summaryrefslogtreecommitdiff
path: root/thirdparty/bullet/Bullet3Collision/NarrowPhaseCollision/shared/b3MprPenetration.h
blob: 6c3ad7c9dd9b41e916c3e4128e009f9522558160 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920

/***
 * ---------------------------------
 * Copyright (c)2012 Daniel Fiser <danfis@danfis.cz>
 *
 *  This file was ported from mpr.c file, part of libccd.
 *  The Minkoski Portal Refinement implementation was ported 
 *  to OpenCL by Erwin Coumans for the Bullet 3 Physics library.
 *  at http://github.com/erwincoumans/bullet3
 *
 *  Distributed under the OSI-approved BSD License (the "License");
 *  see <http://www.opensource.org/licenses/bsd-license.php>.
 *  This software is distributed WITHOUT ANY WARRANTY; without even the
 *  implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
 *  See the License for more information.
 */




#ifndef B3_MPR_PENETRATION_H
#define B3_MPR_PENETRATION_H

#include "Bullet3Common/shared/b3PlatformDefinitions.h"
#include "Bullet3Common/shared/b3Float4.h"
#include "Bullet3Collision/NarrowPhaseCollision/shared/b3RigidBodyData.h"
#include "Bullet3Collision/NarrowPhaseCollision/shared/b3ConvexPolyhedronData.h"
#include "Bullet3Collision/NarrowPhaseCollision/shared/b3Collidable.h"




#ifdef __cplusplus
#define B3_MPR_SQRT sqrtf
#else
#define B3_MPR_SQRT sqrt
#endif
#define B3_MPR_FMIN(x, y) ((x) < (y) ? (x) : (y))
#define B3_MPR_FABS fabs

#define B3_MPR_TOLERANCE 1E-6f
#define B3_MPR_MAX_ITERATIONS 1000

struct _b3MprSupport_t 
{
    b3Float4 v;  //!< Support point in minkowski sum
    b3Float4 v1; //!< Support point in obj1
    b3Float4 v2; //!< Support point in obj2
};
typedef struct _b3MprSupport_t b3MprSupport_t;

struct _b3MprSimplex_t 
{
    b3MprSupport_t ps[4];
    int last; //!< index of last added point
};
typedef struct _b3MprSimplex_t b3MprSimplex_t;

inline b3MprSupport_t* b3MprSimplexPointW(b3MprSimplex_t *s, int idx)
{
    return &s->ps[idx];
}

inline void b3MprSimplexSetSize(b3MprSimplex_t *s, int size)
{
    s->last = size - 1;
}


inline int b3MprSimplexSize(const b3MprSimplex_t *s)
{
    return s->last + 1;
}


inline const b3MprSupport_t* b3MprSimplexPoint(const b3MprSimplex_t* s, int idx)
{
    // here is no check on boundaries
    return &s->ps[idx];
}

inline void b3MprSupportCopy(b3MprSupport_t *d, const b3MprSupport_t *s)
{
    *d = *s;
}

inline void b3MprSimplexSet(b3MprSimplex_t *s, size_t pos, const b3MprSupport_t *a)
{
    b3MprSupportCopy(s->ps + pos, a);
}


inline void b3MprSimplexSwap(b3MprSimplex_t *s, size_t pos1, size_t pos2)
{
    b3MprSupport_t supp;

    b3MprSupportCopy(&supp, &s->ps[pos1]);
    b3MprSupportCopy(&s->ps[pos1], &s->ps[pos2]);
    b3MprSupportCopy(&s->ps[pos2], &supp);
}


inline int b3MprIsZero(float val)
{
    return B3_MPR_FABS(val) < FLT_EPSILON;
}



inline int b3MprEq(float _a, float _b)
{
    float ab;
    float a, b;

    ab = B3_MPR_FABS(_a - _b);
    if (B3_MPR_FABS(ab) < FLT_EPSILON)
        return 1;

    a = B3_MPR_FABS(_a);
    b = B3_MPR_FABS(_b);
    if (b > a){
        return ab < FLT_EPSILON * b;
    }else{
        return ab < FLT_EPSILON * a;
    }
}


inline int b3MprVec3Eq(const b3Float4* a, const b3Float4 *b)
{
    return b3MprEq((*a).x, (*b).x)
            && b3MprEq((*a).y, (*b).y)
            && b3MprEq((*a).z, (*b).z);
}



inline b3Float4 b3LocalGetSupportVertex(b3Float4ConstArg supportVec,__global const b3ConvexPolyhedronData_t* hull, 	b3ConstArray(b3Float4) verticesA)
{
	b3Float4 supVec = b3MakeFloat4(0,0,0,0);
	float maxDot = -B3_LARGE_FLOAT;

    if( 0 < hull->m_numVertices )
    {
        const b3Float4 scaled = supportVec;
		int index = b3MaxDot(scaled, &verticesA[hull->m_vertexOffset], hull->m_numVertices, &maxDot);
        return verticesA[hull->m_vertexOffset+index];
    }

    return supVec;

