summaryrefslogtreecommitdiff
path: root/thirdparty/basis_universal/encoder/basisu_opencl.cpp
blob: 81e3090a263954cb89dc2f3534f444915b1fa6e2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
// basisu_opencl.cpp
// Copyright (C) 2019-2021 Binomial LLC. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//    http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "basisu_opencl.h"

// If 1, the kernel source code will come from encoders/ocl_kernels.h. Otherwise, it will be read from the "ocl_kernels.cl" file in the current directory (for development).
#define BASISU_USE_OCL_KERNELS_HEADER (1)
#define BASISU_OCL_KERNELS_FILENAME "ocl_kernels.cl"

#if BASISU_SUPPORT_OPENCL

#include "basisu_enc.h"

// We only use OpenCL v1.2 or less.
#define CL_TARGET_OPENCL_VERSION 120

#ifdef __APPLE__
#include <OpenCL/opencl.h>
#else
#include <CL/cl.h>
#endif

#define BASISU_OPENCL_ASSERT_ON_ANY_ERRORS (1)

namespace basisu
{
#if BASISU_USE_OCL_KERNELS_HEADER
#include "basisu_ocl_kernels.h"
#endif

	static void ocl_error_printf(const char* pFmt, ...)
	{
		va_list args;
		va_start(args, pFmt);
		error_vprintf(pFmt, args);
		va_end(args);

#if BASISU_OPENCL_ASSERT_ON_ANY_ERRORS
		assert(0);
#endif
	}

	class ocl
	{
	public:
		ocl() 
		{
			memset(&m_dev_fp_config, 0, sizeof(m_dev_fp_config));
			
			m_ocl_mutex.lock();
			m_ocl_mutex.unlock();
		}

		~ocl()
		{
		}

		bool is_initialized() const { return m_device_id != nullptr; }

		cl_device_id get_device_id() const { return m_device_id; }
		cl_context get_context() const { return m_context; }
		cl_command_queue get_command_queue() { return m_command_queue; }
		cl_program get_program() const { return m_program; }

		bool init(bool force_serialization)
		{
			deinit();

			interval_timer tm;
			tm.start();

			cl_uint num_platforms = 0;
			cl_int ret = clGetPlatformIDs(0, NULL, &num_platforms);
			if (ret != CL_SUCCESS)
			{
				ocl_error_printf("ocl::init: clGetPlatformIDs() failed with %i\n", ret);
				return false;
			}

			if ((!num_platforms) || (num_platforms > INT_MAX))
			{
				ocl_error_printf("ocl::init: clGetPlatformIDs() returned an invalid number of num_platforms\n");
				return false;
			}

			std::vector<cl_platform_id> platforms(num_platforms);

			ret = clGetPlatformIDs(num_platforms, platforms.data(), NULL);
			if (ret != CL_SUCCESS)
			{
				ocl_error_printf("ocl::init: clGetPlatformIDs() failed\n");
				return false;
			}

			cl_uint num_devices = 0;
			ret = clGetDeviceIDs(platforms[0], CL_DEVICE_TYPE_GPU, 1, &m_device_id, &num_devices);

			if (ret == CL_DEVICE_NOT_FOUND)
			{
				ocl_error_printf("ocl::init: Couldn't get any GPU device ID's, trying CL_DEVICE_TYPE_CPU\n");

				ret = clGetDeviceIDs(platforms[0], CL_DEVICE_TYPE_CPU, 1, &m_device_id, &num_devices);
			}

			if (ret != CL_SUCCESS)
			{
				ocl_error_printf("ocl::init: Unable to get any device ID's\n");

				m_device_id = nullptr;
				return false;
			}

			ret = clGetDeviceInfo(m_device_id,
				CL_DEVICE_SINGLE_FP_CONFIG,
				sizeof(m_dev_fp_config),
				&m_dev_fp_config,
				nullptr);
			if (ret != CL_SUCCESS)
			{
				ocl_error_printf("ocl::init: clGetDeviceInfo() failed\n");
				return false;
			}

			char plat_vers[256];
			size_t rv = 0;
			ret = clGetPlatformInfo(platforms[0], CL_PLATFORM_VERSION, sizeof(plat_vers), plat_vers, &rv);
			if (ret == CL_SUCCESS)
				printf("OpenCL platform version: \"%s\"\n", plat_vers);

			// Serialize CL calls with the AMD driver to avoid lockups when multiple command queues per thread are used. This sucks, but what can we do?
			m_use_mutex = (strstr(plat_vers, "AMD") != nullptr) || force_serialization;

			printf("Serializing OpenCL calls across threads: %u\n", (uint32_t)m_use_mutex);

			m_context = clCreateContext(nullptr, 1, &m_device_id, nullptr, nullptr, &ret);
			if (ret != CL_SUCCESS)
			{
				ocl_error_printf("ocl::init: clCreateContext() failed\n");

				m_device_id = nullptr;
				m_context = nullptr;
				return false;
			}

			m_command_queue = clCreateCommandQueue(m_context, m_device_id, 0, &ret);
			if (ret != CL_SUCCESS)
			{
				ocl_error_printf("ocl::init: clCreateCommandQueue() failed\n");

				deinit();
				return false;
			}
						
			printf("OpenCL init time: %3.3f secs\n", tm.get_elapsed_secs());

			return true;
		}
				
		bool deinit()
		{
			if (m_program)
			{
				clReleaseProgram(m_program);
				m_program = nullptr;
			}

			if (m_command_queue)
			{
				clReleaseCommandQueue(m_command_queue);
				m_command_queue = nullptr;
			}

			if (m_context)
			{
				clReleaseContext(m_context);
				m_context = nullptr;
			}

			m_device_id = nullptr;

			return true;
		}

		cl_command_queue create_command_queue()
		{
			cl_serializer serializer(this);

			cl_int ret = 0;
			cl_command_queue p = clCreateCommandQueue(m_context, m_device_id, 0, &ret);
			if (ret != CL_SUCCESS)
				return nullptr;

			return p;
		}

		void destroy_command_queue(cl_command_queue p)
		{
			if (p)
			{
				cl_serializer serializer(this);

				clReleaseCommandQueue(p);
			}
		}

		bool init_program(const char* pSrc, size_t src_size)
		{
			cl_int ret;

			if (m_program != nullptr)
			{
				clReleaseProgram(m_program);
				m_program = nullptr;
			}

