	//test limits
	m_angularLimits[axis_index].testLimitValue(angle);
	return m_angularLimits[axis_index].needApplyTorques();
}

void b3Generic6DofConstraint::getInfo1(b3ConstraintInfo1* info, const b3RigidBodyData* bodies)
{
	//prepare constraint
	calculateTransforms(getCenterOfMassTransform(bodies[m_rbA]), getCenterOfMassTransform(bodies[m_rbB]), bodies);
	info->m_numConstraintRows = 0;
	info->nub = 6;
	int i;
	//test linear limits
	for (i = 0; i < 3; i++)
	{
		if (m_linearLimits.needApplyForce(i))
		{
			info->m_numConstraintRows++;
			info->nub--;
		}
	}
	//test angular limits
	for (i = 0; i < 3; i++)
	{
		if (testAngularLimitMotor(i))
		{
			info->m_numConstraintRows++;
			info->nub--;
		}
	}
	//	printf("info->m_numConstraintRows=%d\n",info->m_numConstraintRows);
}

void b3Generic6DofConstraint::getInfo1NonVirtual(b3ConstraintInfo1* info, const b3RigidBodyData* bodies)
{
	//pre-allocate all 6
	info->m_numConstraintRows = 6;
	info->nub = 0;
}

void b3Generic6DofConstraint::getInfo2(b3ConstraintInfo2* info, const b3RigidBodyData* bodies)
{
	b3Transform transA = getCenterOfMassTransform(bodies[m_rbA]);
	b3Transform transB = getCenterOfMassTransform(bodies[m_rbB]);
	const b3Vector3& linVelA = bodies[m_rbA].m_linVel;
	const b3Vector3& linVelB = bodies[m_rbB].m_linVel;
	const b3Vector3& angVelA = bodies[m_rbA].m_angVel;
	const b3Vector3& angVelB = bodies[m_rbB].m_angVel;

	if (m_useOffsetForConstraintFrame)
	{  // for stability better to solve angular limits first
		int row = setAngularLimits(info, 0, transA, transB, linVelA, linVelB, angVelA, angVelB);
		setLinearLimits(info, row, transA, transB, linVelA, linVelB, angVelA, angVelB);
	}
	else
	{  // leave old version for compatibility
		int row = setLinearLimits(info, 0, transA, transB, linVelA, linVelB, angVelA, angVelB);
		setAngularLimits(info, row, transA, transB, linVelA, linVelB, angVelA, angVelB);
	}
}

void b3Generic6DofConstraint::getInfo2NonVirtual(b3ConstraintInfo2* info, const b3Transform& transA, const b3Transform& transB, const b3Vector3& linVelA, const b3Vector3& linVelB, const b3Vector3& angVelA, const b3Vector3& angVelB, const b3RigidBodyData* bodies)
{
	//prepare constraint
	calculateTransforms(transA, transB, bodies);

	int i;
	for (i = 0; i < 3; i++)
	{
		testAngularLimitMotor(i);
	}

	if (m_useOffsetForConstraintFrame)
	{  // for stability better to solve angular limits first
		int row = setAngularLimits(info, 0, transA, transB, linVelA, linVelB, angVelA, angVelB);
		setLinearLimits(info, row, transA, transB, linVelA, linVelB, angVelA, angVelB);
	}
	else
	{  // leave old version for compatibility
		int row = setLinearLimits(info, 0, transA, transB, linVelA, linVelB, angVelA, angVelB);
		setAngularLimits(info, row, transA, transB, linVelA, linVelB, angVelA, angVelB);
	}
}

