summaryrefslogtreecommitdiff
path: root/thirdparty/basis_universal/transcoder/basisu_transcoder_internal.h
blob: 776a99861ad7f2a800180afe248bf1c6e2bae317 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
// basisu_transcoder_internal.h - Universal texture format transcoder library.
// Copyright (C) 2019-2021 Binomial LLC. All Rights Reserved.
//
// Important: If compiling with gcc, be sure strict aliasing is disabled: -fno-strict-aliasing
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//    http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once

#ifdef _MSC_VER
#pragma warning (disable: 4127) //  conditional expression is constant
#endif

#define BASISD_LIB_VERSION 116
#define BASISD_VERSION_STRING "01.16"

#ifdef _DEBUG
#define BASISD_BUILD_DEBUG
#else
#define BASISD_BUILD_RELEASE
#endif

#include "basisu.h"

#define BASISD_znew (z = 36969 * (z & 65535) + (z >> 16))

namespace basisu
{
	extern bool g_debug_printf;
}

namespace basist
{
	// Low-level formats directly supported by the transcoder (other supported texture formats are combinations of these low-level block formats).
	// You probably don't care about these enum's unless you are going pretty low-level and calling the transcoder to decode individual slices.
	enum class block_format
	{
		cETC1,								// ETC1S RGB 
		cETC2_RGBA,							// full ETC2 EAC RGBA8 block
		cBC1,								// DXT1 RGB 
		cBC3,								// BC4 block followed by a four color BC1 block
		cBC4,								// DXT5A (alpha block only)
		cBC5,								// two BC4 blocks
		cPVRTC1_4_RGB,						// opaque-only PVRTC1 4bpp
		cPVRTC1_4_RGBA,						// PVRTC1 4bpp RGBA
		cBC7,								// Full BC7 block, any mode
		cBC7_M5_COLOR,						// RGB BC7 mode 5 color (writes an opaque mode 5 block)
		cBC7_M5_ALPHA,						// alpha portion of BC7 mode 5 (cBC7_M5_COLOR output data must have been written to the output buffer first to set the mode/rot fields etc.)
		cETC2_EAC_A8,						// alpha block of ETC2 EAC (first 8 bytes of the 16-bit ETC2 EAC RGBA format)
		cASTC_4x4,							// ASTC 4x4 (either color-only or color+alpha). Note that the transcoder always currently assumes sRGB is not enabled when outputting ASTC 
											// data. If you use a sRGB ASTC format you'll get ~1 LSB of additional error, because of the different way ASTC decoders scale 8-bit endpoints to 16-bits during unpacking.
		
		cATC_RGB,
		cATC_RGBA_INTERPOLATED_ALPHA,
		cFXT1_RGB,							// Opaque-only, has oddball 8x4 pixel block size

		cPVRTC2_4_RGB,
		cPVRTC2_4_RGBA,

		cETC2_EAC_R11,
		cETC2_EAC_RG11,
												
		cIndices,							// Used internally: Write 16-bit endpoint and selector indices directly to output (output block must be at least 32-bits)

		cRGB32,								// Writes RGB components to 32bpp output pixels
		cRGBA32,							// Writes RGB255 components to 32bpp output pixels
		cA32,								// Writes alpha component to 32bpp output pixels
				
		cRGB565,
		cBGR565,
		
		cRGBA4444_COLOR,
		cRGBA4444_ALPHA,
		cRGBA4444_COLOR_OPAQUE,
		cRGBA4444,

		cUASTC_4x4,
						
		cTotalBlockFormats
	};

	const int COLOR5_PAL0_PREV_HI = 9, COLOR5_PAL0_DELTA_LO = -9, COLOR5_PAL0_DELTA_HI = 31;
	const int COLOR5_PAL1_PREV_HI = 21, COLOR5_PAL1_DELTA_LO = -21, COLOR5_PAL1_DELTA_HI = 21;
	const int COLOR5_PAL2_PREV_HI = 31, COLOR5_PAL2_DELTA_LO = -31, COLOR5_PAL2_DELTA_HI = 9;
	const int COLOR5_PAL_MIN_DELTA_B_RUNLEN = 3, COLOR5_PAL_DELTA_5_RUNLEN_VLC_BITS = 3;

