1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
|
/*
Copyright (c) 2003-2013 Gino van den Bergen / Erwin Coumans http://bulletphysics.org
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#ifndef B3_SIMD__QUATERNION_H_
#define B3_SIMD__QUATERNION_H_
#include "b3Vector3.h"
#include "b3QuadWord.h"
#ifdef B3_USE_SSE
const __m128 B3_ATTRIBUTE_ALIGNED16(b3vOnes) = {1.0f, 1.0f, 1.0f, 1.0f};
#endif
#if defined(B3_USE_SSE) || defined(B3_USE_NEON)
const b3SimdFloat4 B3_ATTRIBUTE_ALIGNED16(b3vQInv) = {-0.0f, -0.0f, -0.0f, +0.0f};
const b3SimdFloat4 B3_ATTRIBUTE_ALIGNED16(b3vPPPM) = {+0.0f, +0.0f, +0.0f, -0.0f};
#endif
/**@brief The b3Quaternion implements quaternion to perform linear algebra rotations in combination with b3Matrix3x3, b3Vector3 and b3Transform. */
class b3Quaternion : public b3QuadWord
{
public:
/**@brief No initialization constructor */
b3Quaternion() {}
#if (defined(B3_USE_SSE_IN_API) && defined(B3_USE_SSE)) || defined(B3_USE_NEON)
// Set Vector
B3_FORCE_INLINE b3Quaternion(const b3SimdFloat4 vec)
{
mVec128 = vec;
}
// Copy constructor
B3_FORCE_INLINE b3Quaternion(const b3Quaternion& rhs)
{
mVec128 = rhs.mVec128;
}
// Assignment Operator
B3_FORCE_INLINE b3Quaternion&
operator=(const b3Quaternion& v)
{
mVec128 = v.mVec128;
return *this;
}
#endif
// template <typename b3Scalar>
// explicit Quaternion(const b3Scalar *v) : Tuple4<b3Scalar>(v) {}
/**@brief Constructor from scalars */
b3Quaternion(const b3Scalar& _x, const b3Scalar& _y, const b3Scalar& _z, const b3Scalar& _w)
: b3QuadWord(_x, _y, _z, _w)
{
//b3Assert(!((_x==1.f) && (_y==0.f) && (_z==0.f) && (_w==0.f)));
}
/**@brief Axis angle Constructor
* @param axis The axis which the rotation is around
* @param angle The magnitude of the rotation around the angle (Radians) */
b3Quaternion(const b3Vector3& _axis, const b3Scalar& _angle)
{
setRotation(_axis, _angle);
}
/**@brief Constructor from Euler angles
* @param yaw Angle around Y unless B3_EULER_DEFAULT_ZYX defined then Z
* @param pitch Angle around X unless B3_EULER_DEFAULT_ZYX defined then Y
* @param roll Angle around Z unless B3_EULER_DEFAULT_ZYX defined then X */
b3Quaternion(const b3Scalar& yaw, const b3Scalar& pitch, const b3Scalar& roll)
{
#ifndef B3_EULER_DEFAULT_ZYX
setEuler(yaw, pitch, roll);
#else
setEulerZYX(yaw, pitch, roll);
#endif
}
/**@brief Set the rotation using axis angle notation
* @param axis The axis around which to rotate
* @param angle The magnitude of the rotation in Radians */
void setRotation(const b3Vector3& axis1, const b3Scalar& _angle)
{
b3Vector3 axis = axis1;
axis.safeNormalize();
b3Scalar d = axis.length();
b3Assert(d != b3Scalar(0.0));
if (d < B3_EPSILON)
{
setValue(0, 0, 0, 1);
}
else
{
b3Scalar s = b3Sin(_angle * b3Scalar(0.5)) / d;
setValue(axis.getX() * s, axis.getY() * s, axis.getZ() * s,
b3Cos(_angle * b3Scalar(0.5)));
}
}
/**@brief Set the quaternion using Euler angles
* @param yaw Angle around Y
* @param pitch Angle around X
* @param roll Angle around Z */
void setEuler(const b3Scalar& yaw, const b3Scalar& pitch, const b3Scalar& roll)
{
b3Scalar halfYaw = b3Scalar(yaw) * b3Scalar(0.5);
b3Scalar halfPitch = b3Scalar(pitch) * b3Scalar(0.5);
b3Scalar halfRoll = b3Scalar(roll) * b3Scalar(0.5);
b3Scalar cosYaw = b3Cos(halfYaw);
