1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
|
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2013 Erwin Coumans http://bulletphysics.org
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#ifndef B3_OBJECT_ARRAY__
#define B3_OBJECT_ARRAY__
#include "b3Scalar.h" // has definitions like B3_FORCE_INLINE
#include "b3AlignedAllocator.h"
///If the platform doesn't support placement new, you can disable B3_USE_PLACEMENT_NEW
///then the b3AlignedObjectArray doesn't support objects with virtual methods, and non-trivial constructors/destructors
///You can enable B3_USE_MEMCPY, then swapping elements in the array will use memcpy instead of operator=
///see discussion here: http://continuousphysics.com/Bullet/phpBB2/viewtopic.php?t=1231 and
///http://www.continuousphysics.com/Bullet/phpBB2/viewtopic.php?t=1240
#define B3_USE_PLACEMENT_NEW 1
//#define B3_USE_MEMCPY 1 //disable, because it is cumbersome to find out for each platform where memcpy is defined. It can be in <memory.h> or <string.h> or otherwise...
#define B3_ALLOW_ARRAY_COPY_OPERATOR // enabling this can accidently perform deep copies of data if you are not careful
#ifdef B3_USE_MEMCPY
#include <memory.h>
#include <string.h>
#endif //B3_USE_MEMCPY
#ifdef B3_USE_PLACEMENT_NEW
#include <new> //for placement new
#endif //B3_USE_PLACEMENT_NEW
///The b3AlignedObjectArray template class uses a subset of the stl::vector interface for its methods
///It is developed to replace stl::vector to avoid portability issues, including STL alignment issues to add SIMD/SSE data
template <typename T>
//template <class T>
class b3AlignedObjectArray
{
b3AlignedAllocator<T, 16> m_allocator;
int m_size;
int m_capacity;
T* m_data;
//PCK: added this line
bool m_ownsMemory;
#ifdef B3_ALLOW_ARRAY_COPY_OPERATOR
public:
B3_FORCE_INLINE b3AlignedObjectArray<T>& operator=(const b3AlignedObjectArray<T>& other)
{
copyFromArray(other);
return *this;
}
#else //B3_ALLOW_ARRAY_COPY_OPERATOR
private:
B3_FORCE_INLINE b3AlignedObjectArray<T>& operator=(const b3AlignedObjectArray<T>& other);
#endif //B3_ALLOW_ARRAY_COPY_OPERATOR
protected:
B3_FORCE_INLINE int allocSize(int size)
{
return (size ? size * 2 : 1);
}
B3_FORCE_INLINE void copy(int start, int end, T* dest) const
{
int i;
for (i = start; i < end; ++i)
#ifdef B3_USE_PLACEMENT_NEW
new (&dest[i]) T(m_data[i]);
#else
dest[i] = m_data[i];
#endif //B3_USE_PLACEMENT_NEW
}
B3_FORCE_INLINE void init()
{
//PCK: added this line
m_ownsMemory = true;
m_data = 0;
m_size = 0;
m_capacity = 0;
}
B3_FORCE_INLINE void destroy(int first, int last)
{
int i;
for (i = first; i < last; i++)
{
m_data[i].~T();
}
}
B3_FORCE_INLINE void* allocate(int size)
{
if (size)
return m_allocator.allocate(size);
return 0;
}
B3_FORCE_INLINE void deallocate()
{
if (m_data)
{
//PCK: enclosed the deallocation in this block
if (m_ownsMemory)
{
m_allocator.deallocate(m_data);
}
m_data = 0;
}
}
public:
b3AlignedObjectArray()
{
init();
}
~b3AlignedObjectArray()
{
clear();
}
///Generally it is best to avoid using the copy constructor of an b3AlignedObjectArray, and use a (const) reference to the array instead.