}


B3_STATIC void b3MprConvexSupport(int pairIndex,int bodyIndex,  b3ConstArray(b3RigidBodyData_t) cpuBodyBuf, 
													b3ConstArray(b3ConvexPolyhedronData_t) cpuConvexData, 
													b3ConstArray(b3Collidable_t)				cpuCollidables,
													b3ConstArray(b3Float4)					cpuVertices,
													__global b3Float4* sepAxis,
														const b3Float4* _dir, b3Float4* outp, int logme)
{
	//dir is in worldspace, move to local space
	
	b3Float4 pos = cpuBodyBuf[bodyIndex].m_pos;
	b3Quat orn = cpuBodyBuf[bodyIndex].m_quat;
	
	b3Float4 dir = b3MakeFloat4((*_dir).x,(*_dir).y,(*_dir).z,0.f);
	
	const b3Float4 localDir = b3QuatRotate(b3QuatInverse(orn),dir);
	

	//find local support vertex
	int colIndex = cpuBodyBuf[bodyIndex].m_collidableIdx;
	
	b3Assert(cpuCollidables[colIndex].m_shapeType==SHAPE_CONVEX_HULL);
	__global const b3ConvexPolyhedronData_t* hull = &cpuConvexData[cpuCollidables[colIndex].m_shapeIndex];
	
	b3Float4 pInA;
	if (logme)
	{


	//	b3Float4 supVec = b3MakeFloat4(0,0,0,0);
		float maxDot = -B3_LARGE_FLOAT;

		if( 0 < hull->m_numVertices )
		{
			const b3Float4 scaled = localDir;
			int index = b3MaxDot(scaled, &cpuVertices[hull->m_vertexOffset], hull->m_numVertices, &maxDot);
			pInA = cpuVertices[hull->m_vertexOffset+index];
			
		}


	} else
	{
		pInA = b3LocalGetSupportVertex(localDir,hull,cpuVertices);
	}

	//move vertex to world space
	*outp = b3TransformPoint(pInA,pos,orn);
	
}

inline void b3MprSupport(int pairIndex,int bodyIndexA, int bodyIndexB,   b3ConstArray(b3RigidBodyData_t) cpuBodyBuf, 
													b3ConstArray(b3ConvexPolyhedronData_t) cpuConvexData, 
													b3ConstArray(b3Collidable_t)				cpuCollidables,
													b3ConstArray(b3Float4)					cpuVertices,
													__global b3Float4* sepAxis,
													const b3Float4* _dir, b3MprSupport_t *supp)
{
    b3Float4 dir;
	dir = *_dir;
	b3MprConvexSupport(pairIndex,bodyIndexA,cpuBodyBuf,cpuConvexData,cpuCollidables,cpuVertices,sepAxis,&dir, &supp->v1,0);
    dir = *_dir*-1.f;
	b3MprConvexSupport(pairIndex,bodyIndexB,cpuBodyBuf,cpuConvexData,cpuCollidables,cpuVertices,sepAxis,&dir, &supp->v2,0);
    supp->v = supp->v1 - supp->v2;
}









inline void b3FindOrigin(int bodyIndexA, int bodyIndexB, b3ConstArray(b3RigidBodyData_t) cpuBodyBuf, b3MprSupport_t *center)
{

    center->v1 = cpuBodyBuf[bodyIndexA].m_pos;
	center->v2 = cpuBodyBuf[bodyIndexB].m_pos;
    center->v = center->v1 - center->v2;
}

inline void b3MprVec3Set(b3Float4 *v, float x, float y, float z)
{
	(*v).x = x;
	(*v).y = y;
	(*v).z = z;
	(*v).w = 0.f;
}

inline void b3MprVec3Add(b3Float4 *v, const b3Float4 *w)
{
    (*v).x += (*w).x;
    (*v).y += (*w).y;
    (*v).z += (*w).z;
}