	const uint32_t ENDPOINT_PRED_TOTAL_SYMBOLS = (4 * 4 * 4 * 4) + 1;
	const uint32_t ENDPOINT_PRED_REPEAT_LAST_SYMBOL = ENDPOINT_PRED_TOTAL_SYMBOLS - 1;
	const uint32_t ENDPOINT_PRED_MIN_REPEAT_COUNT = 3;
	const uint32_t ENDPOINT_PRED_COUNT_VLC_BITS = 4;

	const uint32_t NUM_ENDPOINT_PREDS = 3;// BASISU_ARRAY_SIZE(g_endpoint_preds);
	const uint32_t CR_ENDPOINT_PRED_INDEX = NUM_ENDPOINT_PREDS - 1;
	const uint32_t NO_ENDPOINT_PRED_INDEX = 3;//NUM_ENDPOINT_PREDS;
	const uint32_t MAX_SELECTOR_HISTORY_BUF_SIZE = 64;
	const uint32_t SELECTOR_HISTORY_BUF_RLE_COUNT_THRESH = 3;
	const uint32_t SELECTOR_HISTORY_BUF_RLE_COUNT_BITS = 6;
	const uint32_t SELECTOR_HISTORY_BUF_RLE_COUNT_TOTAL = (1 << SELECTOR_HISTORY_BUF_RLE_COUNT_BITS);
		
	uint16_t crc16(const void *r, size_t size, uint16_t crc);
		
	class huffman_decoding_table
	{
		friend class bitwise_decoder;

	public:
		huffman_decoding_table()
		{
		}

		void clear()
		{
			basisu::clear_vector(m_code_sizes);
			basisu::clear_vector(m_lookup);
			basisu::clear_vector(m_tree);
		}

		bool init(uint32_t total_syms, const uint8_t *pCode_sizes, uint32_t fast_lookup_bits = basisu::cHuffmanFastLookupBits)
		{
			if (!total_syms)
			{
				clear();
				return true;
			}

			m_code_sizes.resize(total_syms);
			memcpy(&m_code_sizes[0], pCode_sizes, total_syms);

			const uint32_t huffman_fast_lookup_size = 1 << fast_lookup_bits;

			m_lookup.resize(0);
			m_lookup.resize(huffman_fast_lookup_size);

			m_tree.resize(0);
			m_tree.resize(total_syms * 2);

			uint32_t syms_using_codesize[basisu::cHuffmanMaxSupportedInternalCodeSize + 1];
			basisu::clear_obj(syms_using_codesize);
			for (uint32_t i = 0; i < total_syms; i++)
			{
				if (pCode_sizes[i] > basisu::cHuffmanMaxSupportedInternalCodeSize)
					return false;
				syms_using_codesize[pCode_sizes[i]]++;
			}

			uint32_t next_code[basisu::cHuffmanMaxSupportedInternalCodeSize + 1];
			next_code[0] = next_code[1] = 0;

			uint32_t used_syms = 0, total = 0;
			for (uint32_t i = 1; i < basisu::cHuffmanMaxSupportedInternalCodeSize; i++)
			{
				used_syms += syms_using_codesize[i];
				next_code[i + 1] = (total = ((total + syms_using_codesize[i]) << 1));
			}

			if (((1U << basisu::cHuffmanMaxSupportedInternalCodeSize) != total) && (used_syms > 1U))
				return false;

			for (int tree_next = -1, sym_index = 0; sym_index < (int)total_syms; ++sym_index)
			{
				uint32_t rev_code = 0, l, cur_code, code_size = pCode_sizes[sym_index];
				if (!code_size)
					continue;

				cur_code = next_code[code_size]++;

				for (l = code_size; l > 0; l--, cur_code >>= 1)
					rev_code = (rev_code << 1) | (cur_code & 1);

				if (code_size <= fast_lookup_bits)
				{
					uint32_t k = (code_size << 16) | sym_index;
					while (rev_code < huffman_fast_lookup_size)
					{
						if (m_lookup[rev_code] != 0)
						{
							// Supplied codesizes can't create a valid prefix code.
							return false;
						}

						m_lookup[rev_code] = k;
						rev_code += (1 << code_size);
					}
					continue;
				}

				int tree_cur;
				if (0 == (tree_cur = m_lookup[rev_code & (huffman_fast_lookup_size - 1)]))
				{
					const uint32_t idx = rev_code & (huffman_fast_lookup_size - 1);
					if (m_lookup[idx] != 0)
					{
						// Supplied codesizes can't create a valid prefix code.
						return false;
					}