b3AlignedObjectArray(const b3AlignedObjectArray& otherArray)
{
init();
int otherSize = otherArray.size();
resize(otherSize);
otherArray.copy(0, otherSize, m_data);
}
/// return the number of elements in the array
B3_FORCE_INLINE int size() const
{
return m_size;
}
B3_FORCE_INLINE const T& at(int n) const
{
b3Assert(n >= 0);
b3Assert(n < size());
return m_data[n];
}
B3_FORCE_INLINE T& at(int n)
{
b3Assert(n >= 0);
b3Assert(n < size());
return m_data[n];
}
B3_FORCE_INLINE const T& operator[](int n) const
{
b3Assert(n >= 0);
b3Assert(n < size());
return m_data[n];
}
B3_FORCE_INLINE T& operator[](int n)
{
b3Assert(n >= 0);
b3Assert(n < size());
return m_data[n];
}
///clear the array, deallocated memory. Generally it is better to use array.resize(0), to reduce performance overhead of run-time memory (de)allocations.
B3_FORCE_INLINE void clear()
{
destroy(0, size());
deallocate();
init();
}
B3_FORCE_INLINE void pop_back()
{
b3Assert(m_size > 0);
m_size--;
m_data[m_size].~T();
}
///resize changes the number of elements in the array. If the new size is larger, the new elements will be constructed using the optional second argument.
///when the new number of elements is smaller, the destructor will be called, but memory will not be freed, to reduce performance overhead of run-time memory (de)allocations.
B3_FORCE_INLINE void resizeNoInitialize(int newsize)
{
int curSize = size();
if (newsize < curSize)
{
}
else
{
if (newsize > size())
{
reserve(newsize);
}
//leave this uninitialized
}
m_size = newsize;
}
B3_FORCE_INLINE void resize(int newsize, const T& fillData = T())
{
int curSize = size();
if (newsize < curSize)
{
for (int i = newsize; i < curSize; i++)
{
m_data[i].~T();
}
}
else
{
if (newsize > size())
{
reserve(newsize);
}
#ifdef B3_USE_PLACEMENT_NEW
for (int i = curSize; i < newsize; i++)
{
new (&m_data[i]) T(fillData);
}
#endif //B3_USE_PLACEMENT_NEW
}
m_size = newsize;
}
B3_FORCE_INLINE T& expandNonInitializing()
{
int sz = size();
if (sz == capacity())
{
reserve(allocSize(size()));
}
m_size++;
return m_data[sz];
}
B3_FORCE_INLINE T& expand(const T& fillValue = T())
{
int sz = size();
if (sz == capacity())
{
reserve(allocSize(size()));
}
m_size++;
#ifdef B3_USE_PLACEMENT_NEW
new (&m_data[sz]) T(fillValue); //use the in-place new (not really allocating heap memory)
#endif
return m_data[sz];
}
B3_FORCE_INLINE void push_back(const T& _Val)
{
int sz = size();
if (sz == capacity())
{
reserve(allocSize(size()));
}
#ifdef B3_USE_PLACEMENT_NEW
new (&m_data[m_size]) T(_Val);
#else
m_data[size()] = _Val;
#endif //B3_USE_PLACEMENT_NEW
m_size++;
}
/// return the pre-allocated (reserved) elements, this is at least as large as the total number of elements,see size() and reserve()
B3_FORCE_INLINE int capacity() const
{
return m_capacity;
}
B3_FORCE_INLINE void reserve(int _Count)
{ // determine new minimum length of allocated storage
if (capacity() < _Count)
{ // not enough room, reallocate
T* s = (T*)allocate(_Count);
b3Assert(s);
if (s == 0)
{
b3Error("b3AlignedObjectArray reserve out-of-memory\n");
_Count = 0;
m_size = 0;
}
copy(0, size(), s);
destroy(0, size());
deallocate();
//PCK: added this line
m_ownsMemory = true;
m_data = s;
m_capacity = _Count;
}
}
class less
{
public:
bool operator()(const T& a, const T& b)
{
return (a < b);
}
};