			m_program = clCreateProgramWithSource(m_context, 1, (const char**)&pSrc, (const size_t*)&src_size, &ret);
			if (ret != CL_SUCCESS)
			{
				ocl_error_printf("ocl::init_program: clCreateProgramWithSource() failed!\n");
				return false;
			}

			std::string options;
			if (m_dev_fp_config & CL_FP_CORRECTLY_ROUNDED_DIVIDE_SQRT)
			{
				options += "-cl-fp32-correctly-rounded-divide-sqrt";
			}

			options += " -cl-std=CL1.2";
			//options += " -cl-opt-disable";
			//options += " -cl-mad-enable";
			//options += " -cl-fast-relaxed-math";

			ret = clBuildProgram(m_program, 1, &m_device_id,
				options.size() ? options.c_str() : nullptr,  // options
				nullptr,  // notify
				nullptr); // user_data

			if (ret != CL_SUCCESS)
			{
				const cl_int build_program_result = ret;

				size_t ret_val_size;
				ret = clGetProgramBuildInfo(m_program, m_device_id, CL_PROGRAM_BUILD_LOG, 0, NULL, &ret_val_size);
				if (ret != CL_SUCCESS)
				{
					ocl_error_printf("ocl::init_program: clGetProgramBuildInfo() failed!\n");
					return false;
				}

				std::vector<char> build_log(ret_val_size + 1);

				ret = clGetProgramBuildInfo(m_program, m_device_id, CL_PROGRAM_BUILD_LOG, ret_val_size, build_log.data(), NULL);

				ocl_error_printf("\nclBuildProgram() failed with error %i:\n%s", build_program_result, build_log.data());

				return false;
			}

			return true;
		}

		cl_kernel create_kernel(const char* pName)
		{
			if (!m_program)
				return nullptr;

			cl_serializer serializer(this);

			cl_int ret;
			cl_kernel kernel = clCreateKernel(m_program, pName, &ret);
			if (ret != CL_SUCCESS)
			{
				ocl_error_printf("ocl::create_kernel: clCreateKernel() failed!\n");
				return nullptr;
			}

			return kernel;
		}

		bool destroy_kernel(cl_kernel k)
		{
			if (k)
			{
				cl_serializer serializer(this);

				cl_int ret = clReleaseKernel(k);
				if (ret != CL_SUCCESS)
				{
					ocl_error_printf("ocl::destroy_kernel: clReleaseKernel() failed!\n");
					return false;
				}
			}
			return true;
		}

		cl_mem alloc_read_buffer(size_t size)
		{
			cl_serializer serializer(this);

			cl_int ret;
			cl_mem obj = clCreateBuffer(m_context, CL_MEM_READ_ONLY, size, NULL, &ret);
			if (ret != CL_SUCCESS)
			{
				ocl_error_printf("ocl::alloc_read_buffer: clCreateBuffer() failed!\n");
				return nullptr;
			}

			return obj;
		}

		cl_mem alloc_and_init_read_buffer(cl_command_queue command_queue, const void *pInit, size_t size)
		{
			cl_serializer serializer(this);

			cl_int ret;
			cl_mem obj = clCreateBuffer(m_context, CL_MEM_READ_ONLY, size, NULL, &ret);
			if (ret != CL_SUCCESS)
			{
				ocl_error_printf("ocl::alloc_and_init_read_buffer: clCreateBuffer() failed!\n");
				return nullptr;
			}

#if 0
			if (!write_to_buffer(command_queue, obj, pInit, size))
			{
				destroy_buffer(obj);
				return nullptr;
			}
#else
			ret = clEnqueueWriteBuffer(command_queue, obj, CL_TRUE, 0, size, pInit, 0, NULL, NULL);
			if (ret != CL_SUCCESS)
			{
				ocl_error_printf("ocl::alloc_and_init_read_buffer: clEnqueueWriteBuffer() failed!\n");
				return nullptr;
			}
#endif

			return obj;
		}

		cl_mem alloc_write_buffer(size_t size)
		{
			cl_serializer serializer(this);

			cl_int ret;
			cl_mem obj = clCreateBuffer(m_context, CL_MEM_WRITE_ONLY, size, NULL, &ret);
			if (ret != CL_SUCCESS)
			{
				ocl_error_printf("ocl::alloc_write_buffer: clCreateBuffer() failed!\n");
				return nullptr;
			}

			return obj;
		}
				
		bool destroy_buffer(cl_mem buf)
		{
			if (buf)
			{
				cl_serializer serializer(this);

				cl_int ret = clReleaseMemObject(buf);
				if (ret != CL_SUCCESS)
				{
					ocl_error_printf("ocl::destroy_buffer: clReleaseMemObject() failed!\n");
					return false;
				}
			}

			return true;
		}

		bool write_to_buffer(cl_command_queue command_queue, cl_mem clmem, const void* d, const size_t m)
		{
			cl_serializer serializer(this);

			cl_int ret = clEnqueueWriteBuffer(command_queue, clmem, CL_TRUE, 0, m, d, 0, NULL, NULL);
			if (ret != CL_SUCCESS)
			{
				ocl_error_printf("ocl::write_to_buffer: clEnqueueWriteBuffer() failed!\n");
				return false;
			}

			return true;
		}

		bool read_from_buffer(cl_command_queue command_queue, const cl_mem clmem, void* d, size_t m)
		{
			cl_serializer serializer(this);

			cl_int ret = clEnqueueReadBuffer(command_queue, clmem, CL_TRUE, 0, m, d, 0, NULL, NULL);
			if (ret != CL_SUCCESS)
			{
				ocl_error_printf("ocl::read_from_buffer: clEnqueueReadBuffer() failed!\n");
				return false;
			}

			return true;
		}

		cl_mem create_read_image_u8(uint32_t width, uint32_t height, const void* pPixels, uint32_t bytes_per_pixel, bool normalized)
		{
			cl_image_format fmt = get_image_format(bytes_per_pixel, normalized);

			cl_image_desc desc;
			memset(&desc, 0, sizeof(desc));
			desc.image_type = CL_MEM_OBJECT_IMAGE2D;
			desc.image_width = width;
			desc.image_height = height;
			desc.image_row_pitch = width * bytes_per_pixel;

			cl_serializer serializer(this);