b3Scalar sinYaw = b3Sin(halfYaw);
b3Scalar cosPitch = b3Cos(halfPitch);
b3Scalar sinPitch = b3Sin(halfPitch);
b3Scalar cosRoll = b3Cos(halfRoll);
b3Scalar sinRoll = b3Sin(halfRoll);
setValue(cosRoll * sinPitch * cosYaw + sinRoll * cosPitch * sinYaw,
cosRoll * cosPitch * sinYaw - sinRoll * sinPitch * cosYaw,
sinRoll * cosPitch * cosYaw - cosRoll * sinPitch * sinYaw,
cosRoll * cosPitch * cosYaw + sinRoll * sinPitch * sinYaw);
}
/**@brief Set the quaternion using euler angles
* @param yaw Angle around Z
* @param pitch Angle around Y
* @param roll Angle around X */
void setEulerZYX(const b3Scalar& yawZ, const b3Scalar& pitchY, const b3Scalar& rollX)
{
b3Scalar halfYaw = b3Scalar(yawZ) * b3Scalar(0.5);
b3Scalar halfPitch = b3Scalar(pitchY) * b3Scalar(0.5);
b3Scalar halfRoll = b3Scalar(rollX) * b3Scalar(0.5);
b3Scalar cosYaw = b3Cos(halfYaw);
b3Scalar sinYaw = b3Sin(halfYaw);
b3Scalar cosPitch = b3Cos(halfPitch);
b3Scalar sinPitch = b3Sin(halfPitch);
b3Scalar cosRoll = b3Cos(halfRoll);
b3Scalar sinRoll = b3Sin(halfRoll);
setValue(sinRoll * cosPitch * cosYaw - cosRoll * sinPitch * sinYaw, //x
cosRoll * sinPitch * cosYaw + sinRoll * cosPitch * sinYaw, //y
cosRoll * cosPitch * sinYaw - sinRoll * sinPitch * cosYaw, //z
cosRoll * cosPitch * cosYaw + sinRoll * sinPitch * sinYaw); //formerly yzx
normalize();
}
/**@brief Get the euler angles from this quaternion
* @param yaw Angle around Z
* @param pitch Angle around Y
* @param roll Angle around X */
void getEulerZYX(b3Scalar& yawZ, b3Scalar& pitchY, b3Scalar& rollX) const
{
b3Scalar squ;
b3Scalar sqx;
b3Scalar sqy;
b3Scalar sqz;
b3Scalar sarg;
sqx = m_floats[0] * m_floats[0];
sqy = m_floats[1] * m_floats[1];
sqz = m_floats[2] * m_floats[2];
squ = m_floats[3] * m_floats[3];
rollX = b3Atan2(2 * (m_floats[1] * m_floats[2] + m_floats[3] * m_floats[0]), squ - sqx - sqy + sqz);
sarg = b3Scalar(-2.) * (m_floats[0] * m_floats[2] - m_floats[3] * m_floats[1]);
pitchY = sarg <= b3Scalar(-1.0) ? b3Scalar(-0.5) * B3_PI : (sarg >= b3Scalar(1.0) ? b3Scalar(0.5) * B3_PI : b3Asin(sarg));
yawZ = b3Atan2(2 * (m_floats[0] * m_floats[1] + m_floats[3] * m_floats[2]), squ + sqx - sqy - sqz);
}
/**@brief Add two quaternions
* @param q The quaternion to add to this one */
B3_FORCE_INLINE b3Quaternion& operator+=(const b3Quaternion& q)
{
#if defined(B3_USE_SSE_IN_API) && defined(B3_USE_SSE)
mVec128 = _mm_add_ps(mVec128, q.mVec128);
#elif defined(B3_USE_NEON)
mVec128 = vaddq_f32(mVec128, q.mVec128);
#else
m_floats[0] += q.getX();
m_floats[1] += q.getY();
m_floats[2] += q.getZ();
m_floats[3] += q.m_floats[3];
#endif
return *this;
}
/**@brief Subtract out a quaternion
* @param q The quaternion to subtract from this one */
b3Quaternion& operator-=(const b3Quaternion& q)
{
#if defined(B3_USE_SSE_IN_API) && defined(B3_USE_SSE)
mVec128 = _mm_sub_ps(mVec128, q.mVec128);
#elif defined(B3_USE_NEON)
mVec128 = vsubq_f32(mVec128, q.mVec128);
#else
m_floats[0] -= q.getX();
m_floats[1] -= q.getY();
m_floats[2] -= q.getZ();
m_floats[3] -= q.m_floats[3];
#endif
return *this;
}
/**@brief Scale this quaternion
* @param s The scalar to scale by */
b3Quaternion& operator*=(const b3Scalar& s)
{
#if defined(B3_USE_SSE_IN_API) && defined(B3_USE_SSE)
__m128 vs = _mm_load_ss(&s); // (S 0 0 0)
vs = b3_pshufd_ps(vs, 0); // (S S S S)
