summaryrefslogtreecommitdiff
path: root/thirdparty/basis_universal/transcoder/basisu_containers_impl.h
blob: d5cb61569b03f5ee08838f445a5108b2da35cf8c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
// basisu_containers_impl.h
// Do not include directly

#ifdef _MSC_VER
#pragma warning (disable:4127) // warning C4127: conditional expression is constant
#endif

namespace basisu
{
   bool elemental_vector::increase_capacity(uint32_t min_new_capacity, bool grow_hint, uint32_t element_size, object_mover pMover, bool nofail)
   {
      assert(m_size <= m_capacity);

      if (sizeof(void *) == sizeof(uint64_t))
         assert(min_new_capacity < (0x400000000ULL / element_size));
      else
         assert(min_new_capacity < (0x7FFF0000U / element_size));

      if (m_capacity >= min_new_capacity)
         return true;

      size_t new_capacity = min_new_capacity;
      if ((grow_hint) && (!helpers::is_power_of_2((uint64_t)new_capacity)))
      {
         new_capacity = (size_t)helpers::next_pow2((uint64_t)new_capacity);

         assert(new_capacity && (new_capacity > m_capacity));

         if (new_capacity < min_new_capacity)
         {
            if (nofail)
               return false;
            fprintf(stderr, "vector too large\n");
            abort();
         }
      }
            
      const size_t desired_size = element_size * new_capacity;
      size_t actual_size = 0;
      if (!pMover)
      {
         void* new_p = realloc(m_p, desired_size);
         if (!new_p)
         {
            if (nofail)
               return false;

            char buf[256];
#ifdef _MSC_VER
            sprintf_s(buf, sizeof(buf), "vector: realloc() failed allocating %u bytes", (uint32_t)desired_size);
#else
            sprintf(buf, "vector: realloc() failed allocating %u bytes", (uint32_t)desired_size);
#endif
            fprintf(stderr, "%s", buf);
            abort();
         }

#if BASISU_VECTOR_DETERMINISTIC
         actual_size = desired_size;
#elif defined(_MSC_VER)
         actual_size = _msize(new_p);
#elif HAS_MALLOC_USABLE_SIZE
         actual_size = malloc_usable_size(new_p);
#else
         actual_size = desired_size;
#endif
         m_p = new_p;
      }
      else
      {
         void* new_p = malloc(desired_size);
         if (!new_p)
         {
            if (nofail)
               return false;

            char buf[256];
#ifdef _MSC_VER
            sprintf_s(buf, sizeof(buf), "vector: malloc() failed allocating %u bytes", (uint32_t)desired_size);
#else
            sprintf(buf, "vector: malloc() failed allocating %u bytes", (uint32_t)desired_size);
#endif
            fprintf(stderr, "%s", buf);
            abort();
         }

#if BASISU_VECTOR_DETERMINISTIC
         actual_size = desired_size;
#elif defined(_MSC_VER)
         actual_size = _msize(new_p);
#elif HAS_MALLOC_USABLE_SIZE
         actual_size = malloc_usable_size(new_p);
#else
         actual_size = desired_size;
#endif

         (*pMover)(new_p, m_p, m_size);

         if (m_p)
            free(m_p);
         
         m_p = new_p;
      }

      if (actual_size > desired_size)
         m_capacity = static_cast<uint32_t>(actual_size / element_size);
      else
         m_capacity = static_cast<uint32_t>(new_capacity);

      return true;
   }

#if BASISU_HASHMAP_TEST

#define HASHMAP_TEST_VERIFY(c) do { if (!(c)) handle_hashmap_test_verify_failure(__LINE__); } while(0)

   static void handle_hashmap_test_verify_failure(int line)
   {
      fprintf(stderr, "HASHMAP_TEST_VERIFY() faild on line %i\n", line);
      abort();
   }

   class counted_obj
   {
   public:
      counted_obj(uint32_t v = 0) :
         m_val(v)
      {
         m_count++;
      }

      counted_obj(const counted_obj& obj) :
         m_val(obj.m_val)
      {
         m_count++;
      }

      ~counted_obj()
      {
         assert(m_count > 0);
         m_count--;
      }

      static uint32_t m_count;

      uint32_t m_val;

      operator size_t() const { return m_val; }

      bool operator== (const counted_obj& rhs) const { return m_val == rhs.m_val; }
      bool operator== (const uint32_t rhs) const { return m_val == rhs; }