			cl_int ret;
			cl_mem img = clCreateImage(m_context, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, &fmt, &desc, (void*)pPixels, &ret);
			if (ret != CL_SUCCESS)
			{
				ocl_error_printf("ocl::create_read_image_u8: clCreateImage() failed!\n");
				return nullptr;
			}

			return img;
		}

		cl_mem create_write_image_u8(uint32_t width, uint32_t height, uint32_t bytes_per_pixel, bool normalized)
		{
			cl_image_format fmt = get_image_format(bytes_per_pixel, normalized);

			cl_image_desc desc;
			memset(&desc, 0, sizeof(desc));
			desc.image_type = CL_MEM_OBJECT_IMAGE2D;
			desc.image_width = width;
			desc.image_height = height;

			cl_serializer serializer(this);

			cl_int ret;
			cl_mem img = clCreateImage(m_context, CL_MEM_WRITE_ONLY, &fmt, &desc, nullptr, &ret);
			if (ret != CL_SUCCESS)
			{
				ocl_error_printf("ocl::create_write_image_u8: clCreateImage() failed!\n");
				return nullptr;
			}

			return img;
		}

		bool read_from_image(cl_command_queue command_queue, cl_mem img, void* pPixels, uint32_t ofs_x, uint32_t ofs_y, uint32_t width, uint32_t height)
		{
			cl_serializer serializer(this);

			size_t origin[3] = { ofs_x, ofs_y, 0 }, region[3] = { width, height, 1 };

			cl_int err = clEnqueueReadImage(command_queue, img, CL_TRUE, origin, region, 0, 0, pPixels, 0, NULL, NULL);
			if (err != CL_SUCCESS)
			{
				ocl_error_printf("ocl::read_from_image: clEnqueueReadImage() failed!\n");
				return false;
			}

			return true;
		}

		bool run_1D(cl_command_queue command_queue, const cl_kernel kernel, size_t num_items)
		{
			cl_serializer serializer(this);

			cl_int ret = clEnqueueNDRangeKernel(command_queue, kernel,
				1,  // work_dim
				nullptr, // global_work_offset
				&num_items, // global_work_size
				nullptr, // local_work_size
				0, // num_events_in_wait_list
				nullptr, // event_wait_list
				nullptr // event
			);

			if (ret != CL_SUCCESS)
			{
				ocl_error_printf("ocl::run_1D: clEnqueueNDRangeKernel() failed!\n");
				return false;
			}

			return true;
		}

		bool run_2D(cl_command_queue command_queue, const cl_kernel kernel, size_t width, size_t height)
		{
			cl_serializer serializer(this);

			size_t num_global_items[2] = { width, height };
			//size_t num_local_items[2] = { 1, 1 };

			cl_int ret = clEnqueueNDRangeKernel(command_queue, kernel,
				2,  // work_dim
				nullptr, // global_work_offset
				num_global_items, // global_work_size
				nullptr, // local_work_size
				0, // num_events_in_wait_list
				nullptr, // event_wait_list
				nullptr // event
			);

			if (ret != CL_SUCCESS)
			{
				ocl_error_printf("ocl::run_2D: clEnqueueNDRangeKernel() failed!\n");
				return false;
			}

			return true;
		}

		bool run_2D(cl_command_queue command_queue, const cl_kernel kernel, size_t ofs_x, size_t ofs_y, size_t width, size_t height)
		{
			cl_serializer serializer(this);

			size_t global_ofs[2] = { ofs_x, ofs_y };
			size_t num_global_items[2] = { width, height };
			//size_t num_local_items[2] = { 1, 1 };

			cl_int ret = clEnqueueNDRangeKernel(command_queue, kernel,
				2,  // work_dim
				global_ofs, // global_work_offset
				num_global_items, // global_work_size
				nullptr, // local_work_size
				0, // num_events_in_wait_list
				nullptr, // event_wait_list
				nullptr // event
			);

			if (ret != CL_SUCCESS)
			{
				ocl_error_printf("ocl::run_2D: clEnqueueNDRangeKernel() failed!\n");
				return false;
			}

			return true;
		}

		void flush(cl_command_queue command_queue)
		{
			cl_serializer serializer(this);

			clFlush(command_queue);
			clFinish(command_queue);
		}

		template<typename T>
		bool set_kernel_arg(cl_kernel kernel, uint32_t index, const T& obj)
		{
			cl_serializer serializer(this);

			cl_int ret = clSetKernelArg(kernel, index, sizeof(T), (void*)&obj);
			if (ret != CL_SUCCESS)
			{
				ocl_error_printf("ocl::set_kernel_arg: clSetKernelArg() failed!\n");
				return false;
			}
			return true;
		}

		template<typename T>
		bool set_kernel_args(cl_kernel kernel, const T& obj1)
		{
			cl_serializer serializer(this);

			cl_int ret = clSetKernelArg(kernel, 0, sizeof(T), (void*)&obj1);
			if (ret != CL_SUCCESS)
			{
				ocl_error_printf("ocl::set_kernel_arg: clSetKernelArg() failed!\n");
				return false;
			}
			return true;
		}

#define BASISU_CHECK_ERR if (ret != CL_SUCCESS)	{ ocl_error_printf("ocl::set_kernel_args: clSetKernelArg() failed!\n"); return false; }

		template<typename T, typename U>
		bool set_kernel_args(cl_kernel kernel, const T& obj1, const U& obj2)
		{
			cl_serializer serializer(this);
			cl_int ret = clSetKernelArg(kernel, 0, sizeof(T), (void*)&obj1); BASISU_CHECK_ERR
			ret = clSetKernelArg(kernel, 1, sizeof(U), (void*)&obj2); BASISU_CHECK_ERR
			return true;
		}

		template<typename T, typename U, typename V>
		bool set_kernel_args(cl_kernel kernel, const T& obj1, const U& obj2, const V& obj3)
		{
			cl_serializer serializer(this);
			cl_int ret = clSetKernelArg(kernel, 0, sizeof(T), (void*)&obj1); BASISU_CHECK_ERR
			ret = clSetKernelArg(kernel, 1, sizeof(U), (void*)&obj2); BASISU_CHECK_ERR
			ret = clSetKernelArg(kernel, 2, sizeof(V), (void*)&obj3); BASISU_CHECK_ERR
			return true;
		}