mVec128 = _mm_mul_ps(mVec128, vs);
#elif defined(B3_USE_NEON)
mVec128 = vmulq_n_f32(mVec128, s);
#else
m_floats[0] *= s;
m_floats[1] *= s;
m_floats[2] *= s;
m_floats[3] *= s;
#endif
return *this;
}
/**@brief Multiply this quaternion by q on the right
* @param q The other quaternion
* Equivilant to this = this * q */
b3Quaternion& operator*=(const b3Quaternion& q)
{
#if defined(B3_USE_SSE_IN_API) && defined(B3_USE_SSE)
__m128 vQ2 = q.get128();
__m128 A1 = b3_pshufd_ps(mVec128, B3_SHUFFLE(0, 1, 2, 0));
__m128 B1 = b3_pshufd_ps(vQ2, B3_SHUFFLE(3, 3, 3, 0));
A1 = A1 * B1;
__m128 A2 = b3_pshufd_ps(mVec128, B3_SHUFFLE(1, 2, 0, 1));
__m128 B2 = b3_pshufd_ps(vQ2, B3_SHUFFLE(2, 0, 1, 1));
A2 = A2 * B2;
B1 = b3_pshufd_ps(mVec128, B3_SHUFFLE(2, 0, 1, 2));
B2 = b3_pshufd_ps(vQ2, B3_SHUFFLE(1, 2, 0, 2));
B1 = B1 * B2; // A3 *= B3
mVec128 = b3_splat_ps(mVec128, 3); // A0
mVec128 = mVec128 * vQ2; // A0 * B0
A1 = A1 + A2; // AB12
mVec128 = mVec128 - B1; // AB03 = AB0 - AB3
A1 = _mm_xor_ps(A1, b3vPPPM); // change sign of the last element
mVec128 = mVec128 + A1; // AB03 + AB12
#elif defined(B3_USE_NEON)
float32x4_t vQ1 = mVec128;
float32x4_t vQ2 = q.get128();
float32x4_t A0, A1, B1, A2, B2, A3, B3;
float32x2_t vQ1zx, vQ2wx, vQ1yz, vQ2zx, vQ2yz, vQ2xz;
{
float32x2x2_t tmp;
tmp = vtrn_f32(vget_high_f32(vQ1), vget_low_f32(vQ1)); // {z x}, {w y}
vQ1zx = tmp.val[0];
tmp = vtrn_f32(vget_high_f32(vQ2), vget_low_f32(vQ2)); // {z x}, {w y}
vQ2zx = tmp.val[0];
}
vQ2wx = vext_f32(vget_high_f32(vQ2), vget_low_f32(vQ2), 1);
vQ1yz = vext_f32(vget_low_f32(vQ1), vget_high_f32(vQ1), 1);
vQ2yz = vext_f32(vget_low_f32(vQ2), vget_high_f32(vQ2), 1);
vQ2xz = vext_f32(vQ2zx, vQ2zx, 1);
A1 = vcombine_f32(vget_low_f32(vQ1), vQ1zx); // X Y z x
B1 = vcombine_f32(vdup_lane_f32(vget_high_f32(vQ2), 1), vQ2wx); // W W W X
A2 = vcombine_f32(vQ1yz, vget_low_f32(vQ1));
B2 = vcombine_f32(vQ2zx, vdup_lane_f32(vget_low_f32(vQ2), 1));
A3 = vcombine_f32(vQ1zx, vQ1yz); // Z X Y Z
B3 = vcombine_f32(vQ2yz, vQ2xz); // Y Z x z
A1 = vmulq_f32(A1, B1);
A2 = vmulq_f32(A2, B2);
A3 = vmulq_f32(A3, B3); // A3 *= B3
A0 = vmulq_lane_f32(vQ2, vget_high_f32(vQ1), 1); // A0 * B0
A1 = vaddq_f32(A1, A2); // AB12 = AB1 + AB2
A0 = vsubq_f32(A0, A3); // AB03 = AB0 - AB3
// change the sign of the last element
A1 = (b3SimdFloat4)veorq_s32((int32x4_t)A1, (int32x4_t)b3vPPPM);
A0 = vaddq_f32(A0, A1); // AB03 + AB12
mVec128 = A0;
#else
setValue(
m_floats[3] * q.getX() + m_floats[0] * q.m_floats[3] + m_floats[1] * q.getZ() - m_floats[2] * q.getY(),
m_floats[3] * q.getY() + m_floats[1] * q.m_floats[3] + m_floats[2] * q.getX() - m_floats[0] * q.getZ(),
m_floats[3] * q.getZ() + m_floats[2] * q.m_floats[3] + m_floats[0] * q.getY() - m_floats[1] * q.getX(),
m_floats[3] * q.m_floats[3] - m_floats[0] * q.getX() - m_floats[1] * q.getY() - m_floats[2] * q.getZ());
#endif
return *this;
}
/**@brief Return the dot product between this quaternion and another
* @param q The other quaternion */
b3Scalar dot(const b3Quaternion& q) const
{
#if defined(B3_USE_SSE_IN_API) && defined(B3_USE_SSE)
__m128 vd;
vd = _mm_mul_ps(mVec128, q.mVec128);
__m128 t = _mm_movehl_ps(vd, vd);
vd = _mm_add_ps(vd, t);
t = _mm_shuffle_ps(vd, vd, 0x55);
vd = _mm_add_ss(vd, t);