int b3Generic6DofConstraint::setLinearLimits(b3ConstraintInfo2* info, int row, const b3Transform& transA, const b3Transform& transB, const b3Vector3& linVelA, const b3Vector3& linVelB, const b3Vector3& angVelA, const b3Vector3& angVelB)
{
	//	int row = 0;
	//solve linear limits
	b3RotationalLimitMotor limot;
	for (int i = 0; i < 3; i++)
	{
		if (m_linearLimits.needApplyForce(i))
		{  // re-use rotational motor code
			limot.m_bounce = b3Scalar(0.f);
			limot.m_currentLimit = m_linearLimits.m_currentLimit[i];
			limot.m_currentPosition = m_linearLimits.m_currentLinearDiff[i];
			limot.m_currentLimitError = m_linearLimits.m_currentLimitError[i];
			limot.m_damping = m_linearLimits.m_damping;
			limot.m_enableMotor = m_linearLimits.m_enableMotor[i];
			limot.m_hiLimit = m_linearLimits.m_upperLimit[i];
			limot.m_limitSoftness = m_linearLimits.m_limitSoftness;
			limot.m_loLimit = m_linearLimits.m_lowerLimit[i];
			limot.m_maxLimitForce = b3Scalar(0.f);
			limot.m_maxMotorForce = m_linearLimits.m_maxMotorForce[i];
			limot.m_targetVelocity = m_linearLimits.m_targetVelocity[i];
			b3Vector3 axis = m_calculatedTransformA.getBasis().getColumn(i);
			int flags = m_flags >> (i * B3_6DOF_FLAGS_AXIS_SHIFT);
			limot.m_normalCFM = (flags & B3_6DOF_FLAGS_CFM_NORM) ? m_linearLimits.m_normalCFM[i] : info->cfm[0];
			limot.m_stopCFM = (flags & B3_6DOF_FLAGS_CFM_STOP) ? m_linearLimits.m_stopCFM[i] : info->cfm[0];
			limot.m_stopERP = (flags & B3_6DOF_FLAGS_ERP_STOP) ? m_linearLimits.m_stopERP[i] : info->erp;
			if (m_useOffsetForConstraintFrame)
			{
				int indx1 = (i + 1) % 3;
				int indx2 = (i + 2) % 3;
				int rotAllowed = 1;  // rotations around orthos to current axis
				if (m_angularLimits[indx1].m_currentLimit && m_angularLimits[indx2].m_currentLimit)
				{
					rotAllowed = 0;
				}
				row += get_limit_motor_info2(&limot, transA, transB, linVelA, linVelB, angVelA, angVelB, info, row, axis, 0, rotAllowed);
			}
			else
			{
				row += get_limit_motor_info2(&limot, transA, transB, linVelA, linVelB, angVelA, angVelB, info, row, axis, 0);
			}
		}
	}
	return row;
}

int b3Generic6DofConstraint::setAngularLimits(b3ConstraintInfo2* info, int row_offset, const b3Transform& transA, const b3Transform& transB, const b3Vector3& linVelA, const b3Vector3& linVelB, const b3Vector3& angVelA, const b3Vector3& angVelB)
{
	b3Generic6DofConstraint* d6constraint = this;
	int row = row_offset;
	//solve angular limits
	for (int i = 0; i < 3; i++)
	{
		if (d6constraint->getRotationalLimitMotor(i)->needApplyTorques())
		{
			b3Vector3 axis = d6constraint->getAxis(i);
			int flags = m_flags >> ((i + 3) * B3_6DOF_FLAGS_AXIS_SHIFT);
			if (!(flags & B3_6DOF_FLAGS_CFM_NORM))
			{
				m_angularLimits[i].m_normalCFM = info->cfm[0];
			}
			if (!(flags & B3_6DOF_FLAGS_CFM_STOP))
			{
				m_angularLimits[i].m_stopCFM = info->cfm[0];
			}
			if (!(flags & B3_6DOF_FLAGS_ERP_STOP))
			{
				m_angularLimits[i].m_stopERP = info->erp;
			}
			row += get_limit_motor_info2(d6constraint->getRotationalLimitMotor(i),
										 transA, transB, linVelA, linVelB, angVelA, angVelB, info, row, axis, 1);
		}
	}

	return row;
}

void b3Generic6DofConstraint::updateRHS(b3Scalar timeStep)
{
	(void)timeStep;
}

void b3Generic6DofConstraint::setFrames(const b3Transform& frameA, const b3Transform& frameB, const b3RigidBodyData* bodies)
{
	m_frameInA = frameA;
	m_frameInB = frameB;

	calculateTransforms(bodies);
}

b3Vector3 b3Generic6DofConstraint::getAxis(int axis_index) const
{
	return m_calculatedAxis[axis_index];
}

b3Scalar b3Generic6DofConstraint::getRelativePivotPosition(int axisIndex) const
{
	return m_calculatedLinearDiff[axisIndex];
}

b3Scalar b3Generic6DofConstraint::getAngle(int axisIndex) const
{
	return m_calculatedAxisAngleDiff[axisIndex];
}