inline void b3MprVec3Copy(b3Float4 *v, const b3Float4 *w)
{
    *v = *w;
}

inline void b3MprVec3Scale(b3Float4 *d, float k)
{
    *d *= k;
}

inline float b3MprVec3Dot(const b3Float4 *a, const b3Float4 *b)
{
    float dot;

	dot = b3Dot3F4(*a,*b);
    return dot;
}


inline float b3MprVec3Len2(const b3Float4 *v)
{
    return b3MprVec3Dot(v, v);
}

inline void b3MprVec3Normalize(b3Float4 *d)
{
    float k = 1.f / B3_MPR_SQRT(b3MprVec3Len2(d));
    b3MprVec3Scale(d, k);
}

inline void b3MprVec3Cross(b3Float4 *d, const b3Float4 *a, const b3Float4 *b)
{
	*d = b3Cross3(*a,*b);
	
}


inline void b3MprVec3Sub2(b3Float4 *d, const b3Float4 *v, const b3Float4 *w)
{
	*d = *v - *w;
}

inline void b3PortalDir(const b3MprSimplex_t *portal, b3Float4 *dir)
{
    b3Float4 v2v1, v3v1;

    b3MprVec3Sub2(&v2v1, &b3MprSimplexPoint(portal, 2)->v,
                       &b3MprSimplexPoint(portal, 1)->v);
    b3MprVec3Sub2(&v3v1, &b3MprSimplexPoint(portal, 3)->v,
                       &b3MprSimplexPoint(portal, 1)->v);
    b3MprVec3Cross(dir, &v2v1, &v3v1);
    b3MprVec3Normalize(dir);
}


inline int portalEncapsulesOrigin(const b3MprSimplex_t *portal,
                                       const b3Float4 *dir)
{
    float dot;
    dot = b3MprVec3Dot(dir, &b3MprSimplexPoint(portal, 1)->v);
    return b3MprIsZero(dot) || dot > 0.f;
}

inline int portalReachTolerance(const b3MprSimplex_t *portal,
                                     const b3MprSupport_t *v4,
                                     const b3Float4 *dir)
{
    float dv1, dv2, dv3, dv4;
    float dot1, dot2, dot3;

    // find the smallest dot product of dir and {v1-v4, v2-v4, v3-v4}

    dv1 = b3MprVec3Dot(&b3MprSimplexPoint(portal, 1)->v, dir);
    dv2 = b3MprVec3Dot(&b3MprSimplexPoint(portal, 2)->v, dir);
    dv3 = b3MprVec3Dot(&b3MprSimplexPoint(portal, 3)->v, dir);
    dv4 = b3MprVec3Dot(&v4->v, dir);

    dot1 = dv4 - dv1;
    dot2 = dv4 - dv2;
    dot3 = dv4 - dv3;

    dot1 = B3_MPR_FMIN(dot1, dot2);
    dot1 = B3_MPR_FMIN(dot1, dot3);

    return b3MprEq(dot1, B3_MPR_TOLERANCE) || dot1 < B3_MPR_TOLERANCE;
}

inline int portalCanEncapsuleOrigin(const b3MprSimplex_t *portal,   
                                         const b3MprSupport_t *v4,
                                         const b3Float4 *dir)
{
    float dot;
    dot = b3MprVec3Dot(&v4->v, dir);
    return b3MprIsZero(dot) || dot > 0.f;
}

inline void b3ExpandPortal(b3MprSimplex_t *portal,
                              const b3MprSupport_t *v4)
{
    float dot;
    b3Float4 v4v0;

    b3MprVec3Cross(&v4v0, &v4->v, &b3MprSimplexPoint(portal, 0)->v);
    dot = b3MprVec3Dot(&b3MprSimplexPoint(portal, 1)->v, &v4v0);
    if (dot > 0.f){
        dot = b3MprVec3Dot(&b3MprSimplexPoint(portal, 2)->v, &v4v0);
        if (dot > 0.f){
            b3MprSimplexSet(portal, 1, v4);
        }else{
            b3MprSimplexSet(portal, 3, v4);
        }
    }else{
        dot = b3MprVec3Dot(&b3MprSimplexPoint(portal, 3)->v, &v4v0);
        if (dot > 0.f){
            b3MprSimplexSet(portal, 2, v4);
        }else{
            b3MprSimplexSet(portal, 1, v4);
        }
    }
}