return _mm_cvtss_f32(vd);
#elif defined(B3_USE_NEON)
float32x4_t vd = vmulq_f32(mVec128, q.mVec128);
float32x2_t x = vpadd_f32(vget_low_f32(vd), vget_high_f32(vd));
x = vpadd_f32(x, x);
return vget_lane_f32(x, 0);
#else
return m_floats[0] * q.getX() +
m_floats[1] * q.getY() +
m_floats[2] * q.getZ() +
m_floats[3] * q.m_floats[3];
#endif
}
/**@brief Return the length squared of the quaternion */
b3Scalar length2() const
{
return dot(*this);
}
/**@brief Return the length of the quaternion */
b3Scalar length() const
{
return b3Sqrt(length2());
}
/**@brief Normalize the quaternion
* Such that x^2 + y^2 + z^2 +w^2 = 1 */
b3Quaternion& normalize()
{
#if defined(B3_USE_SSE_IN_API) && defined(B3_USE_SSE)
__m128 vd;
vd = _mm_mul_ps(mVec128, mVec128);
__m128 t = _mm_movehl_ps(vd, vd);
vd = _mm_add_ps(vd, t);
t = _mm_shuffle_ps(vd, vd, 0x55);
vd = _mm_add_ss(vd, t);
vd = _mm_sqrt_ss(vd);
vd = _mm_div_ss(b3vOnes, vd);
vd = b3_pshufd_ps(vd, 0); // splat
mVec128 = _mm_mul_ps(mVec128, vd);
return *this;
#else
return *this /= length();
#endif
}
/**@brief Return a scaled version of this quaternion
* @param s The scale factor */
B3_FORCE_INLINE b3Quaternion
operator*(const b3Scalar& s) const
{
#if defined(B3_USE_SSE_IN_API) && defined(B3_USE_SSE)
__m128 vs = _mm_load_ss(&s); // (S 0 0 0)
vs = b3_pshufd_ps(vs, 0x00); // (S S S S)
return b3Quaternion(_mm_mul_ps(mVec128, vs));
#elif defined(B3_USE_NEON)
return b3Quaternion(vmulq_n_f32(mVec128, s));
#else
return b3Quaternion(getX() * s, getY() * s, getZ() * s, m_floats[3] * s);
#endif
}
/**@brief Return an inversely scaled versionof this quaternion
* @param s The inverse scale factor */
b3Quaternion operator/(const b3Scalar& s) const
{
b3Assert(s != b3Scalar(0.0));
return *this * (b3Scalar(1.0) / s);
}
/**@brief Inversely scale this quaternion
* @param s The scale factor */
b3Quaternion& operator/=(const b3Scalar& s)
{
b3Assert(s != b3Scalar(0.0));
return *this *= b3Scalar(1.0) / s;
}
/**@brief Return a normalized version of this quaternion */
b3Quaternion normalized() const
{
return *this / length();
}
/**@brief Return the angle between this quaternion and the other
* @param q The other quaternion */
b3Scalar angle(const b3Quaternion& q) const
{
b3Scalar s = b3Sqrt(length2() * q.length2());
b3Assert(s != b3Scalar(0.0));
return b3Acos(dot(q) / s);
}
/**@brief Return the angle of rotation represented by this quaternion */
b3Scalar getAngle() const
{
b3Scalar s = b3Scalar(2.) * b3Acos(m_floats[3]);
return s;
}
/**@brief Return the axis of the rotation represented by this quaternion */
b3Vector3 getAxis() const
{
b3Scalar s_squared = 1.f - m_floats[3] * m_floats[3];
if (s_squared < b3Scalar(10.) * B3_EPSILON) //Check for divide by zero
return b3MakeVector3(1.0, 0.0, 0.0); // Arbitrary
b3Scalar s = 1.f / b3Sqrt(s_squared);
return b3MakeVector3(m_floats[0] * s, m_floats[1] * s, m_floats[2] * s);
}
/**@brief Return the inverse of this quaternion */
b3Quaternion inverse() const
{
#if defined(B3_USE_SSE_IN_API) && defined(B3_USE_SSE)
return b3Quaternion(_mm_xor_ps(mVec128, b3vQInv));
#elif defined(B3_USE_NEON)
return b3Quaternion((b3SimdFloat4)veorq_s32((int32x4_t)mVec128, (int32x4_t)b3vQInv));
#else
return b3Quaternion(-m_floats[0], -m_floats[1], -m_floats[2], m_floats[3]);