		template<typename T, typename U, typename V, typename W>
		bool set_kernel_args(cl_kernel kernel, const T& obj1, const U& obj2, const V& obj3, const W& obj4)
		{
			cl_serializer serializer(this);
			cl_int ret = clSetKernelArg(kernel, 0, sizeof(T), (void*)&obj1); BASISU_CHECK_ERR
			ret = clSetKernelArg(kernel, 1, sizeof(U), (void*)&obj2); BASISU_CHECK_ERR
			ret = clSetKernelArg(kernel, 2, sizeof(V), (void*)&obj3); BASISU_CHECK_ERR
			ret = clSetKernelArg(kernel, 3, sizeof(W), (void*)&obj4); BASISU_CHECK_ERR
			return true;
		}

		template<typename T, typename U, typename V, typename W, typename X>
		bool set_kernel_args(cl_kernel kernel, const T& obj1, const U& obj2, const V& obj3, const W& obj4, const X& obj5)
		{
			cl_serializer serializer(this);
			cl_int ret = clSetKernelArg(kernel, 0, sizeof(T), (void*)&obj1); BASISU_CHECK_ERR
			ret = clSetKernelArg(kernel, 1, sizeof(U), (void*)&obj2); BASISU_CHECK_ERR
			ret = clSetKernelArg(kernel, 2, sizeof(V), (void*)&obj3); BASISU_CHECK_ERR
			ret = clSetKernelArg(kernel, 3, sizeof(W), (void*)&obj4); BASISU_CHECK_ERR
			ret = clSetKernelArg(kernel, 4, sizeof(X), (void*)&obj5); BASISU_CHECK_ERR
			return true;
		}

		template<typename T, typename U, typename V, typename W, typename X, typename Y>
		bool set_kernel_args(cl_kernel kernel, const T& obj1, const U& obj2, const V& obj3, const W& obj4, const X& obj5, const Y& obj6)
		{
			cl_serializer serializer(this);
			cl_int ret = clSetKernelArg(kernel, 0, sizeof(T), (void*)&obj1); BASISU_CHECK_ERR
			ret = clSetKernelArg(kernel, 1, sizeof(U), (void*)&obj2); BASISU_CHECK_ERR
			ret = clSetKernelArg(kernel, 2, sizeof(V), (void*)&obj3); BASISU_CHECK_ERR
			ret = clSetKernelArg(kernel, 3, sizeof(W), (void*)&obj4); BASISU_CHECK_ERR
			ret = clSetKernelArg(kernel, 4, sizeof(X), (void*)&obj5); BASISU_CHECK_ERR
			ret = clSetKernelArg(kernel, 5, sizeof(Y), (void*)&obj6); BASISU_CHECK_ERR
			return true;
		}

		template<typename T, typename U, typename V, typename W, typename X, typename Y, typename Z>
		bool set_kernel_args(cl_kernel kernel, const T& obj1, const U& obj2, const V& obj3, const W& obj4, const X& obj5, const Y& obj6, const Z& obj7)
		{
			cl_serializer serializer(this);
			cl_int ret = clSetKernelArg(kernel, 0, sizeof(T), (void*)&obj1); BASISU_CHECK_ERR
			ret = clSetKernelArg(kernel, 1, sizeof(U), (void*)&obj2); BASISU_CHECK_ERR
			ret = clSetKernelArg(kernel, 2, sizeof(V), (void*)&obj3); BASISU_CHECK_ERR
			ret = clSetKernelArg(kernel, 3, sizeof(W), (void*)&obj4); BASISU_CHECK_ERR
			ret = clSetKernelArg(kernel, 4, sizeof(X), (void*)&obj5); BASISU_CHECK_ERR
			ret = clSetKernelArg(kernel, 5, sizeof(Y), (void*)&obj6); BASISU_CHECK_ERR
			ret = clSetKernelArg(kernel, 6, sizeof(Z), (void*)&obj7); BASISU_CHECK_ERR
			return true;
		}

		template<typename T, typename U, typename V, typename W, typename X, typename Y, typename Z, typename A>
		bool set_kernel_args(cl_kernel kernel, const T& obj1, const U& obj2, const V& obj3, const W& obj4, const X& obj5, const Y& obj6, const Z& obj7, const A& obj8)
		{
			cl_serializer serializer(this);
			cl_int ret = clSetKernelArg(kernel, 0, sizeof(T), (void*)&obj1); BASISU_CHECK_ERR
			ret = clSetKernelArg(kernel, 1, sizeof(U), (void*)&obj2); BASISU_CHECK_ERR
			ret = clSetKernelArg(kernel, 2, sizeof(V), (void*)&obj3); BASISU_CHECK_ERR
			ret = clSetKernelArg(kernel, 3, sizeof(W), (void*)&obj4); BASISU_CHECK_ERR
			ret = clSetKernelArg(kernel, 4, sizeof(X), (void*)&obj5); BASISU_CHECK_ERR
			ret = clSetKernelArg(kernel, 5, sizeof(Y), (void*)&obj6); BASISU_CHECK_ERR
			ret = clSetKernelArg(kernel, 6, sizeof(Z), (void*)&obj7); BASISU_CHECK_ERR
			ret = clSetKernelArg(kernel, 7, sizeof(A), (void*)&obj8); BASISU_CHECK_ERR
			return true;
		}
#undef BASISU_CHECK_ERR

	private:
		cl_device_id m_device_id = nullptr;
		cl_context m_context = nullptr;
		cl_command_queue m_command_queue = nullptr;
		cl_program m_program = nullptr;
		cl_device_fp_config m_dev_fp_config;
		
		bool m_use_mutex = false;
		std::mutex m_ocl_mutex;

		// This helper object is used to optionally serialize all calls to the CL driver after initialization.
		// Currently this is only used to work around race conditions in the Windows AMD driver.
		struct cl_serializer
		{
			inline cl_serializer(const cl_serializer&);
			cl_serializer& operator= (const cl_serializer&);

			inline cl_serializer(ocl *p) : m_p(p)
			{
				if (m_p->m_use_mutex)
					m_p->m_ocl_mutex.lock();
			}

			inline ~cl_serializer()
			{
				if (m_p->m_use_mutex)
					m_p->m_ocl_mutex.unlock();
			}

		private:
			ocl* m_p;
		};
		
		cl_image_format get_image_format(uint32_t bytes_per_pixel, bool normalized)
		{
			cl_image_format fmt;
			switch (bytes_per_pixel)
			{
			case 1: fmt.image_channel_order = CL_LUMINANCE; break;
			case 2: fmt.image_channel_order = CL_RG; break;
			case 3: fmt.image_channel_order = CL_RGB; break;
			case 4: fmt.image_channel_order = CL_RGBA; break;
			default: assert(0); fmt.image_channel_order = CL_LUMINANCE; break;
			}

			fmt.image_channel_data_type = normalized ? CL_UNORM_INT8 : CL_UNSIGNED_INT8;
			return fmt;
		}
	};
		