B3_STATIC int b3DiscoverPortal(int pairIndex, int bodyIndexA, int bodyIndexB,  b3ConstArray(b3RigidBodyData_t) cpuBodyBuf, 
													b3ConstArray(b3ConvexPolyhedronData_t) cpuConvexData, 
													b3ConstArray(b3Collidable_t)				cpuCollidables,
													b3ConstArray(b3Float4)					cpuVertices,
													__global b3Float4* sepAxis,
													__global int*	hasSepAxis,
													b3MprSimplex_t *portal)
{
    b3Float4 dir, va, vb;
    float dot;
    int cont;
	
	

    // vertex 0 is center of portal
    b3FindOrigin(bodyIndexA,bodyIndexB,cpuBodyBuf, b3MprSimplexPointW(portal, 0));
    // vertex 0 is center of portal
    b3MprSimplexSetSize(portal, 1);
	


	b3Float4 zero = b3MakeFloat4(0,0,0,0);
	b3Float4* b3mpr_vec3_origin = &zero;

    if (b3MprVec3Eq(&b3MprSimplexPoint(portal, 0)->v, b3mpr_vec3_origin)){
        // Portal's center lies on origin (0,0,0) => we know that objects
        // intersect but we would need to know penetration info.
        // So move center little bit...
        b3MprVec3Set(&va, FLT_EPSILON * 10.f, 0.f, 0.f);
        b3MprVec3Add(&b3MprSimplexPointW(portal, 0)->v, &va);
    }


    // vertex 1 = support in direction of origin
    b3MprVec3Copy(&dir, &b3MprSimplexPoint(portal, 0)->v);
    b3MprVec3Scale(&dir, -1.f);
    b3MprVec3Normalize(&dir);


    b3MprSupport(pairIndex,bodyIndexA,bodyIndexB,cpuBodyBuf,cpuConvexData,cpuCollidables,cpuVertices, sepAxis,&dir, b3MprSimplexPointW(portal, 1));

    b3MprSimplexSetSize(portal, 2);

    // test if origin isn't outside of v1
    dot = b3MprVec3Dot(&b3MprSimplexPoint(portal, 1)->v, &dir);
	

    if (b3MprIsZero(dot) || dot < 0.f)
        return -1;


    // vertex 2
    b3MprVec3Cross(&dir, &b3MprSimplexPoint(portal, 0)->v,
                       &b3MprSimplexPoint(portal, 1)->v);
    if (b3MprIsZero(b3MprVec3Len2(&dir))){
        if (b3MprVec3Eq(&b3MprSimplexPoint(portal, 1)->v, b3mpr_vec3_origin)){
            // origin lies on v1
            return 1;
        }else{
            // origin lies on v0-v1 segment
            return 2;
        }
    }

    b3MprVec3Normalize(&dir);
	 b3MprSupport(pairIndex,bodyIndexA,bodyIndexB,cpuBodyBuf,cpuConvexData,cpuCollidables,cpuVertices, sepAxis,&dir, b3MprSimplexPointW(portal, 2));
    
    dot = b3MprVec3Dot(&b3MprSimplexPoint(portal, 2)->v, &dir);
    if (b3MprIsZero(dot) || dot < 0.f)
        return -1;

    b3MprSimplexSetSize(portal, 3);

    // vertex 3 direction
    b3MprVec3Sub2(&va, &b3MprSimplexPoint(portal, 1)->v,
                     &b3MprSimplexPoint(portal, 0)->v);
    b3MprVec3Sub2(&vb, &b3MprSimplexPoint(portal, 2)->v,
                     &b3MprSimplexPoint(portal, 0)->v);
    b3MprVec3Cross(&dir, &va, &vb);
    b3MprVec3Normalize(&dir);

    // it is better to form portal faces to be oriented "outside" origin
    dot = b3MprVec3Dot(&dir, &b3MprSimplexPoint(portal, 0)->v);
    if (dot > 0.f){
        b3MprSimplexSwap(portal, 1, 2);
        b3MprVec3Scale(&dir, -1.f);
    }

    while (b3MprSimplexSize(portal) < 4){
		 b3MprSupport(pairIndex,bodyIndexA,bodyIndexB,cpuBodyBuf,cpuConvexData,cpuCollidables,cpuVertices, sepAxis,&dir, b3MprSimplexPointW(portal, 3));
        
        dot = b3MprVec3Dot(&b3MprSimplexPoint(portal, 3)->v, &dir);
        if (b3MprIsZero(dot) || dot < 0.f)
            return -1;

        cont = 0;