#endif
}
/**@brief Return the sum of this quaternion and the other
* @param q2 The other quaternion */
B3_FORCE_INLINE b3Quaternion
operator+(const b3Quaternion& q2) const
{
#if defined(B3_USE_SSE_IN_API) && defined(B3_USE_SSE)
return b3Quaternion(_mm_add_ps(mVec128, q2.mVec128));
#elif defined(B3_USE_NEON)
return b3Quaternion(vaddq_f32(mVec128, q2.mVec128));
#else
const b3Quaternion& q1 = *this;
return b3Quaternion(q1.getX() + q2.getX(), q1.getY() + q2.getY(), q1.getZ() + q2.getZ(), q1.m_floats[3] + q2.m_floats[3]);
#endif
}
/**@brief Return the difference between this quaternion and the other
* @param q2 The other quaternion */
B3_FORCE_INLINE b3Quaternion
operator-(const b3Quaternion& q2) const
{
#if defined(B3_USE_SSE_IN_API) && defined(B3_USE_SSE)
return b3Quaternion(_mm_sub_ps(mVec128, q2.mVec128));
#elif defined(B3_USE_NEON)
return b3Quaternion(vsubq_f32(mVec128, q2.mVec128));
#else
const b3Quaternion& q1 = *this;
return b3Quaternion(q1.getX() - q2.getX(), q1.getY() - q2.getY(), q1.getZ() - q2.getZ(), q1.m_floats[3] - q2.m_floats[3]);
#endif
}
/**@brief Return the negative of this quaternion
* This simply negates each element */
B3_FORCE_INLINE b3Quaternion operator-() const
{
#if defined(B3_USE_SSE_IN_API) && defined(B3_USE_SSE)
return b3Quaternion(_mm_xor_ps(mVec128, b3vMzeroMask));
#elif defined(B3_USE_NEON)
return b3Quaternion((b3SimdFloat4)veorq_s32((int32x4_t)mVec128, (int32x4_t)b3vMzeroMask));
#else
const b3Quaternion& q2 = *this;
return b3Quaternion(-q2.getX(), -q2.getY(), -q2.getZ(), -q2.m_floats[3]);
#endif
}
/**@todo document this and it's use */
B3_FORCE_INLINE b3Quaternion farthest(const b3Quaternion& qd) const
{
b3Quaternion diff, sum;
diff = *this - qd;
sum = *this + qd;
if (diff.dot(diff) > sum.dot(sum))
return qd;
return (-qd);
}
/**@todo document this and it's use */
B3_FORCE_INLINE b3Quaternion nearest(const b3Quaternion& qd) const
{
b3Quaternion diff, sum;
diff = *this - qd;
sum = *this + qd;
if (diff.dot(diff) < sum.dot(sum))
return qd;
return (-qd);
}
/**@brief Return the quaternion which is the result of Spherical Linear Interpolation between this and the other quaternion
* @param q The other quaternion to interpolate with
* @param t The ratio between this and q to interpolate. If t = 0 the result is this, if t=1 the result is q.
* Slerp interpolates assuming constant velocity. */
b3Quaternion slerp(const b3Quaternion& q, const b3Scalar& t) const
{
b3Scalar magnitude = b3Sqrt(length2() * q.length2());
b3Assert(magnitude > b3Scalar(0));
b3Scalar product = dot(q) / magnitude;
if (b3Fabs(product) < b3Scalar(1))
{
// Take care of long angle case see http://en.wikipedia.org/wiki/Slerp
const b3Scalar sign = (product < 0) ? b3Scalar(-1) : b3Scalar(1);
const b3Scalar theta = b3Acos(sign * product);
const b3Scalar s1 = b3Sin(sign * t * theta);
const b3Scalar d = b3Scalar(1.0) / b3Sin(theta);
const b3Scalar s0 = b3Sin((b3Scalar(1.0) - t) * theta);
return b3Quaternion(
(m_floats[0] * s0 + q.getX() * s1) * d,
(m_floats[1] * s0 + q.getY() * s1) * d,
(m_floats[2] * s0 + q.getZ() * s1) * d,
(m_floats[3] * s0 + q.m_floats[3] * s1) * d);
}
else
{
return *this;
}
}
static const b3Quaternion& getIdentity()
{
static const b3Quaternion identityQuat(b3Scalar(0.), b3Scalar(0.), b3Scalar(0.), b3Scalar(1.));