void b3Generic6DofConstraint::calcAnchorPos(const b3RigidBodyData* bodies)
{
	b3Scalar imA = bodies[m_rbA].m_invMass;
	b3Scalar imB = bodies[m_rbB].m_invMass;
	b3Scalar weight;
	if (imB == b3Scalar(0.0))
	{
		weight = b3Scalar(1.0);
	}
	else
	{
		weight = imA / (imA + imB);
	}
	const b3Vector3& pA = m_calculatedTransformA.getOrigin();
	const b3Vector3& pB = m_calculatedTransformB.getOrigin();
	m_AnchorPos = pA * weight + pB * (b3Scalar(1.0) - weight);
	return;
}

void b3Generic6DofConstraint::calculateLinearInfo()
{
	m_calculatedLinearDiff = m_calculatedTransformB.getOrigin() - m_calculatedTransformA.getOrigin();
	m_calculatedLinearDiff = m_calculatedTransformA.getBasis().inverse() * m_calculatedLinearDiff;
	for (int i = 0; i < 3; i++)
	{
		m_linearLimits.m_currentLinearDiff[i] = m_calculatedLinearDiff[i];
		m_linearLimits.testLimitValue(i, m_calculatedLinearDiff[i]);
	}
}

int b3Generic6DofConstraint::get_limit_motor_info2(
	b3RotationalLimitMotor* limot,
	const b3Transform& transA, const b3Transform& transB, const b3Vector3& linVelA, const b3Vector3& linVelB, const b3Vector3& angVelA, const b3Vector3& angVelB,
	b3ConstraintInfo2* info, int row, b3Vector3& ax1, int rotational, int rotAllowed)
{
	int srow = row * info->rowskip;
	bool powered = limot->m_enableMotor;
	int limit = limot->m_currentLimit;
	if (powered || limit)
	{  // if the joint is powered, or has joint limits, add in the extra row
		b3Scalar* J1 = rotational ? info->m_J1angularAxis : info->m_J1linearAxis;
		b3Scalar* J2 = rotational ? info->m_J2angularAxis : info->m_J2linearAxis;
		if (J1)
		{
			J1[srow + 0] = ax1[0];
			J1[srow + 1] = ax1[1];
			J1[srow + 2] = ax1[2];
		}
		if (J2)
		{
			J2[srow + 0] = -ax1[0];
			J2[srow + 1] = -ax1[1];
			J2[srow + 2] = -ax1[2];
		}
		if ((!rotational))
		{
			if (m_useOffsetForConstraintFrame)
			{
				b3Vector3 tmpA, tmpB, relA, relB;
				// get vector from bodyB to frameB in WCS
				relB = m_calculatedTransformB.getOrigin() - transB.getOrigin();
				// get its projection to constraint axis
				b3Vector3 projB = ax1 * relB.dot(ax1);
				// get vector directed from bodyB to constraint axis (and orthogonal to it)
				b3Vector3 orthoB = relB - projB;
				// same for bodyA
				relA = m_calculatedTransformA.getOrigin() - transA.getOrigin();
				b3Vector3 projA = ax1 * relA.dot(ax1);
				b3Vector3 orthoA = relA - projA;
				// get desired offset between frames A and B along constraint axis
				b3Scalar desiredOffs = limot->m_currentPosition - limot->m_currentLimitError;
				// desired vector from projection of center of bodyA to projection of center of bodyB to constraint axis
				b3Vector3 totalDist = projA + ax1 * desiredOffs - projB;
				// get offset vectors relA and relB
				relA = orthoA + totalDist * m_factA;
				relB = orthoB - totalDist * m_factB;
				tmpA = relA.cross(ax1);
				tmpB = relB.cross(ax1);
				if (m_hasStaticBody && (!rotAllowed))
				{
					tmpA *= m_factA;
					tmpB *= m_factB;
				}
				int i;
				for (i = 0; i < 3; i++) info->m_J1angularAxis[srow + i] = tmpA[i];
				for (i = 0; i < 3; i++) info->m_J2angularAxis[srow + i] = -tmpB[i];
			}
			else
			{
				b3Vector3 ltd;  // Linear Torque Decoupling vector
				b3Vector3 c = m_calculatedTransformB.getOrigin() - transA.getOrigin();
				ltd = c.cross(ax1);
				info->m_J1angularAxis[srow + 0] = ltd[0];
				info->m_J1angularAxis[srow + 1] = ltd[1];
				info->m_J1angularAxis[srow + 2] = ltd[2];