	// Library blobal state
	ocl g_ocl;
			
	bool opencl_init(bool force_serialization)
	{
		if (g_ocl.is_initialized())
		{
			assert(0);
			return false;
		}

		if (!g_ocl.init(force_serialization))
		{
			ocl_error_printf("opencl_init: Failed initializing OpenCL\n");
			return false;
		}

		const char* pKernel_src = nullptr;
		size_t kernel_src_size = 0;
		uint8_vec kernel_src;

#if BASISU_USE_OCL_KERNELS_HEADER
		pKernel_src = reinterpret_cast<const char*>(ocl_kernels_cl);
		kernel_src_size = ocl_kernels_cl_len;
#else
		if (!read_file_to_vec(BASISU_OCL_KERNELS_FILENAME, kernel_src))
		{
			ocl_error_printf("opencl_init: Cannot read OpenCL kernel source file \"%s\"\n", BASISU_OCL_KERNELS_FILENAME);
			g_ocl.deinit();
			return false;
		}
			
		pKernel_src = (char*)kernel_src.data();
		kernel_src_size = kernel_src.size();
#endif
		
		if (!kernel_src_size)
		{
			ocl_error_printf("opencl_init: Invalid OpenCL kernel source file \"%s\"\n", BASISU_OCL_KERNELS_FILENAME);
			g_ocl.deinit();
			return false;
		}

		if (!g_ocl.init_program(pKernel_src, kernel_src_size))
		{
			ocl_error_printf("opencl_init: Failed compiling OpenCL program\n");
			g_ocl.deinit();
			return false;
		}
								
		printf("OpenCL support initialized successfully\n");

		return true;
	}

	void opencl_deinit()
	{
		g_ocl.deinit();
	}

	bool opencl_is_available()
	{
		return g_ocl.is_initialized();
	}

	struct opencl_context
	{
		uint32_t m_ocl_total_pixel_blocks;
		cl_mem m_ocl_pixel_blocks;

		cl_command_queue m_command_queue;

		cl_kernel m_ocl_encode_etc1s_blocks_kernel;
		cl_kernel m_ocl_refine_endpoint_clusterization_kernel;
		cl_kernel m_ocl_encode_etc1s_from_pixel_cluster_kernel;
		cl_kernel m_ocl_find_optimal_selector_clusters_for_each_block_kernel;
		cl_kernel m_ocl_determine_selectors_kernel;
	};

	opencl_context_ptr opencl_create_context()
	{
		if (!opencl_is_available())
		{
			ocl_error_printf("opencl_create_context: OpenCL not initialized\n");
			assert(0);
			return nullptr;
		}

		interval_timer tm;
		tm.start();

		opencl_context* pContext = static_cast<opencl_context * >(calloc(sizeof(opencl_context), 1));
		if (!pContext)
			return nullptr;
				
		// To avoid driver bugs in some drivers - serialize this. Likely not necessary, we don't know.
		// https://community.intel.com/t5/OpenCL-for-CPU/Bug-report-clCreateKernelsInProgram-is-not-thread-safe/td-p/1159771
		
		pContext->m_command_queue = g_ocl.create_command_queue();
		if (!pContext->m_command_queue)
		{
			ocl_error_printf("opencl_create_context: Failed creating OpenCL command queue!\n");
			opencl_destroy_context(pContext);
			return nullptr;
		}

		pContext->m_ocl_encode_etc1s_blocks_kernel = g_ocl.create_kernel("encode_etc1s_blocks");
		if (!pContext->m_ocl_encode_etc1s_blocks_kernel)
		{
			ocl_error_printf("opencl_create_context: Failed creating OpenCL kernel encode_etc1s_block\n");
			opencl_destroy_context(pContext);
			return nullptr;
		}

		pContext->m_ocl_refine_endpoint_clusterization_kernel = g_ocl.create_kernel("refine_endpoint_clusterization");
		if (!pContext->m_ocl_refine_endpoint_clusterization_kernel)
		{
			ocl_error_printf("opencl_create_context: Failed creating OpenCL kernel refine_endpoint_clusterization\n");
			opencl_destroy_context(pContext);
			return nullptr;
		}

		pContext->m_ocl_encode_etc1s_from_pixel_cluster_kernel = g_ocl.create_kernel("encode_etc1s_from_pixel_cluster");
		if (!pContext->m_ocl_encode_etc1s_from_pixel_cluster_kernel)
		{
			ocl_error_printf("opencl_create_context: Failed creating OpenCL kernel encode_etc1s_from_pixel_cluster\n");
			opencl_destroy_context(pContext);
			return nullptr;
		}

		pContext->m_ocl_find_optimal_selector_clusters_for_each_block_kernel = g_ocl.create_kernel("find_optimal_selector_clusters_for_each_block");
		if (!pContext->m_ocl_find_optimal_selector_clusters_for_each_block_kernel)
		{
			ocl_error_printf("opencl_create_context: Failed creating OpenCL kernel find_optimal_selector_clusters_for_each_block\n");
			opencl_destroy_context(pContext);
			return nullptr;
		}

		pContext->m_ocl_determine_selectors_kernel = g_ocl.create_kernel("determine_selectors");
		if (!pContext->m_ocl_determine_selectors_kernel)
		{
			ocl_error_printf("opencl_create_context: Failed creating OpenCL kernel determine_selectors\n");
			opencl_destroy_context(pContext);
			return nullptr;
		}

		debug_printf("opencl_create_context: Elapsed time: %f secs\n", tm.get_elapsed_secs());

		return pContext;
	}

	void opencl_destroy_context(opencl_context_ptr pContext)
	{
		if (!pContext)
			return;

		interval_timer tm;
		tm.start();

		g_ocl.destroy_buffer(pContext->m_ocl_pixel_blocks);

		g_ocl.destroy_kernel(pContext->m_ocl_determine_selectors_kernel);
		g_ocl.destroy_kernel(pContext->m_ocl_find_optimal_selector_clusters_for_each_block_kernel);
		g_ocl.destroy_kernel(pContext->m_ocl_encode_etc1s_from_pixel_cluster_kernel);
		g_ocl.destroy_kernel(pContext->m_ocl_encode_etc1s_blocks_kernel);
		g_ocl.destroy_kernel(pContext->m_ocl_refine_endpoint_clusterization_kernel);

		g_ocl.destroy_command_queue(pContext->m_command_queue);
			
		memset(pContext, 0, sizeof(opencl_context));

		free(pContext);

		debug_printf("opencl_destroy_context: Elapsed time: %f secs\n", tm.get_elapsed_secs());
	}