template <typename L>
void quickSortInternal(const L& CompareFunc, int lo, int hi)
{
// lo is the lower index, hi is the upper index
// of the region of array a that is to be sorted
int i = lo, j = hi;
T x = m_data[(lo + hi) / 2];
// partition
do
{
while (CompareFunc(m_data[i], x))
i++;
while (CompareFunc(x, m_data[j]))
j--;
if (i <= j)
{
swap(i, j);
i++;
j--;
}
} while (i <= j);
// recursion
if (lo < j)
quickSortInternal(CompareFunc, lo, j);
if (i < hi)
quickSortInternal(CompareFunc, i, hi);
}
template <typename L>
void quickSort(const L& CompareFunc)
{
//don't sort 0 or 1 elements
if (size() > 1)
{
quickSortInternal(CompareFunc, 0, size() - 1);
}
}
///heap sort from http://www.csse.monash.edu.au/~lloyd/tildeAlgDS/Sort/Heap/
template <typename L>
void downHeap(T* pArr, int k, int n, const L& CompareFunc)
{
/* PRE: a[k+1..N] is a heap */
/* POST: a[k..N] is a heap */
T temp = pArr[k - 1];
/* k has child(s) */
while (k <= n / 2)
{
int child = 2 * k;
if ((child < n) && CompareFunc(pArr[child - 1], pArr[child]))
{
child++;
}
/* pick larger child */
if (CompareFunc(temp, pArr[child - 1]))
{
/* move child up */
pArr[k - 1] = pArr[child - 1];
k = child;
}
else
{
break;
}
}
pArr[k - 1] = temp;
} /*downHeap*/
void swap(int index0, int index1)
{
#ifdef B3_USE_MEMCPY
char temp[sizeof(T)];
memcpy(temp, &m_data[index0], sizeof(T));
memcpy(&m_data[index0], &m_data[index1], sizeof(T));
memcpy(&m_data[index1], temp, sizeof(T));
#else
T temp = m_data[index0];
m_data[index0] = m_data[index1];
m_data[index1] = temp;
#endif //B3_USE_PLACEMENT_NEW
}
template <typename L>
void heapSort(const L& CompareFunc)
{
/* sort a[0..N-1], N.B. 0 to N-1 */
int k;
int n = m_size;
for (k = n / 2; k > 0; k--)
{
downHeap(m_data, k, n, CompareFunc);
}
/* a[1..N] is now a heap */
while (n >= 1)
{
swap(0, n - 1); /* largest of a[0..n-1] */
n = n - 1;
/* restore a[1..i-1] heap */
downHeap(m_data, 1, n, CompareFunc);
}
}
///non-recursive binary search, assumes sorted array
int findBinarySearch(const T& key) const
{
int first = 0;
int last = size() - 1;
//assume sorted array
while (first <= last)
{
int mid = (first + last) / 2; // compute mid point.
if (key > m_data[mid])
first = mid + 1; // repeat search in top half.
else if (key < m_data[mid])
last = mid - 1; // repeat search in bottom half.
else
return mid; // found it. return position /////
}
return size(); // failed to find key
}
int findLinearSearch(const T& key) const
{
int index = size();
int i;
for (i = 0; i < size(); i++)
{
if (m_data[i] == key)
{
index = i;
break;
}
}
return index;
}
int findLinearSearch2(const T& key) const
{
int index = -1;
int i;
for (i = 0; i < size(); i++)
{
if (m_data[i] == key)
{
index = i;
break;
}
}
return index;
}
void remove(const T& key)
{
int findIndex = findLinearSearch(key);
if (findIndex < size())
{
swap(findIndex, size() - 1);
pop_back();
}
}
//PCK: whole function
void initializeFromBuffer(void* buffer, int size, int capacity)
{
clear();
m_ownsMemory = false;
m_data = (T*)buffer;
m_size = size;
m_capacity = capacity;
}
void copyFromArray(const b3AlignedObjectArray& otherArray)
{
int otherSize = otherArray.size();
resize(otherSize);
otherArray.copy(0, otherSize, m_data);
}
void removeAtIndex(int index)
{
if (index < size())
{
swap(index, size() - 1);
pop_back();
}
}
};
#endif //B3_OBJECT_ARRAY__
|