				c = m_calculatedTransformB.getOrigin() - transB.getOrigin();
				ltd = -c.cross(ax1);
				info->m_J2angularAxis[srow + 0] = ltd[0];
				info->m_J2angularAxis[srow + 1] = ltd[1];
				info->m_J2angularAxis[srow + 2] = ltd[2];
			}
		}
		// if we're limited low and high simultaneously, the joint motor is
		// ineffective
		if (limit && (limot->m_loLimit == limot->m_hiLimit)) powered = false;
		info->m_constraintError[srow] = b3Scalar(0.f);
		if (powered)
		{
			info->cfm[srow] = limot->m_normalCFM;
			if (!limit)
			{
				b3Scalar tag_vel = rotational ? limot->m_targetVelocity : -limot->m_targetVelocity;

				b3Scalar mot_fact = getMotorFactor(limot->m_currentPosition,
												   limot->m_loLimit,
												   limot->m_hiLimit,
												   tag_vel,
												   info->fps * limot->m_stopERP);
				info->m_constraintError[srow] += mot_fact * limot->m_targetVelocity;
				info->m_lowerLimit[srow] = -limot->m_maxMotorForce / info->fps;
				info->m_upperLimit[srow] = limot->m_maxMotorForce / info->fps;
			}
		}
		if (limit)
		{
			b3Scalar k = info->fps * limot->m_stopERP;
			if (!rotational)
			{
				info->m_constraintError[srow] += k * limot->m_currentLimitError;
			}
			else
			{
				info->m_constraintError[srow] += -k * limot->m_currentLimitError;
			}
			info->cfm[srow] = limot->m_stopCFM;
			if (limot->m_loLimit == limot->m_hiLimit)
			{  // limited low and high simultaneously
				info->m_lowerLimit[srow] = -B3_INFINITY;
				info->m_upperLimit[srow] = B3_INFINITY;
			}
			else
			{
				if (limit == 1)
				{
					info->m_lowerLimit[srow] = 0;
					info->m_upperLimit[srow] = B3_INFINITY;
				}
				else
				{
					info->m_lowerLimit[srow] = -B3_INFINITY;
					info->m_upperLimit[srow] = 0;
				}
				// deal with bounce
				if (limot->m_bounce > 0)
				{
					// calculate joint velocity
					b3Scalar vel;
					if (rotational)
					{
						vel = angVelA.dot(ax1);
						//make sure that if no body -> angVelB == zero vec
						//                        if (body1)
						vel -= angVelB.dot(ax1);
					}
					else
					{
						vel = linVelA.dot(ax1);
						//make sure that if no body -> angVelB == zero vec
						//                        if (body1)
						vel -= linVelB.dot(ax1);
					}
					// only apply bounce if the velocity is incoming, and if the
					// resulting c[] exceeds what we already have.
					if (limit == 1)
					{
						if (vel < 0)
						{
							b3Scalar newc = -limot->m_bounce * vel;
							if (newc > info->m_constraintError[srow])
								info->m_constraintError[srow] = newc;
						}
					}
					else
					{
						if (vel > 0)
						{
							b3Scalar newc = -limot->m_bounce * vel;
							if (newc < info->m_constraintError[srow])
								info->m_constraintError[srow] = newc;
						}
					}
				}
			}
		}
		return 1;
	}
	else
		return 0;
}

///override the default global value of a parameter (such as ERP or CFM), optionally provide the axis (0..5).
///If no axis is provided, it uses the default axis for this constraint.
void b3Generic6DofConstraint::setParam(int num, b3Scalar value, int axis)
{
	if ((axis >= 0) && (axis < 3))
	{
		switch (num)
		{
			case B3_CONSTRAINT_STOP_ERP:
				m_linearLimits.m_stopERP[axis] = value;
				m_flags |= B3_6DOF_FLAGS_ERP_STOP << (axis * B3_6DOF_FLAGS_AXIS_SHIFT);
				break;
			case B3_CONSTRAINT_STOP_CFM:
				m_linearLimits.m_stopCFM[axis] = value;
				m_flags |= B3_6DOF_FLAGS_CFM_STOP << (axis * B3_6DOF_FLAGS_AXIS_SHIFT);
				break;
			case B3_CONSTRAINT_CFM:
				m_linearLimits.m_normalCFM[axis] = value;
				m_flags |= B3_6DOF_FLAGS_CFM_NORM << (axis * B3_6DOF_FLAGS_AXIS_SHIFT);
				break;
			default:
				b3AssertConstrParams(0);
		}
	}
	else if ((axis >= 3) && (axis < 6))
	{
		switch (num)
		{
			case B3_CONSTRAINT_STOP_ERP:
				m_angularLimits[axis - 3].m_stopERP = value;
				m_flags |= B3_6DOF_FLAGS_ERP_STOP << (axis * B3_6DOF_FLAGS_AXIS_SHIFT);
				break;
			case B3_CONSTRAINT_STOP_CFM:
				m_angularLimits[axis - 3].m_stopCFM = value;
				m_flags |= B3_6DOF_FLAGS_CFM_STOP << (axis * B3_6DOF_FLAGS_AXIS_SHIFT);
				break;
			case B3_CONSTRAINT_CFM:
				m_angularLimits[axis - 3].m_normalCFM = value;
				m_flags |= B3_6DOF_FLAGS_CFM_NORM << (axis * B3_6DOF_FLAGS_AXIS_SHIFT);
				break;
			default:
				b3AssertConstrParams(0);
		}
	}
	else
	{
		b3AssertConstrParams(0);
	}
}