return identityQuat;
}
B3_FORCE_INLINE const b3Scalar& getW() const { return m_floats[3]; }
};
/**@brief Return the product of two quaternions */
B3_FORCE_INLINE b3Quaternion
operator*(const b3Quaternion& q1, const b3Quaternion& q2)
{
#if defined(B3_USE_SSE_IN_API) && defined(B3_USE_SSE)
__m128 vQ1 = q1.get128();
__m128 vQ2 = q2.get128();
__m128 A0, A1, B1, A2, B2;
A1 = b3_pshufd_ps(vQ1, B3_SHUFFLE(0, 1, 2, 0)); // X Y z x // vtrn
B1 = b3_pshufd_ps(vQ2, B3_SHUFFLE(3, 3, 3, 0)); // W W W X // vdup vext
A1 = A1 * B1;
A2 = b3_pshufd_ps(vQ1, B3_SHUFFLE(1, 2, 0, 1)); // Y Z X Y // vext
B2 = b3_pshufd_ps(vQ2, B3_SHUFFLE(2, 0, 1, 1)); // z x Y Y // vtrn vdup
A2 = A2 * B2;
B1 = b3_pshufd_ps(vQ1, B3_SHUFFLE(2, 0, 1, 2)); // z x Y Z // vtrn vext
B2 = b3_pshufd_ps(vQ2, B3_SHUFFLE(1, 2, 0, 2)); // Y Z x z // vext vtrn
B1 = B1 * B2; // A3 *= B3
A0 = b3_splat_ps(vQ1, 3); // A0
A0 = A0 * vQ2; // A0 * B0
A1 = A1 + A2; // AB12
A0 = A0 - B1; // AB03 = AB0 - AB3
A1 = _mm_xor_ps(A1, b3vPPPM); // change sign of the last element
A0 = A0 + A1; // AB03 + AB12
return b3Quaternion(A0);
#elif defined(B3_USE_NEON)
float32x4_t vQ1 = q1.get128();
float32x4_t vQ2 = q2.get128();
float32x4_t A0, A1, B1, A2, B2, A3, B3;
float32x2_t vQ1zx, vQ2wx, vQ1yz, vQ2zx, vQ2yz, vQ2xz;
{
float32x2x2_t tmp;
tmp = vtrn_f32(vget_high_f32(vQ1), vget_low_f32(vQ1)); // {z x}, {w y}
vQ1zx = tmp.val[0];
tmp = vtrn_f32(vget_high_f32(vQ2), vget_low_f32(vQ2)); // {z x}, {w y}
vQ2zx = tmp.val[0];
}
vQ2wx = vext_f32(vget_high_f32(vQ2), vget_low_f32(vQ2), 1);
vQ1yz = vext_f32(vget_low_f32(vQ1), vget_high_f32(vQ1), 1);
vQ2yz = vext_f32(vget_low_f32(vQ2), vget_high_f32(vQ2), 1);
vQ2xz = vext_f32(vQ2zx, vQ2zx, 1);
A1 = vcombine_f32(vget_low_f32(vQ1), vQ1zx); // X Y z x
B1 = vcombine_f32(vdup_lane_f32(vget_high_f32(vQ2), 1), vQ2wx); // W W W X
A2 = vcombine_f32(vQ1yz, vget_low_f32(vQ1));
B2 = vcombine_f32(vQ2zx, vdup_lane_f32(vget_low_f32(vQ2), 1));
A3 = vcombine_f32(vQ1zx, vQ1yz); // Z X Y Z
B3 = vcombine_f32(vQ2yz, vQ2xz); // Y Z x z
A1 = vmulq_f32(A1, B1);
A2 = vmulq_f32(A2, B2);
A3 = vmulq_f32(A3, B3); // A3 *= B3
A0 = vmulq_lane_f32(vQ2, vget_high_f32(vQ1), 1); // A0 * B0
A1 = vaddq_f32(A1, A2); // AB12 = AB1 + AB2
A0 = vsubq_f32(A0, A3); // AB03 = AB0 - AB3
// change the sign of the last element
A1 = (b3SimdFloat4)veorq_s32((int32x4_t)A1, (int32x4_t)b3vPPPM);
A0 = vaddq_f32(A0, A1); // AB03 + AB12
return b3Quaternion(A0);
#else
return b3Quaternion(
q1.getW() * q2.getX() + q1.getX() * q2.getW() + q1.getY() * q2.getZ() - q1.getZ() * q2.getY(),
q1.getW() * q2.getY() + q1.getY() * q2.getW() + q1.getZ() * q2.getX() - q1.getX() * q2.getZ(),
q1.getW() * q2.getZ() + q1.getZ() * q2.getW() + q1.getX() * q2.getY() - q1.getY() * q2.getX(),
q1.getW() * q2.getW() - q1.getX() * q2.getX() - q1.getY() * q2.getY() - q1.getZ() * q2.getZ());
#endif
}
B3_FORCE_INLINE b3Quaternion
operator*(const b3Quaternion& q, const b3Vector3& w)
{
#if defined(B3_USE_SSE_IN_API) && defined(B3_USE_SSE)
__m128 vQ1 = q.get128();
__m128 vQ2 = w.get128();
__m128 A1, B1, A2, B2, A3, B3;
A1 = b3_pshufd_ps(vQ1, B3_SHUFFLE(3, 3, 3, 0));
B1 = b3_pshufd_ps(vQ2, B3_SHUFFLE(0, 1, 2, 0));
A1 = A1 * B1;
A2 = b3_pshufd_ps(vQ1, B3_SHUFFLE(1, 2, 0, 1));