					m_lookup[idx] = tree_next;
					tree_cur = tree_next;
					tree_next -= 2;
				}

				if (tree_cur >= 0)
				{
					// Supplied codesizes can't create a valid prefix code.
					return false;
				}

				rev_code >>= (fast_lookup_bits - 1);

				for (int j = code_size; j > ((int)fast_lookup_bits + 1); j--)
				{
					tree_cur -= ((rev_code >>= 1) & 1);

					const int idx = -tree_cur - 1;
					if (idx < 0)
						return false;
					else if (idx >= (int)m_tree.size())
						m_tree.resize(idx + 1);
										
					if (!m_tree[idx])
					{
						m_tree[idx] = (int16_t)tree_next;
						tree_cur = tree_next;
						tree_next -= 2;
					}
					else
					{
						tree_cur = m_tree[idx];
						if (tree_cur >= 0)
						{
							// Supplied codesizes can't create a valid prefix code.
							return false;
						}
					}
				}

				tree_cur -= ((rev_code >>= 1) & 1);

				const int idx = -tree_cur - 1;
				if (idx < 0)
					return false;
				else if (idx >= (int)m_tree.size())
					m_tree.resize(idx + 1);

				if (m_tree[idx] != 0)
				{
					// Supplied codesizes can't create a valid prefix code.
					return false;
				}

				m_tree[idx] = (int16_t)sym_index;
			}

			return true;
		}

		const basisu::uint8_vec &get_code_sizes() const { return m_code_sizes; }
		const basisu::int_vec get_lookup() const { return m_lookup; }
		const basisu::int16_vec get_tree() const { return m_tree; }

		bool is_valid() const { return m_code_sizes.size() > 0; }

	private:
		basisu::uint8_vec m_code_sizes;
		basisu::int_vec m_lookup;
		basisu::int16_vec m_tree;
	};

	class bitwise_decoder
	{
	public:
		bitwise_decoder() :
			m_buf_size(0),
			m_pBuf(nullptr),
			m_pBuf_start(nullptr),
			m_pBuf_end(nullptr),
			m_bit_buf(0),
			m_bit_buf_size(0)
		{
		}

		void clear()
		{
			m_buf_size = 0;
			m_pBuf = nullptr;
			m_pBuf_start = nullptr;
			m_pBuf_end = nullptr;
			m_bit_buf = 0;
			m_bit_buf_size = 0;
		}

		bool init(const uint8_t *pBuf, uint32_t buf_size)
		{
			if ((!pBuf) && (buf_size))
				return false;

			m_buf_size = buf_size;
			m_pBuf = pBuf;
			m_pBuf_start = pBuf;
			m_pBuf_end = pBuf + buf_size;
			m_bit_buf = 0;
			m_bit_buf_size = 0;
			return true;
		}

		void stop()
		{
		}

		inline uint32_t peek_bits(uint32_t num_bits)
		{
			if (!num_bits)
				return 0;

			assert(num_bits <= 25);

			while (m_bit_buf_size < num_bits)
			{
				uint32_t c = 0;
				if (m_pBuf < m_pBuf_end)
					c = *m_pBuf++;

				m_bit_buf |= (c << m_bit_buf_size);
				m_bit_buf_size += 8;
				assert(m_bit_buf_size <= 32);
			}

			return m_bit_buf & ((1 << num_bits) - 1);
		}

		void remove_bits(uint32_t num_bits)
		{
			assert(m_bit_buf_size >= num_bits);

			m_bit_buf >>= num_bits;
			m_bit_buf_size -= num_bits;
		}

		uint32_t get_bits(uint32_t num_bits)
		{
			if (num_bits > 25)
			{
				assert(num_bits <= 32);

				const uint32_t bits0 = peek_bits(25);
				m_bit_buf >>= 25;
				m_bit_buf_size -= 25;
				num_bits -= 25;

				const uint32_t bits = peek_bits(num_bits);
				m_bit_buf >>= num_bits;
				m_bit_buf_size -= num_bits;

				return bits0 | (bits << 25);
			}

			const uint32_t bits = peek_bits(num_bits);

			m_bit_buf >>= num_bits;
			m_bit_buf_size -= num_bits;

			return bits;
		}

		uint32_t decode_truncated_binary(uint32_t n)
		{
			assert(n >= 2);