#pragma pack(push, 1)
	struct cl_encode_etc1s_param_struct
	{
		int m_total_blocks;
		int m_perceptual;
		int m_total_perms;
	};
#pragma pack(pop)

	bool opencl_set_pixel_blocks(opencl_context_ptr pContext, uint32_t total_blocks, const cl_pixel_block* pPixel_blocks)
	{
		if (!opencl_is_available())
			return false;

		if (pContext->m_ocl_pixel_blocks)
		{
			g_ocl.destroy_buffer(pContext->m_ocl_pixel_blocks);
			pContext->m_ocl_pixel_blocks = nullptr;
		}

		pContext->m_ocl_pixel_blocks = g_ocl.alloc_and_init_read_buffer(pContext->m_command_queue, pPixel_blocks, sizeof(cl_pixel_block) * total_blocks);
		if (!pContext->m_ocl_pixel_blocks)
			return false;

		pContext->m_ocl_total_pixel_blocks = total_blocks;

		return true;
	}

	bool opencl_encode_etc1s_blocks(opencl_context_ptr pContext, etc_block* pOutput_blocks, bool perceptual, uint32_t total_perms)
	{
		if (!opencl_is_available())
			return false;

		interval_timer tm;
		tm.start();

		assert(pContext->m_ocl_pixel_blocks);
		if (!pContext->m_ocl_pixel_blocks)
			return false;
				
		cl_encode_etc1s_param_struct ps;
		ps.m_total_blocks = pContext->m_ocl_total_pixel_blocks;
		ps.m_perceptual = perceptual;
		ps.m_total_perms = total_perms;

		bool status = false;

		cl_mem vars = g_ocl.alloc_and_init_read_buffer(pContext->m_command_queue , &ps, sizeof(ps));
		cl_mem block_buf = g_ocl.alloc_write_buffer(sizeof(etc_block) * pContext->m_ocl_total_pixel_blocks);
		
		if (!vars || !block_buf)
			goto exit;

		if (!g_ocl.set_kernel_args(pContext->m_ocl_encode_etc1s_blocks_kernel, vars, pContext->m_ocl_pixel_blocks, block_buf))
			goto exit;

		if (!g_ocl.run_2D(pContext->m_command_queue, pContext->m_ocl_encode_etc1s_blocks_kernel, pContext->m_ocl_total_pixel_blocks, 1))
			goto exit;

		if (!g_ocl.read_from_buffer(pContext->m_command_queue, block_buf, pOutput_blocks, pContext->m_ocl_total_pixel_blocks * sizeof(etc_block)))
			goto exit;

		status = true;

		debug_printf("opencl_encode_etc1s_blocks: Elapsed time: %3.3f secs\n", tm.get_elapsed_secs());

exit:
		g_ocl.destroy_buffer(block_buf);
		g_ocl.destroy_buffer(vars);

		return status;
	}

	bool opencl_encode_etc1s_pixel_clusters(
		opencl_context_ptr pContext,
		etc_block* pOutput_blocks,
		uint32_t total_clusters,
		const cl_pixel_cluster* pClusters,
		uint64_t total_pixels,
		const color_rgba* pPixels, const uint32_t* pPixel_weights,
		bool perceptual, uint32_t total_perms)
	{
		if (!opencl_is_available())
			return false;

		interval_timer tm;
		tm.start();
				
		cl_encode_etc1s_param_struct ps;
		ps.m_total_blocks = total_clusters;
		ps.m_perceptual = perceptual;
		ps.m_total_perms = total_perms;

		bool status = false;

		if (sizeof(size_t) == sizeof(uint32_t))
		{
			if ( ((sizeof(cl_pixel_cluster) * total_clusters) > UINT32_MAX) ||
				 ((sizeof(color_rgba) * total_pixels) > UINT32_MAX) ||
				 ((sizeof(uint32_t) * total_pixels) > UINT32_MAX) )
			{
				return false;
			}
		}
				
		cl_mem vars = g_ocl.alloc_and_init_read_buffer(pContext->m_command_queue , &ps, sizeof(ps));
		cl_mem input_clusters = g_ocl.alloc_and_init_read_buffer(pContext->m_command_queue, pClusters, (size_t)(sizeof(cl_pixel_cluster) * total_clusters));
		cl_mem input_pixels = g_ocl.alloc_and_init_read_buffer(pContext->m_command_queue, pPixels, (size_t)(sizeof(color_rgba) * total_pixels));
		cl_mem weights_buf = g_ocl.alloc_and_init_read_buffer(pContext->m_command_queue, pPixel_weights, (size_t)(sizeof(uint32_t) * total_pixels));
		cl_mem block_buf = g_ocl.alloc_write_buffer(sizeof(etc_block) * total_clusters);

		if (!vars || !input_clusters || !input_pixels || !weights_buf || !block_buf)
			goto exit;

		if (!g_ocl.set_kernel_args(pContext->m_ocl_encode_etc1s_from_pixel_cluster_kernel, vars, input_clusters, input_pixels, weights_buf, block_buf))
			goto exit;

		if (!g_ocl.run_2D(pContext->m_command_queue, pContext->m_ocl_encode_etc1s_from_pixel_cluster_kernel, total_clusters, 1))
			goto exit;

		if (!g_ocl.read_from_buffer(pContext->m_command_queue, block_buf, pOutput_blocks, sizeof(etc_block) * total_clusters))
			goto exit;

		status = true;

		debug_printf("opencl_encode_etc1s_pixel_clusters: Elapsed time: %3.3f secs\n", tm.get_elapsed_secs());