        // test if origin is outside (v1, v0, v3) - set v2 as v3 and
        // continue
        b3MprVec3Cross(&va, &b3MprSimplexPoint(portal, 1)->v,
                          &b3MprSimplexPoint(portal, 3)->v);
        dot = b3MprVec3Dot(&va, &b3MprSimplexPoint(portal, 0)->v);
        if (dot < 0.f && !b3MprIsZero(dot)){
            b3MprSimplexSet(portal, 2, b3MprSimplexPoint(portal, 3));
            cont = 1;
        }

        if (!cont){
            // test if origin is outside (v3, v0, v2) - set v1 as v3 and
            // continue
            b3MprVec3Cross(&va, &b3MprSimplexPoint(portal, 3)->v,
                              &b3MprSimplexPoint(portal, 2)->v);
            dot = b3MprVec3Dot(&va, &b3MprSimplexPoint(portal, 0)->v);
            if (dot < 0.f && !b3MprIsZero(dot)){
                b3MprSimplexSet(portal, 1, b3MprSimplexPoint(portal, 3));
                cont = 1;
            }
        }

        if (cont){
            b3MprVec3Sub2(&va, &b3MprSimplexPoint(portal, 1)->v,
                             &b3MprSimplexPoint(portal, 0)->v);
            b3MprVec3Sub2(&vb, &b3MprSimplexPoint(portal, 2)->v,
                             &b3MprSimplexPoint(portal, 0)->v);
            b3MprVec3Cross(&dir, &va, &vb);
            b3MprVec3Normalize(&dir);
        }else{
            b3MprSimplexSetSize(portal, 4);
        }
    }

    return 0;
}


B3_STATIC int b3RefinePortal(int pairIndex,int bodyIndexA, int bodyIndexB,  b3ConstArray(b3RigidBodyData_t) cpuBodyBuf, 
													b3ConstArray(b3ConvexPolyhedronData_t) cpuConvexData, 
													b3ConstArray(b3Collidable_t)				cpuCollidables,
													b3ConstArray(b3Float4)					cpuVertices,
													__global b3Float4* sepAxis,
													b3MprSimplex_t *portal)
{
    b3Float4 dir;
    b3MprSupport_t v4;

	for (int i=0;i<B3_MPR_MAX_ITERATIONS;i++)
    //while (1)
	{
        // compute direction outside the portal (from v0 throught v1,v2,v3
        // face)
        b3PortalDir(portal, &dir);

        // test if origin is inside the portal
        if (portalEncapsulesOrigin(portal, &dir))
            return 0;

        // get next support point
        
		 b3MprSupport(pairIndex,bodyIndexA,bodyIndexB,cpuBodyBuf,cpuConvexData,cpuCollidables,cpuVertices, sepAxis,&dir, &v4);


        // test if v4 can expand portal to contain origin and if portal
        // expanding doesn't reach given tolerance
        if (!portalCanEncapsuleOrigin(portal, &v4, &dir)
                || portalReachTolerance(portal, &v4, &dir))
		{
            return -1;
        }

        // v1-v2-v3 triangle must be rearranged to face outside Minkowski
        // difference (direction from v0).
        b3ExpandPortal(portal, &v4);
    }

    return -1;
}

B3_STATIC void b3FindPos(const b3MprSimplex_t *portal, b3Float4 *pos)
{

	b3Float4 zero = b3MakeFloat4(0,0,0,0);
	b3Float4* b3mpr_vec3_origin = &zero;

    b3Float4 dir;
    size_t i;
    float b[4], sum, inv;
    b3Float4 vec, p1, p2;

    b3PortalDir(portal, &dir);