   };

   uint32_t counted_obj::m_count;

   static uint32_t urand32()
   {
      uint32_t a = rand();
      uint32_t b = rand() << 15;
      uint32_t c = rand() << (32 - 15);
      return a ^ b ^ c;
   }

   static int irand32(int l, int h)
   {
      assert(l < h);
      if (l >= h)
         return l;

      uint32_t range = static_cast<uint32_t>(h - l);

      uint32_t rnd = urand32();

      uint32_t rnd_range = static_cast<uint32_t>((((uint64_t)range) * ((uint64_t)rnd)) >> 32U);

      int result = l + rnd_range;
      assert((result >= l) && (result < h));
      return result;
   }

   void hash_map_test()
   {
      {
         basisu::hash_map<uint64_t, uint64_t> k;
         basisu::hash_map<uint64_t, uint64_t> l;
         std::swap(k, l);

         k.begin();
         k.end();
         k.clear();
         k.empty();
         k.erase(0);
         k.insert(0, 1);
         k.find(0);
         k.get_equals();
         k.get_hasher();
         k.get_table_size();
         k.reset();
         k.reserve(1);
         k = l;
         k.set_equals(l.get_equals());
         k.set_hasher(l.get_hasher());
         k.get_table_size();
      }

      uint32_t seed = 0;
      for (; ; )
      {
         seed++;

         typedef basisu::hash_map<counted_obj, counted_obj> my_hash_map;
         my_hash_map m;

         const uint32_t n = irand32(0, 100000);

         printf("%u\n", n);

         srand(seed); // r1.seed(seed);

         basisu::vector<int> q;

         uint32_t count = 0;
         for (uint32_t i = 0; i < n; i++)
         {
            uint32_t v = urand32() & 0x7FFFFFFF;
            my_hash_map::insert_result res = m.insert(counted_obj(v), counted_obj(v ^ 0xdeadbeef));
            if (res.second)
            {
               count++;
               q.push_back(v);
            }
         }

         HASHMAP_TEST_VERIFY(m.size() == count);

         srand(seed);

         my_hash_map cm(m);
         m.clear();
         m = cm;
         cm.reset();

         for (uint32_t i = 0; i < n; i++)
         {
            uint32_t v = urand32() & 0x7FFFFFFF;
            my_hash_map::const_iterator it = m.find(counted_obj(v));
            HASHMAP_TEST_VERIFY(it != m.end());
            HASHMAP_TEST_VERIFY(it->first == v);
            HASHMAP_TEST_VERIFY(it->second == (v ^ 0xdeadbeef));
         }

         for (uint32_t t = 0; t < 2; t++)
         {
            const uint32_t nd = irand32(1, q.size() + 1);
            for (uint32_t i = 0; i < nd; i++)
            {
               uint32_t p = irand32(0, q.size());

               int k = q[p];
               if (k >= 0)
               {
                  q[p] = -k - 1;

                  bool s = m.erase(counted_obj(k));
                  HASHMAP_TEST_VERIFY(s);
               }
            }

            typedef basisu::hash_map<uint32_t, empty_type> uint_hash_set;
            uint_hash_set s;

            for (uint32_t i = 0; i < q.size(); i++)
            {
               int v = q[i];

               if (v >= 0)
               {
                  my_hash_map::const_iterator it = m.find(counted_obj(v));
                  HASHMAP_TEST_VERIFY(it != m.end());
                  HASHMAP_TEST_VERIFY(it->first == (uint32_t)v);
                  HASHMAP_TEST_VERIFY(it->second == ((uint32_t)v ^ 0xdeadbeef));

                  s.insert(v);
               }
               else
               {
                  my_hash_map::const_iterator it = m.find(counted_obj(-v - 1));
                  HASHMAP_TEST_VERIFY(it == m.end());
               }
            }

            uint32_t found_count = 0;
            for (my_hash_map::const_iterator it = m.begin(); it != m.end(); ++it)
            {
               HASHMAP_TEST_VERIFY(it->second == ((uint32_t)it->first ^ 0xdeadbeef));

               uint_hash_set::const_iterator fit(s.find((uint32_t)it->first));
               HASHMAP_TEST_VERIFY(fit != s.end());

               HASHMAP_TEST_VERIFY(fit->first == it->first);

               found_count++;
            }

            HASHMAP_TEST_VERIFY(found_count == s.size());
         }

         HASHMAP_TEST_VERIFY(counted_obj::m_count == m.size() * 2);
      }
   }

#endif // BASISU_HASHMAP_TEST

} // namespace basisu