			const uint32_t k = basisu::floor_log2i(n);
			const uint32_t u = (1 << (k + 1)) - n;

			uint32_t result = get_bits(k);

			if (result >= u)
				result = ((result << 1) | get_bits(1)) - u;

			return result;
		}

		uint32_t decode_rice(uint32_t m)
		{
			assert(m);

			uint32_t q = 0;
			for (;;)
			{
				uint32_t k = peek_bits(16);
				
				uint32_t l = 0;
				while (k & 1)
				{
					l++;
					k >>= 1;
				}
				
				q += l;

				remove_bits(l);

				if (l < 16)
					break;
			}

			return (q << m) + (get_bits(m + 1) >> 1);
		}

		inline uint32_t decode_vlc(uint32_t chunk_bits)
		{
			assert(chunk_bits);

			const uint32_t chunk_size = 1 << chunk_bits;
			const uint32_t chunk_mask = chunk_size - 1;
					
			uint32_t v = 0;
			uint32_t ofs = 0;

			for ( ; ; )
			{
				uint32_t s = get_bits(chunk_bits + 1);
				v |= ((s & chunk_mask) << ofs);
				ofs += chunk_bits;

				if ((s & chunk_size) == 0)
					break;
				
				if (ofs >= 32)
				{
					assert(0);
					break;
				}
			}

			return v;
		}

		inline uint32_t decode_huffman(const huffman_decoding_table &ct, int fast_lookup_bits = basisu::cHuffmanFastLookupBits)
		{
			assert(ct.m_code_sizes.size());

			const uint32_t huffman_fast_lookup_size = 1 << fast_lookup_bits;
						
			while (m_bit_buf_size < 16)
			{
				uint32_t c = 0;
				if (m_pBuf < m_pBuf_end)
					c = *m_pBuf++;

				m_bit_buf |= (c << m_bit_buf_size);
				m_bit_buf_size += 8;
				assert(m_bit_buf_size <= 32);
			}
						
			int code_len;

			int sym;
			if ((sym = ct.m_lookup[m_bit_buf & (huffman_fast_lookup_size - 1)]) >= 0)
			{
				code_len = sym >> 16;
				sym &= 0xFFFF;
			}
			else
			{
				code_len = fast_lookup_bits;
				do
				{
					sym = ct.m_tree[~sym + ((m_bit_buf >> code_len++) & 1)]; // ~sym = -sym - 1
				} while (sym < 0);
			}

			m_bit_buf >>= code_len;
			m_bit_buf_size -= code_len;

			return sym;
		}

		bool read_huffman_table(huffman_decoding_table &ct)
		{
			ct.clear();

			const uint32_t total_used_syms = get_bits(basisu::cHuffmanMaxSymsLog2);

			if (!total_used_syms)
				return true;
			if (total_used_syms > basisu::cHuffmanMaxSyms)
				return false;

			uint8_t code_length_code_sizes[basisu::cHuffmanTotalCodelengthCodes];
			basisu::clear_obj(code_length_code_sizes);

			const uint32_t num_codelength_codes = get_bits(5);
			if ((num_codelength_codes < 1) || (num_codelength_codes > basisu::cHuffmanTotalCodelengthCodes))
				return false;

			for (uint32_t i = 0; i < num_codelength_codes; i++)
				code_length_code_sizes[basisu::g_huffman_sorted_codelength_codes[i]] = static_cast<uint8_t>(get_bits(3));

			huffman_decoding_table code_length_table;
			if (!code_length_table.init(basisu::cHuffmanTotalCodelengthCodes, code_length_code_sizes))
				return false;

			if (!code_length_table.is_valid())
				return false;

			basisu::uint8_vec code_sizes(total_used_syms);

			uint32_t cur = 0;
			while (cur < total_used_syms)
			{
				int c = decode_huffman(code_length_table);

				if (c <= 16)
					code_sizes[cur++] = static_cast<uint8_t>(c);
				else if (c == basisu::cHuffmanSmallZeroRunCode)
					cur += get_bits(basisu::cHuffmanSmallZeroRunExtraBits) + basisu::cHuffmanSmallZeroRunSizeMin;
				else if (c == basisu::cHuffmanBigZeroRunCode)
					cur += get_bits(basisu::cHuffmanBigZeroRunExtraBits) + basisu::cHuffmanBigZeroRunSizeMin;
				else
				{
					if (!cur)
						return false;