    // use barycentric coordinates of tetrahedron to find origin
    b3MprVec3Cross(&vec, &b3MprSimplexPoint(portal, 1)->v,
                       &b3MprSimplexPoint(portal, 2)->v);
    b[0] = b3MprVec3Dot(&vec, &b3MprSimplexPoint(portal, 3)->v);

    b3MprVec3Cross(&vec, &b3MprSimplexPoint(portal, 3)->v,
                       &b3MprSimplexPoint(portal, 2)->v);
    b[1] = b3MprVec3Dot(&vec, &b3MprSimplexPoint(portal, 0)->v);

    b3MprVec3Cross(&vec, &b3MprSimplexPoint(portal, 0)->v,
                       &b3MprSimplexPoint(portal, 1)->v);
    b[2] = b3MprVec3Dot(&vec, &b3MprSimplexPoint(portal, 3)->v);

    b3MprVec3Cross(&vec, &b3MprSimplexPoint(portal, 2)->v,
                       &b3MprSimplexPoint(portal, 1)->v);
    b[3] = b3MprVec3Dot(&vec, &b3MprSimplexPoint(portal, 0)->v);

	sum = b[0] + b[1] + b[2] + b[3];

    if (b3MprIsZero(sum) || sum < 0.f){
		b[0] = 0.f;

        b3MprVec3Cross(&vec, &b3MprSimplexPoint(portal, 2)->v,
                           &b3MprSimplexPoint(portal, 3)->v);
        b[1] = b3MprVec3Dot(&vec, &dir);
        b3MprVec3Cross(&vec, &b3MprSimplexPoint(portal, 3)->v,
                           &b3MprSimplexPoint(portal, 1)->v);
        b[2] = b3MprVec3Dot(&vec, &dir);
        b3MprVec3Cross(&vec, &b3MprSimplexPoint(portal, 1)->v,
                           &b3MprSimplexPoint(portal, 2)->v);
        b[3] = b3MprVec3Dot(&vec, &dir);

		sum = b[1] + b[2] + b[3];
	}

	inv = 1.f / sum;

    b3MprVec3Copy(&p1, b3mpr_vec3_origin);
    b3MprVec3Copy(&p2, b3mpr_vec3_origin);
    for (i = 0; i < 4; i++){
        b3MprVec3Copy(&vec, &b3MprSimplexPoint(portal, i)->v1);
        b3MprVec3Scale(&vec, b[i]);
        b3MprVec3Add(&p1, &vec);

        b3MprVec3Copy(&vec, &b3MprSimplexPoint(portal, i)->v2);
        b3MprVec3Scale(&vec, b[i]);
        b3MprVec3Add(&p2, &vec);
    }
    b3MprVec3Scale(&p1, inv);
    b3MprVec3Scale(&p2, inv);

    b3MprVec3Copy(pos, &p1);
    b3MprVec3Add(pos, &p2);
    b3MprVec3Scale(pos, 0.5);
}

inline float b3MprVec3Dist2(const b3Float4 *a, const b3Float4 *b)
{
    b3Float4 ab;
    b3MprVec3Sub2(&ab, a, b);
    return b3MprVec3Len2(&ab);
}

inline float _b3MprVec3PointSegmentDist2(const b3Float4 *P,
                                                  const b3Float4 *x0,
                                                  const b3Float4 *b,
                                                  b3Float4 *witness)
{
    // The computation comes from solving equation of segment:
    //      S(t) = x0 + t.d
    //          where - x0 is initial point of segment
    //                - d is direction of segment from x0 (|d| > 0)
    //                - t belongs to <0, 1> interval
    // 
    // Than, distance from a segment to some point P can be expressed:
    //      D(t) = |x0 + t.d - P|^2
    //          which is distance from any point on segment. Minimization
    //          of this function brings distance from P to segment.
    // Minimization of D(t) leads to simple quadratic equation that's
    // solving is straightforward.
    //
    // Bonus of this method is witness point for free.

    float dist, t;
    b3Float4 d, a;

    // direction of segment
    b3MprVec3Sub2(&d, b, x0);

    // precompute vector from P to x0
    b3MprVec3Sub2(&a, x0, P);

    t  = -1.f * b3MprVec3Dot(&a, &d);
    t /= b3MprVec3Len2(&d);

    if (t < 0.f || b3MprIsZero(t)){
        dist = b3MprVec3Dist2(x0, P);
        if (witness)
            b3MprVec3Copy(witness, x0);
    }else if (t > 1.f || b3MprEq(t, 1.f)){
        dist = b3MprVec3Dist2(b, P);
        if (witness)
            b3MprVec3Copy(witness, b);
    }else{
        if (witness){
            b3MprVec3Copy(witness, &d);
            b3MprVec3Scale(witness, t);
            b3MprVec3Add(witness, x0);
            dist = b3MprVec3Dist2(witness, P);
        }else{
            // recycling variables
            b3MprVec3Scale(&d, t);
            b3MprVec3Add(&d, &a);
            dist = b3MprVec3Len2(&d);
        }
    }