///return the local value of parameter
b3Scalar b3Generic6DofConstraint::getParam(int num, int axis) const
{
	b3Scalar retVal = 0;
	if ((axis >= 0) && (axis < 3))
	{
		switch (num)
		{
			case B3_CONSTRAINT_STOP_ERP:
				b3AssertConstrParams(m_flags & (B3_6DOF_FLAGS_ERP_STOP << (axis * B3_6DOF_FLAGS_AXIS_SHIFT)));
				retVal = m_linearLimits.m_stopERP[axis];
				break;
			case B3_CONSTRAINT_STOP_CFM:
				b3AssertConstrParams(m_flags & (B3_6DOF_FLAGS_CFM_STOP << (axis * B3_6DOF_FLAGS_AXIS_SHIFT)));
				retVal = m_linearLimits.m_stopCFM[axis];
				break;
			case B3_CONSTRAINT_CFM:
				b3AssertConstrParams(m_flags & (B3_6DOF_FLAGS_CFM_NORM << (axis * B3_6DOF_FLAGS_AXIS_SHIFT)));
				retVal = m_linearLimits.m_normalCFM[axis];
				break;
			default:
				b3AssertConstrParams(0);
		}
	}
	else if ((axis >= 3) && (axis < 6))
	{
		switch (num)
		{
			case B3_CONSTRAINT_STOP_ERP:
				b3AssertConstrParams(m_flags & (B3_6DOF_FLAGS_ERP_STOP << (axis * B3_6DOF_FLAGS_AXIS_SHIFT)));
				retVal = m_angularLimits[axis - 3].m_stopERP;
				break;
			case B3_CONSTRAINT_STOP_CFM:
				b3AssertConstrParams(m_flags & (B3_6DOF_FLAGS_CFM_STOP << (axis * B3_6DOF_FLAGS_AXIS_SHIFT)));
				retVal = m_angularLimits[axis - 3].m_stopCFM;
				break;
			case B3_CONSTRAINT_CFM:
				b3AssertConstrParams(m_flags & (B3_6DOF_FLAGS_CFM_NORM << (axis * B3_6DOF_FLAGS_AXIS_SHIFT)));
				retVal = m_angularLimits[axis - 3].m_normalCFM;
				break;
			default:
				b3AssertConstrParams(0);
		}
	}
	else
	{
		b3AssertConstrParams(0);
	}
	return retVal;
}

void b3Generic6DofConstraint::setAxis(const b3Vector3& axis1, const b3Vector3& axis2, const b3RigidBodyData* bodies)
{
	b3Vector3 zAxis = axis1.normalized();
	b3Vector3 yAxis = axis2.normalized();
	b3Vector3 xAxis = yAxis.cross(zAxis);  // we want right coordinate system

	b3Transform frameInW;
	frameInW.setIdentity();
	frameInW.getBasis().setValue(xAxis[0], yAxis[0], zAxis[0],
								 xAxis[1], yAxis[1], zAxis[1],
								 xAxis[2], yAxis[2], zAxis[2]);

	// now get constraint frame in local coordinate systems
	m_frameInA = getCenterOfMassTransform(bodies[m_rbA]).inverse() * frameInW;
	m_frameInB = getCenterOfMassTransform(bodies[m_rbB]).inverse() * frameInW;

	calculateTransforms(bodies);
}