B2 = b3_pshufd_ps(vQ2, B3_SHUFFLE(2, 0, 1, 1));
A2 = A2 * B2;
A3 = b3_pshufd_ps(vQ1, B3_SHUFFLE(2, 0, 1, 2));
B3 = b3_pshufd_ps(vQ2, B3_SHUFFLE(1, 2, 0, 2));
A3 = A3 * B3; // A3 *= B3
A1 = A1 + A2; // AB12
A1 = _mm_xor_ps(A1, b3vPPPM); // change sign of the last element
A1 = A1 - A3; // AB123 = AB12 - AB3
return b3Quaternion(A1);
#elif defined(B3_USE_NEON)
float32x4_t vQ1 = q.get128();
float32x4_t vQ2 = w.get128();
float32x4_t A1, B1, A2, B2, A3, B3;
float32x2_t vQ1wx, vQ2zx, vQ1yz, vQ2yz, vQ1zx, vQ2xz;
vQ1wx = vext_f32(vget_high_f32(vQ1), vget_low_f32(vQ1), 1);
{
float32x2x2_t tmp;
tmp = vtrn_f32(vget_high_f32(vQ2), vget_low_f32(vQ2)); // {z x}, {w y}
vQ2zx = tmp.val[0];
tmp = vtrn_f32(vget_high_f32(vQ1), vget_low_f32(vQ1)); // {z x}, {w y}
vQ1zx = tmp.val[0];
}
vQ1yz = vext_f32(vget_low_f32(vQ1), vget_high_f32(vQ1), 1);
vQ2yz = vext_f32(vget_low_f32(vQ2), vget_high_f32(vQ2), 1);
vQ2xz = vext_f32(vQ2zx, vQ2zx, 1);
A1 = vcombine_f32(vdup_lane_f32(vget_high_f32(vQ1), 1), vQ1wx); // W W W X
B1 = vcombine_f32(vget_low_f32(vQ2), vQ2zx); // X Y z x
A2 = vcombine_f32(vQ1yz, vget_low_f32(vQ1));
B2 = vcombine_f32(vQ2zx, vdup_lane_f32(vget_low_f32(vQ2), 1));
A3 = vcombine_f32(vQ1zx, vQ1yz); // Z X Y Z
B3 = vcombine_f32(vQ2yz, vQ2xz); // Y Z x z
A1 = vmulq_f32(A1, B1);
A2 = vmulq_f32(A2, B2);
A3 = vmulq_f32(A3, B3); // A3 *= B3
A1 = vaddq_f32(A1, A2); // AB12 = AB1 + AB2
// change the sign of the last element
A1 = (b3SimdFloat4)veorq_s32((int32x4_t)A1, (int32x4_t)b3vPPPM);
A1 = vsubq_f32(A1, A3); // AB123 = AB12 - AB3
return b3Quaternion(A1);
#else
return b3Quaternion(
q.getW() * w.getX() + q.getY() * w.getZ() - q.getZ() * w.getY(),
q.getW() * w.getY() + q.getZ() * w.getX() - q.getX() * w.getZ(),
q.getW() * w.getZ() + q.getX() * w.getY() - q.getY() * w.getX(),
-q.getX() * w.getX() - q.getY() * w.getY() - q.getZ() * w.getZ());
#endif
}
B3_FORCE_INLINE b3Quaternion
operator*(const b3Vector3& w, const b3Quaternion& q)
{
#if defined(B3_USE_SSE_IN_API) && defined(B3_USE_SSE)
__m128 vQ1 = w.get128();
__m128 vQ2 = q.get128();
__m128 A1, B1, A2, B2, A3, B3;
A1 = b3_pshufd_ps(vQ1, B3_SHUFFLE(0, 1, 2, 0)); // X Y z x
B1 = b3_pshufd_ps(vQ2, B3_SHUFFLE(3, 3, 3, 0)); // W W W X
A1 = A1 * B1;
A2 = b3_pshufd_ps(vQ1, B3_SHUFFLE(1, 2, 0, 1));
B2 = b3_pshufd_ps(vQ2, B3_SHUFFLE(2, 0, 1, 1));
A2 = A2 * B2;
A3 = b3_pshufd_ps(vQ1, B3_SHUFFLE(2, 0, 1, 2));
B3 = b3_pshufd_ps(vQ2, B3_SHUFFLE(1, 2, 0, 2));
A3 = A3 * B3; // A3 *= B3
A1 = A1 + A2; // AB12
A1 = _mm_xor_ps(A1, b3vPPPM); // change sign of the last element
A1 = A1 - A3; // AB123 = AB12 - AB3
return b3Quaternion(A1);
#elif defined(B3_USE_NEON)
float32x4_t vQ1 = w.get128();
float32x4_t vQ2 = q.get128();
float32x4_t A1, B1, A2, B2, A3, B3;
float32x2_t vQ1zx, vQ2wx, vQ1yz, vQ2zx, vQ2yz, vQ2xz;
{
float32x2x2_t tmp;
tmp = vtrn_f32(vget_high_f32(vQ1), vget_low_f32(vQ1)); // {z x}, {w y}
vQ1zx = tmp.val[0];
tmp = vtrn_f32(vget_high_f32(vQ2), vget_low_f32(vQ2)); // {z x}, {w y}
vQ2zx = tmp.val[0];
}
vQ2wx = vext_f32(vget_high_f32(vQ2), vget_low_f32(vQ2), 1);
vQ1yz = vext_f32(vget_low_f32(vQ1), vget_high_f32(vQ1), 1);
vQ2yz = vext_f32(vget_low_f32(vQ2), vget_high_f32(vQ2), 1);
vQ2xz = vext_f32(vQ2zx, vQ2zx, 1);
A1 = vcombine_f32(vget_low_f32(vQ1), vQ1zx); // X Y z x
