1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
|
#ifndef B3_FIND_SEPARATING_AXIS_H
#define B3_FIND_SEPARATING_AXIS_H
inline void b3ProjectAxis(const b3ConvexPolyhedronData& hull, const b3Float4& pos, const b3Quaternion& orn, const b3Float4& dir, const b3AlignedObjectArray<b3Vector3>& vertices, b3Scalar& min, b3Scalar& max)
{
min = FLT_MAX;
max = -FLT_MAX;
int numVerts = hull.m_numVertices;
const b3Float4 localDir = b3QuatRotate(orn.inverse(), dir);
b3Scalar offset = b3Dot3F4(pos, dir);
for (int i = 0; i < numVerts; i++)
{
//b3Vector3 pt = trans * vertices[m_vertexOffset+i];
//b3Scalar dp = pt.dot(dir);
//b3Vector3 vertex = vertices[hull.m_vertexOffset+i];
b3Scalar dp = b3Dot3F4((b3Float4&)vertices[hull.m_vertexOffset + i], localDir);
//b3Assert(dp==dpL);
if (dp < min) min = dp;
if (dp > max) max = dp;
}
if (min > max)
{
b3Scalar tmp = min;
min = max;
max = tmp;
}
min += offset;
max += offset;
}
inline bool b3TestSepAxis(const b3ConvexPolyhedronData& hullA, const b3ConvexPolyhedronData& hullB,
const b3Float4& posA, const b3Quaternion& ornA,
const b3Float4& posB, const b3Quaternion& ornB,
const b3Float4& sep_axis, const b3AlignedObjectArray<b3Vector3>& verticesA, const b3AlignedObjectArray<b3Vector3>& verticesB, b3Scalar& depth)
{
b3Scalar Min0, Max0;
b3Scalar Min1, Max1;
b3ProjectAxis(hullA, posA, ornA, sep_axis, verticesA, Min0, Max0);
b3ProjectAxis(hullB, posB, ornB, sep_axis, verticesB, Min1, Max1);
if (Max0 < Min1 || Max1 < Min0)
return false;
b3Scalar d0 = Max0 - Min1;
b3Assert(d0 >= 0.0f);
b3Scalar d1 = Max1 - Min0;
b3Assert(d1 >= 0.0f);
depth = d0 < d1 ? d0 : d1;
return true;
}
inline bool b3FindSeparatingAxis(const b3ConvexPolyhedronData& hullA, const b3ConvexPolyhedronData& hullB,
const b3Float4& posA1,
const b3Quaternion& ornA,
const b3Float4& posB1,
const b3Quaternion& ornB,
const b3AlignedObjectArray<b3Vector3>& verticesA,
const b3AlignedObjectArray<b3Vector3>& uniqueEdgesA,
const b3AlignedObjectArray<b3GpuFace>& facesA,
const b3AlignedObjectArray<int>& indicesA,
const b3AlignedObjectArray<b3Vector3>& verticesB,
const b3AlignedObjectArray<b3Vector3>& uniqueEdgesB,
const b3AlignedObjectArray<b3GpuFace>& facesB,
const b3AlignedObjectArray<int>& indicesB,
b3Vector3& sep)
{
B3_PROFILE("findSeparatingAxis");
b3Float4 posA = posA1;
posA.w = 0.f;
b3Float4 posB = posB1;
posB.w = 0.f;
//#ifdef TEST_INTERNAL_OBJECTS
b3Float4 c0local = (b3Float4&)hullA.m_localCenter;
b3Float4 c0 = b3TransformPoint(c0local, posA, ornA);
b3Float4 c1local = (b3Float4&)hullB.m_localCenter;
b3Float4 c1 = b3TransformPoint(c1local, posB, ornB);
const b3Float4 deltaC2 = c0 - c1;
//#endif
b3Scalar dmin = FLT_MAX;
int curPlaneTests = 0;
int numFacesA = hullA.m_numFaces;
// Test normals from hullA
for (int i = 0; i < numFacesA; i++)
{
const b3Float4& normal = (b3Float4&)facesA[hullA.m_faceOffset + i].m_plane;
b3Float4 faceANormalWS = b3QuatRotate(ornA, normal);
if (b3Dot3F4(deltaC2, faceANormalWS) < 0)
faceANormalWS *= -1.f;
curPlaneTests++;
#ifdef TEST_INTERNAL_OBJECTS
gExpectedNbTests++;
if (gUseInternalObject && !TestInternalObjects(transA, transB, DeltaC2, faceANormalWS, hullA, hullB, dmin))
continue;
gActualNbTests++;
#endif
b3Scalar d;
if (!b3TestSepAxis(hullA, hullB, posA, ornA, posB, ornB, faceANormalWS, verticesA, verticesB, d))
return false;
if (d < dmin)
{
dmin = d;
sep = (b3Vector3&)faceANormalWS;
}
}
int numFacesB = hullB.m_numFaces;
// Test normals from hullB
for (int i = 0; i < numFacesB; i++)
{
b3Float4 normal = (b3Float4&)facesB[hullB.m_faceOffset + i].m_plane;
b3Float4 WorldNormal = b3QuatRotate(ornB, normal);
if (b3Dot3F4(deltaC2, WorldNormal) < 0)
{
WorldNormal *= -1.f;
}
curPlaneTests++;
#ifdef TEST_INTERNAL_OBJECTS
gExpectedNbTests++;
if (gUseInternalObject && !TestInternalObjects(transA, transB, DeltaC2, WorldNormal, hullA, hullB, dmin))
continue;
gActualNbTests++;
#endif
b3Scalar d;
if (!b3TestSepAxis(hullA, hullB, posA, ornA, posB, ornB, WorldNormal, verticesA, verticesB, d))
return false;
if (d < dmin)
{
dmin = d;
sep = (b3Vector3&)WorldNormal;
}
}
// b3Vector3 edgeAstart,edgeAend,edgeBstart,edgeBend;
int curEdgeEdge = 0;
// Test edges
for (int e0 = 0; e0 < hullA.m_numUniqueEdges; e0++)
{
const b3Float4& edge0 = (b3Float4&)uniqueEdgesA[hullA.m_uniqueEdgesOffset + e0];
b3Float4 edge0World = b3QuatRotate(ornA, (b3Float4&)edge0);
for (int e1 = 0; e1 < hullB.m_numUniqueEdges; e1++)
{
const b3Vector3 edge1 = uniqueEdgesB[hullB.m_uniqueEdgesOffset + e1];
b3Float4 edge1World = b3QuatRotate(ornB, (b3Float4&)edge1);
b3Float4 crossje = b3Cross3(edge0World, edge1World);
curEdgeEdge++;
if (!b3IsAlmostZero((b3Vector3&)crossje))
{
crossje = b3FastNormalized3(crossje);
if (b3Dot3F4(deltaC2, crossje) < 0)
crossje *= -1.f;
#ifdef TEST_INTERNAL_OBJECTS
gExpectedNbTests++;
if (gUseInternalObject && !TestInternalObjects(transA, transB, DeltaC2, Cross, hullA, hullB, dmin))
continue;
gActualNbTests++;
#endif
b3Scalar dist;
if (!b3TestSepAxis(hullA, hullB, posA, ornA, posB, ornB, crossje, verticesA, verticesB, dist))
return false;
if (dist < dmin)
{
dmin = dist;
sep = (b3Vector3&)crossje;
}
}
}
}
if ((b3Dot3F4(-deltaC2, (b3Float4&)sep)) > 0.0f)
sep = -sep;
return true;
}
#endif //B3_FIND_SEPARATING_AXIS_H
|