					uint32_t l;
					if (c == basisu::cHuffmanSmallRepeatCode)
						l = get_bits(basisu::cHuffmanSmallRepeatExtraBits) + basisu::cHuffmanSmallRepeatSizeMin;
					else
						l = get_bits(basisu::cHuffmanBigRepeatExtraBits) + basisu::cHuffmanBigRepeatSizeMin;

					const uint8_t prev = code_sizes[cur - 1];
					if (prev == 0)
						return false;
					do
					{
						if (cur >= total_used_syms)
							return false;
						code_sizes[cur++] = prev;
					} while (--l > 0);
				}
			}

			if (cur != total_used_syms)
				return false;

			return ct.init(total_used_syms, &code_sizes[0]);
		}

	private:
		uint32_t m_buf_size;
		const uint8_t *m_pBuf;
		const uint8_t *m_pBuf_start;
		const uint8_t *m_pBuf_end;

		uint32_t m_bit_buf;
		uint32_t m_bit_buf_size;
	};

	inline uint32_t basisd_rand(uint32_t seed)
	{
		if (!seed)
			seed++;
		uint32_t z = seed;
		BASISD_znew;
		return z;
	}

	// Returns random number in [0,limit). Max limit is 0xFFFF.
	inline uint32_t basisd_urand(uint32_t& seed, uint32_t limit)
	{
		seed = basisd_rand(seed);
		return (((seed ^ (seed >> 16)) & 0xFFFF) * limit) >> 16;
	}

	class approx_move_to_front
	{
	public:
		approx_move_to_front(uint32_t n)
		{
			init(n);
		}

		void init(uint32_t n)
		{
			m_values.resize(n);
			m_rover = n / 2;
		}

		const basisu::int_vec& get_values() const { return m_values; }
		basisu::int_vec& get_values() { return m_values; }

		uint32_t size() const { return (uint32_t)m_values.size(); }

		const int& operator[] (uint32_t index) const { return m_values[index]; }
		int operator[] (uint32_t index) { return m_values[index]; }

		void add(int new_value)
		{
			m_values[m_rover++] = new_value;
			if (m_rover == m_values.size())
				m_rover = (uint32_t)m_values.size() / 2;
		}

		void use(uint32_t index)
		{
			if (index)
			{
				//std::swap(m_values[index / 2], m_values[index]);
				int x = m_values[index / 2];
				int y = m_values[index];
				m_values[index / 2] = y;
				m_values[index] = x;
			}
		}

		// returns -1 if not found
		int find(int value) const
		{
			for (uint32_t i = 0; i < m_values.size(); i++)
				if (m_values[i] == value)
					return i;
			return -1;
		}

		void reset()
		{
			const uint32_t n = (uint32_t)m_values.size();

			m_values.clear();

			init(n);
		}

	private:
		basisu::int_vec m_values;
		uint32_t m_rover;
	};

	struct decoder_etc_block;
	
	inline uint8_t clamp255(int32_t i)
	{
		return (uint8_t)((i & 0xFFFFFF00U) ? (~(i >> 31)) : i);
	}

	enum eNoClamp
	{
		cNoClamp = 0
	};

	struct color32
	{
		union
		{
			struct
			{
				uint8_t r;
				uint8_t g;
				uint8_t b;
				uint8_t a;
			};

			uint8_t c[4];
			
			uint32_t m;
		};

		color32() { }

		color32(uint32_t vr, uint32_t vg, uint32_t vb, uint32_t va) { set(vr, vg, vb, va); }
		color32(eNoClamp unused, uint32_t vr, uint32_t vg, uint32_t vb, uint32_t va) { (void)unused; set_noclamp_rgba(vr, vg, vb, va); }

		void set(uint32_t vr, uint32_t vg, uint32_t vb, uint32_t va) { c[0] = static_cast<uint8_t>(vr); c[1] = static_cast<uint8_t>(vg); c[2] = static_cast<uint8_t>(vb); c[3] = static_cast<uint8_t>(va); }

		void set_noclamp_rgb(uint32_t vr, uint32_t vg, uint32_t vb) { c[0] = static_cast<uint8_t>(vr); c[1] = static_cast<uint8_t>(vg); c[2] = static_cast<uint8_t>(vb); }
		void set_noclamp_rgba(uint32_t vr, uint32_t vg, uint32_t vb, uint32_t va) { set(vr, vg, vb, va); }