B1 = vcombine_f32(vdup_lane_f32(vget_high_f32(vQ2), 1), vQ2wx); // W W W X
A2 = vcombine_f32(vQ1yz, vget_low_f32(vQ1));
B2 = vcombine_f32(vQ2zx, vdup_lane_f32(vget_low_f32(vQ2), 1));
A3 = vcombine_f32(vQ1zx, vQ1yz); // Z X Y Z
B3 = vcombine_f32(vQ2yz, vQ2xz); // Y Z x z
A1 = vmulq_f32(A1, B1);
A2 = vmulq_f32(A2, B2);
A3 = vmulq_f32(A3, B3); // A3 *= B3
A1 = vaddq_f32(A1, A2); // AB12 = AB1 + AB2
// change the sign of the last element
A1 = (b3SimdFloat4)veorq_s32((int32x4_t)A1, (int32x4_t)b3vPPPM);
A1 = vsubq_f32(A1, A3); // AB123 = AB12 - AB3
return b3Quaternion(A1);
#else
return b3Quaternion(
+w.getX() * q.getW() + w.getY() * q.getZ() - w.getZ() * q.getY(),
+w.getY() * q.getW() + w.getZ() * q.getX() - w.getX() * q.getZ(),
+w.getZ() * q.getW() + w.getX() * q.getY() - w.getY() * q.getX(),
-w.getX() * q.getX() - w.getY() * q.getY() - w.getZ() * q.getZ());
#endif
}
/**@brief Calculate the dot product between two quaternions */
B3_FORCE_INLINE b3Scalar
b3Dot(const b3Quaternion& q1, const b3Quaternion& q2)
{
return q1.dot(q2);
}
/**@brief Return the length of a quaternion */
B3_FORCE_INLINE b3Scalar
b3Length(const b3Quaternion& q)
{
return q.length();
}
/**@brief Return the angle between two quaternions*/
B3_FORCE_INLINE b3Scalar
b3Angle(const b3Quaternion& q1, const b3Quaternion& q2)
{
return q1.angle(q2);
}
/**@brief Return the inverse of a quaternion*/
B3_FORCE_INLINE b3Quaternion
b3Inverse(const b3Quaternion& q)
{
return q.inverse();
}
/**@brief Return the result of spherical linear interpolation betwen two quaternions
* @param q1 The first quaternion
* @param q2 The second quaternion
* @param t The ration between q1 and q2. t = 0 return q1, t=1 returns q2
* Slerp assumes constant velocity between positions. */
B3_FORCE_INLINE b3Quaternion
b3Slerp(const b3Quaternion& q1, const b3Quaternion& q2, const b3Scalar& t)
{
return q1.slerp(q2, t);
}
B3_FORCE_INLINE b3Quaternion
b3QuatMul(const b3Quaternion& rot0, const b3Quaternion& rot1)
{
return rot0 * rot1;
}
B3_FORCE_INLINE b3Quaternion
b3QuatNormalized(const b3Quaternion& orn)
{
return orn.normalized();
}
B3_FORCE_INLINE b3Vector3
b3QuatRotate(const b3Quaternion& rotation, const b3Vector3& v)
{
b3Quaternion q = rotation * v;
q *= rotation.inverse();
#if defined(B3_USE_SSE_IN_API) && defined(B3_USE_SSE)
return b3MakeVector3(_mm_and_ps(q.get128(), b3vFFF0fMask));
#elif defined(B3_USE_NEON)
return b3MakeVector3((float32x4_t)vandq_s32((int32x4_t)q.get128(), b3vFFF0Mask));
#else
return b3MakeVector3(q.getX(), q.getY(), q.getZ());
#endif
}
B3_FORCE_INLINE b3Quaternion
b3ShortestArcQuat(const b3Vector3& v0, const b3Vector3& v1) // Game Programming Gems 2.10. make sure v0,v1 are normalized
{
b3Vector3 c = v0.cross(v1);
b3Scalar d = v0.dot(v1);
if (d < -1.0 + B3_EPSILON)
{
b3Vector3 n, unused;
b3PlaneSpace1(v0, n, unused);
return b3Quaternion(n.getX(), n.getY(), n.getZ(), 0.0f); // just pick any vector that is orthogonal to v0
}
b3Scalar s = b3Sqrt((1.0f + d) * 2.0f);
b3Scalar rs = 1.0f / s;
return b3Quaternion(c.getX() * rs, c.getY() * rs, c.getZ() * rs, s * 0.5f);
}
B3_FORCE_INLINE b3Quaternion
b3ShortestArcQuatNormalize2(b3Vector3& v0, b3Vector3& v1)
{
v0.normalize();
v1.normalize();
return b3ShortestArcQuat(v0, v1);
}
#endif //B3_SIMD__QUATERNION_H_
|