	exit:
		g_ocl.destroy_buffer(block_buf);
		g_ocl.destroy_buffer(weights_buf);
		g_ocl.destroy_buffer(input_pixels);
		g_ocl.destroy_buffer(input_clusters);
		g_ocl.destroy_buffer(vars);

		return status;
	}

#pragma pack(push, 1)
	struct cl_rec_param_struct
	{
		int m_total_blocks;
		int m_perceptual;
	};
#pragma pack(pop)

	bool opencl_refine_endpoint_clusterization(
		opencl_context_ptr pContext,
		const cl_block_info_struct* pPixel_block_info,
		uint32_t total_clusters,
		const cl_endpoint_cluster_struct* pCluster_info,
		const uint32_t* pSorted_block_indices,
		uint32_t* pOutput_cluster_indices,
		bool perceptual)
	{
		if (!opencl_is_available())
			return false;

		interval_timer tm;
		tm.start();

		assert(pContext->m_ocl_pixel_blocks);
		if (!pContext->m_ocl_pixel_blocks)
			return false;
				
		cl_rec_param_struct ps;
		ps.m_total_blocks = pContext->m_ocl_total_pixel_blocks;
		ps.m_perceptual = perceptual;

		bool status = false;

		cl_mem pixel_block_info = g_ocl.alloc_and_init_read_buffer(pContext->m_command_queue, pPixel_block_info, sizeof(cl_block_info_struct) * pContext->m_ocl_total_pixel_blocks);
		cl_mem cluster_info = g_ocl.alloc_and_init_read_buffer(pContext->m_command_queue, pCluster_info, sizeof(cl_endpoint_cluster_struct) * total_clusters);
		cl_mem sorted_block_indices = g_ocl.alloc_and_init_read_buffer(pContext->m_command_queue, pSorted_block_indices, sizeof(uint32_t) * pContext->m_ocl_total_pixel_blocks);
		cl_mem output_buf = g_ocl.alloc_write_buffer(sizeof(uint32_t) * pContext->m_ocl_total_pixel_blocks);
		
		if (!pixel_block_info || !cluster_info || !sorted_block_indices || !output_buf)
			goto exit;

		if (!g_ocl.set_kernel_args(pContext->m_ocl_refine_endpoint_clusterization_kernel, ps, pContext->m_ocl_pixel_blocks, pixel_block_info, cluster_info, sorted_block_indices, output_buf))
			goto exit;

		if (!g_ocl.run_2D(pContext->m_command_queue, pContext->m_ocl_refine_endpoint_clusterization_kernel, pContext->m_ocl_total_pixel_blocks, 1))
			goto exit;

		if (!g_ocl.read_from_buffer(pContext->m_command_queue, output_buf, pOutput_cluster_indices, pContext->m_ocl_total_pixel_blocks * sizeof(uint32_t)))
			goto exit;

		debug_printf("opencl_refine_endpoint_clusterization: Elapsed time: %3.3f secs\n", tm.get_elapsed_secs());
		
		status = true;

exit:
		g_ocl.destroy_buffer(pixel_block_info);
		g_ocl.destroy_buffer(cluster_info);
		g_ocl.destroy_buffer(sorted_block_indices);
		g_ocl.destroy_buffer(output_buf);

		return status;
	}

	bool opencl_find_optimal_selector_clusters_for_each_block(
		opencl_context_ptr pContext,
		const fosc_block_struct* pInput_block_info,	// one per block
		uint32_t total_input_selectors,
		const fosc_selector_struct* pInput_selectors,
		const uint32_t* pSelector_cluster_indices,
		uint32_t* pOutput_selector_cluster_indices, // one per block
		bool perceptual)
	{
		if (!opencl_is_available())
			return false;

		interval_timer tm;
		tm.start();

		assert(pContext->m_ocl_pixel_blocks);
		if (!pContext->m_ocl_pixel_blocks)
			return false;

		fosc_param_struct ps;
		ps.m_total_blocks = pContext->m_ocl_total_pixel_blocks;
		ps.m_perceptual = perceptual;
		
		bool status = false;

		cl_mem input_block_info = g_ocl.alloc_and_init_read_buffer(pContext->m_command_queue, pInput_block_info, sizeof(fosc_block_struct) * pContext->m_ocl_total_pixel_blocks);
		cl_mem input_selectors = g_ocl.alloc_and_init_read_buffer(pContext->m_command_queue, pInput_selectors, sizeof(fosc_selector_struct) * total_input_selectors);
		cl_mem selector_cluster_indices = g_ocl.alloc_and_init_read_buffer(pContext->m_command_queue, pSelector_cluster_indices, sizeof(uint32_t) * total_input_selectors);
		cl_mem output_selector_cluster_indices = g_ocl.alloc_write_buffer(sizeof(uint32_t) * pContext->m_ocl_total_pixel_blocks);

		if (!input_block_info || !input_selectors || !selector_cluster_indices || !output_selector_cluster_indices)
			goto exit;

		if (!g_ocl.set_kernel_args(pContext->m_ocl_find_optimal_selector_clusters_for_each_block_kernel, ps, pContext->m_ocl_pixel_blocks, input_block_info, input_selectors, selector_cluster_indices, output_selector_cluster_indices))
			goto exit;

		if (!g_ocl.run_2D(pContext->m_command_queue, pContext->m_ocl_find_optimal_selector_clusters_for_each_block_kernel, pContext->m_ocl_total_pixel_blocks, 1))
			goto exit;

		if (!g_ocl.read_from_buffer(pContext->m_command_queue, output_selector_cluster_indices, pOutput_selector_cluster_indices, pContext->m_ocl_total_pixel_blocks * sizeof(uint32_t)))
			goto exit;

		debug_printf("opencl_find_optimal_selector_clusters_for_each_block: Elapsed time: %3.3f secs\n", tm.get_elapsed_secs());

		status = true;

	exit:
		g_ocl.destroy_buffer(input_block_info);
		g_ocl.destroy_buffer(input_selectors);
		g_ocl.destroy_buffer(selector_cluster_indices);
		g_ocl.destroy_buffer(output_selector_cluster_indices);

		return status;
	}

	bool opencl_determine_selectors(
		opencl_context_ptr pContext,
		const color_rgba* pInput_etc_color5_and_inten,
		etc_block* pOutput_blocks,
		bool perceptual)
	{
		if (!opencl_is_available())
			return false;