		void set_clamped(int vr, int vg, int vb, int va) { c[0] = clamp255(vr); c[1] = clamp255(vg);	c[2] = clamp255(vb); c[3] = clamp255(va); }

		uint8_t operator[] (uint32_t idx) const { assert(idx < 4); return c[idx]; }
		uint8_t &operator[] (uint32_t idx) { assert(idx < 4); return c[idx]; }

		bool operator== (const color32&rhs) const { return m == rhs.m; }

		static color32 comp_min(const color32& a, const color32& b) { return color32(cNoClamp, basisu::minimum(a[0], b[0]), basisu::minimum(a[1], b[1]), basisu::minimum(a[2], b[2]), basisu::minimum(a[3], b[3])); }
		static color32 comp_max(const color32& a, const color32& b) { return color32(cNoClamp, basisu::maximum(a[0], b[0]), basisu::maximum(a[1], b[1]), basisu::maximum(a[2], b[2]), basisu::maximum(a[3], b[3])); }
	};

	struct endpoint
	{
		color32 m_color5;
		uint8_t m_inten5;
		bool operator== (const endpoint& rhs) const
		{
			return (m_color5.r == rhs.m_color5.r) && (m_color5.g == rhs.m_color5.g) && (m_color5.b == rhs.m_color5.b) && (m_inten5 == rhs.m_inten5);
		}
		bool operator!= (const endpoint& rhs) const { return !(*this == rhs); }
	};

	struct selector
	{
		// Plain selectors (2-bits per value)
		uint8_t m_selectors[4];

		// ETC1 selectors
		uint8_t m_bytes[4];

		uint8_t m_lo_selector, m_hi_selector;
		uint8_t m_num_unique_selectors;
		bool operator== (const selector& rhs) const
		{
			return (m_selectors[0] == rhs.m_selectors[0]) &&
				(m_selectors[1] == rhs.m_selectors[1]) &&
				(m_selectors[2] == rhs.m_selectors[2]) &&
				(m_selectors[3] == rhs.m_selectors[3]);
		}
		bool operator!= (const selector& rhs) const
		{
			return !(*this == rhs);
		}

		void init_flags()
		{
			uint32_t hist[4] = { 0, 0, 0, 0 };
			for (uint32_t y = 0; y < 4; y++)
			{
				for (uint32_t x = 0; x < 4; x++)
				{
					uint32_t s = get_selector(x, y);
					hist[s]++;
				}
			}

			m_lo_selector = 3;
			m_hi_selector = 0;
			m_num_unique_selectors = 0;

			for (uint32_t i = 0; i < 4; i++)
			{
				if (hist[i])
				{
					m_num_unique_selectors++;
					if (i < m_lo_selector) m_lo_selector = static_cast<uint8_t>(i);
					if (i > m_hi_selector) m_hi_selector = static_cast<uint8_t>(i);
				}
			}
		}

		// Returned selector value ranges from 0-3 and is a direct index into g_etc1_inten_tables.
		inline uint32_t get_selector(uint32_t x, uint32_t y) const
		{
			assert((x < 4) && (y < 4));
			return (m_selectors[y] >> (x * 2)) & 3;
		}

		void set_selector(uint32_t x, uint32_t y, uint32_t val)
		{
			static const uint8_t s_selector_index_to_etc1[4] = { 3, 2, 0, 1 };

			assert((x | y | val) < 4);

			m_selectors[y] &= ~(3 << (x * 2));
			m_selectors[y] |= (val << (x * 2));

			const uint32_t etc1_bit_index = x * 4 + y;

			uint8_t *p = &m_bytes[3 - (etc1_bit_index >> 3)];

			const uint32_t byte_bit_ofs = etc1_bit_index & 7;
			const uint32_t mask = 1 << byte_bit_ofs;

			const uint32_t etc1_val = s_selector_index_to_etc1[val];

			const uint32_t lsb = etc1_val & 1;
			const uint32_t msb = etc1_val >> 1;

			p[0] &= ~mask;
			p[0] |= (lsb << byte_bit_ofs);

			p[-2] &= ~mask;
			p[-2] |= (msb << byte_bit_ofs);
		}
	};

	bool basis_block_format_is_uncompressed(block_format tex_type);
	
} // namespace basist