    return dist;
}


inline float b3MprVec3PointTriDist2(const b3Float4 *P,
                                const b3Float4 *x0, const b3Float4 *B,
                                const b3Float4 *C,
                                b3Float4 *witness)
{
    // Computation comes from analytic expression for triangle (x0, B, C)
    //      T(s, t) = x0 + s.d1 + t.d2, where d1 = B - x0 and d2 = C - x0 and
    // Then equation for distance is:
    //      D(s, t) = | T(s, t) - P |^2
    // This leads to minimization of quadratic function of two variables.
    // The solution from is taken only if s is between 0 and 1, t is
    // between 0 and 1 and t + s < 1, otherwise distance from segment is
    // computed.

    b3Float4 d1, d2, a;
    float u, v, w, p, q, r;
    float s, t, dist, dist2;
    b3Float4 witness2;

    b3MprVec3Sub2(&d1, B, x0);
    b3MprVec3Sub2(&d2, C, x0);
    b3MprVec3Sub2(&a, x0, P);

    u = b3MprVec3Dot(&a, &a);
    v = b3MprVec3Dot(&d1, &d1);
    w = b3MprVec3Dot(&d2, &d2);
    p = b3MprVec3Dot(&a, &d1);
    q = b3MprVec3Dot(&a, &d2);
    r = b3MprVec3Dot(&d1, &d2);

    s = (q * r - w * p) / (w * v - r * r);
    t = (-s * r - q) / w;

    if ((b3MprIsZero(s) || s > 0.f)
            && (b3MprEq(s, 1.f) || s < 1.f)
            && (b3MprIsZero(t) || t > 0.f)
            && (b3MprEq(t, 1.f) || t < 1.f)
            && (b3MprEq(t + s, 1.f) || t + s < 1.f)){

        if (witness){
            b3MprVec3Scale(&d1, s);
            b3MprVec3Scale(&d2, t);
            b3MprVec3Copy(witness, x0);
            b3MprVec3Add(witness, &d1);
            b3MprVec3Add(witness, &d2);

            dist = b3MprVec3Dist2(witness, P);
        }else{
            dist  = s * s * v;
            dist += t * t * w;
            dist += 2.f * s * t * r;
            dist += 2.f * s * p;
            dist += 2.f * t * q;
            dist += u;
        }
    }else{
        dist = _b3MprVec3PointSegmentDist2(P, x0, B, witness);

        dist2 = _b3MprVec3PointSegmentDist2(P, x0, C, &witness2);
        if (dist2 < dist){
            dist = dist2;
            if (witness)
                b3MprVec3Copy(witness, &witness2);
        }

        dist2 = _b3MprVec3PointSegmentDist2(P, B, C, &witness2);
        if (dist2 < dist){
            dist = dist2;
            if (witness)
                b3MprVec3Copy(witness, &witness2);
        }
    }

    return dist;
}


B3_STATIC void b3FindPenetr(int pairIndex,int bodyIndexA, int bodyIndexB,  b3ConstArray(b3RigidBodyData_t) cpuBodyBuf, 
													b3ConstArray(b3ConvexPolyhedronData_t) cpuConvexData, 
													b3ConstArray(b3Collidable_t)				cpuCollidables,
													b3ConstArray(b3Float4)					cpuVertices,
													__global b3Float4* sepAxis,
                       b3MprSimplex_t *portal,
                       float *depth, b3Float4 *pdir, b3Float4 *pos)
{
    b3Float4 dir;
    b3MprSupport_t v4;
    unsigned long iterations;

	b3Float4 zero = b3MakeFloat4(0,0,0,0);
	b3Float4* b3mpr_vec3_origin = &zero;


    iterations = 1UL;
	for (int i=0;i<B3_MPR_MAX_ITERATIONS;i++)
    //while (1)
	{
        // compute portal direction and obtain next support point
        b3PortalDir(portal, &dir);
        
		 b3MprSupport(pairIndex,bodyIndexA,bodyIndexB,cpuBodyBuf,cpuConvexData,cpuCollidables,cpuVertices, sepAxis,&dir, &v4);


        // reached tolerance -> find penetration info
        if (portalReachTolerance(portal, &v4, &dir)
                || iterations ==B3_MPR_MAX_ITERATIONS)
		{
            *depth = b3MprVec3PointTriDist2(b3mpr_vec3_origin,&b3MprSimplexPoint(portal, 1)->v,&b3MprSimplexPoint(portal, 2)->v,&b3MprSimplexPoint(portal, 3)->v,pdir);
            *depth = B3_MPR_SQRT(*depth);
			
			if (b3MprIsZero((*pdir).x) && b3MprIsZero((*pdir).y) && b3MprIsZero((*pdir).z))
			{
				