		interval_timer tm;
		tm.start();

		assert(pContext->m_ocl_pixel_blocks);
		if (!pContext->m_ocl_pixel_blocks)
			return false;

		ds_param_struct ps;
		ps.m_total_blocks = pContext->m_ocl_total_pixel_blocks;
		ps.m_perceptual = perceptual;

		bool status = false;

		cl_mem input_etc_color5_intens = g_ocl.alloc_and_init_read_buffer(pContext->m_command_queue, pInput_etc_color5_and_inten, sizeof(color_rgba) * pContext->m_ocl_total_pixel_blocks);
		cl_mem output_blocks = g_ocl.alloc_write_buffer(sizeof(etc_block) * pContext->m_ocl_total_pixel_blocks);

		if (!input_etc_color5_intens || !output_blocks)
			goto exit;

		if (!g_ocl.set_kernel_args(pContext->m_ocl_determine_selectors_kernel, ps, pContext->m_ocl_pixel_blocks, input_etc_color5_intens, output_blocks))
			goto exit;

		if (!g_ocl.run_2D(pContext->m_command_queue, pContext->m_ocl_determine_selectors_kernel, pContext->m_ocl_total_pixel_blocks, 1))
			goto exit;

		if (!g_ocl.read_from_buffer(pContext->m_command_queue, output_blocks, pOutput_blocks, pContext->m_ocl_total_pixel_blocks * sizeof(etc_block)))
			goto exit;

		debug_printf("opencl_determine_selectors: Elapsed time: %3.3f secs\n", tm.get_elapsed_secs());
					
		status = true;
	
	exit:
		g_ocl.destroy_buffer(input_etc_color5_intens);
		g_ocl.destroy_buffer(output_blocks);

		return status;
	}

#else	
namespace basisu
{
	// No OpenCL support - all dummy functions that return false;
	bool opencl_init(bool force_serialization)
	{
		BASISU_NOTE_UNUSED(force_serialization);

		return false;
	}

	void opencl_deinit()
	{
	}

	bool opencl_is_available()
	{
		return false;
	}

	opencl_context_ptr opencl_create_context()
	{
		return nullptr;
	}

	void opencl_destroy_context(opencl_context_ptr context)
	{
		BASISU_NOTE_UNUSED(context);
	}

	bool opencl_set_pixel_blocks(opencl_context_ptr pContext, uint32_t total_blocks, const cl_pixel_block* pPixel_blocks)
	{
		BASISU_NOTE_UNUSED(pContext);
		BASISU_NOTE_UNUSED(total_blocks);
		BASISU_NOTE_UNUSED(pPixel_blocks);

		return false;
	}

	bool opencl_encode_etc1s_blocks(opencl_context_ptr pContext, etc_block* pOutput_blocks, bool perceptual, uint32_t total_perms)
	{
		BASISU_NOTE_UNUSED(pContext);
		BASISU_NOTE_UNUSED(pOutput_blocks);
		BASISU_NOTE_UNUSED(perceptual);
		BASISU_NOTE_UNUSED(total_perms);

		return false;
	}

	bool opencl_encode_etc1s_pixel_clusters(
		opencl_context_ptr pContext,
		etc_block* pOutput_blocks,
		uint32_t total_clusters,
		const cl_pixel_cluster* pClusters,
		uint64_t total_pixels,
		const color_rgba* pPixels, const uint32_t *pPixel_weights,
		bool perceptual, uint32_t total_perms)
	{
		BASISU_NOTE_UNUSED(pContext);
		BASISU_NOTE_UNUSED(pOutput_blocks);
		BASISU_NOTE_UNUSED(total_clusters);
		BASISU_NOTE_UNUSED(pClusters);
		BASISU_NOTE_UNUSED(total_pixels);
		BASISU_NOTE_UNUSED(pPixels);
		BASISU_NOTE_UNUSED(pPixel_weights);
		BASISU_NOTE_UNUSED(perceptual);
		BASISU_NOTE_UNUSED(total_perms);
		
		return false;
	}

	bool opencl_refine_endpoint_clusterization(
		opencl_context_ptr pContext,
		const cl_block_info_struct* pPixel_block_info,
		uint32_t total_clusters,
		const cl_endpoint_cluster_struct* pCluster_info,
		const uint32_t* pSorted_block_indices,
		uint32_t* pOutput_cluster_indices,
		bool perceptual)
	{
		BASISU_NOTE_UNUSED(pContext);
		BASISU_NOTE_UNUSED(pPixel_block_info);
		BASISU_NOTE_UNUSED(total_clusters);
		BASISU_NOTE_UNUSED(pCluster_info);
		BASISU_NOTE_UNUSED(pSorted_block_indices);
		BASISU_NOTE_UNUSED(pOutput_cluster_indices);
		BASISU_NOTE_UNUSED(perceptual);

		return false;
	}

	bool opencl_find_optimal_selector_clusters_for_each_block(
		opencl_context_ptr pContext,
		const fosc_block_struct* pInput_block_info,	// one per block
		uint32_t total_input_selectors,
		const fosc_selector_struct* pInput_selectors,
		const uint32_t* pSelector_cluster_indices,
		uint32_t* pOutput_selector_cluster_indices, // one per block
		bool perceptual)
	{
		BASISU_NOTE_UNUSED(pContext);
		BASISU_NOTE_UNUSED(pInput_block_info);
		BASISU_NOTE_UNUSED(total_input_selectors);
		BASISU_NOTE_UNUSED(pInput_selectors);
		BASISU_NOTE_UNUSED(pSelector_cluster_indices);
		BASISU_NOTE_UNUSED(pOutput_selector_cluster_indices);
		BASISU_NOTE_UNUSED(perceptual);

		return false;
	}

	bool opencl_determine_selectors(
		opencl_context_ptr pContext,
		const color_rgba* pInput_etc_color5_and_inten,
		etc_block* pOutput_blocks,
		bool perceptual)
	{
		BASISU_NOTE_UNUSED(pContext);
		BASISU_NOTE_UNUSED(pInput_etc_color5_and_inten);
		BASISU_NOTE_UNUSED(pOutput_blocks);
		BASISU_NOTE_UNUSED(perceptual);

		return false;
	}

#endif // BASISU_SUPPORT_OPENCL

} // namespace basisu