				*pdir = dir;
			} 
			b3MprVec3Normalize(pdir);
			
            // barycentric coordinates:
            b3FindPos(portal, pos);


            return;
        }

        b3ExpandPortal(portal, &v4);

        iterations++;
    }
}

B3_STATIC void b3FindPenetrTouch(b3MprSimplex_t *portal,float *depth, b3Float4 *dir, b3Float4 *pos)
{
    // Touching contact on portal's v1 - so depth is zero and direction
    // is unimportant and pos can be guessed
    *depth = 0.f;
    b3Float4 zero = b3MakeFloat4(0,0,0,0);
	b3Float4* b3mpr_vec3_origin = &zero;


	b3MprVec3Copy(dir, b3mpr_vec3_origin);

    b3MprVec3Copy(pos, &b3MprSimplexPoint(portal, 1)->v1);
    b3MprVec3Add(pos, &b3MprSimplexPoint(portal, 1)->v2);
    b3MprVec3Scale(pos, 0.5);
}

B3_STATIC void b3FindPenetrSegment(b3MprSimplex_t *portal,
                              float *depth, b3Float4 *dir, b3Float4 *pos)
{
    
    // Origin lies on v0-v1 segment.
    // Depth is distance to v1, direction also and position must be
    // computed

    b3MprVec3Copy(pos, &b3MprSimplexPoint(portal, 1)->v1);
    b3MprVec3Add(pos, &b3MprSimplexPoint(portal, 1)->v2);
    b3MprVec3Scale(pos, 0.5f);

    
    b3MprVec3Copy(dir, &b3MprSimplexPoint(portal, 1)->v);
    *depth = B3_MPR_SQRT(b3MprVec3Len2(dir));
    b3MprVec3Normalize(dir);
}



inline int b3MprPenetration(int pairIndex, int bodyIndexA, int bodyIndexB,
					b3ConstArray(b3RigidBodyData_t) cpuBodyBuf,
					b3ConstArray(b3ConvexPolyhedronData_t) cpuConvexData, 
					b3ConstArray(b3Collidable_t)	cpuCollidables,
					b3ConstArray(b3Float4)	cpuVertices,
					__global b3Float4* sepAxis,
					__global int*	hasSepAxis,
					float *depthOut, b3Float4* dirOut, b3Float4* posOut)
{
	
	 b3MprSimplex_t portal;

	 
//	if (!hasSepAxis[pairIndex])
	//	return -1;
	
	hasSepAxis[pairIndex] = 0;
	 int res;

    // Phase 1: Portal discovery
    res = b3DiscoverPortal(pairIndex,bodyIndexA,bodyIndexB,cpuBodyBuf,cpuConvexData,cpuCollidables,cpuVertices,sepAxis,hasSepAxis, &portal);
	
	  
	//sepAxis[pairIndex] = *pdir;//or -dir?

	switch (res)
	{
	case 0:
		{
			// Phase 2: Portal refinement
		
			res = b3RefinePortal(pairIndex,bodyIndexA,bodyIndexB,cpuBodyBuf,cpuConvexData,cpuCollidables,cpuVertices, sepAxis,&portal);
			if (res < 0)
				return -1;

			// Phase 3. Penetration info
			b3FindPenetr(pairIndex,bodyIndexA,bodyIndexB,cpuBodyBuf,cpuConvexData,cpuCollidables,cpuVertices, sepAxis,&portal, depthOut, dirOut, posOut);
			hasSepAxis[pairIndex] = 1;
			sepAxis[pairIndex] = -*dirOut;
			break;
		}
	case 1:
		{
			 // Touching contact on portal's v1.
			b3FindPenetrTouch(&portal, depthOut, dirOut, posOut);
			break;
		}
	case 2:
		{
			
			b3FindPenetrSegment( &portal, depthOut, dirOut, posOut);
			break;
		}
	default:
		{
			hasSepAxis[pairIndex]=0;
			//if (res < 0)
			//{
				// Origin isn't inside portal - no collision.
				return -1;
			//}
		}
	};
	
	return 0;
};



#endif //B3_MPR_PENETRATION_H