summaryrefslogtreecommitdiff
path: root/thirdparty/basis_universal/encoder/basisu_gpu_texture.cpp
blob: dec769d5acbe724bb0160b55b0f77a5c34eb0255 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
// basisu_gpu_texture.cpp
// Copyright (C) 2019-2021 Binomial LLC. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//    http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "basisu_gpu_texture.h"
#include "basisu_enc.h"
#include "basisu_pvrtc1_4.h"
#if BASISU_USE_ASTC_DECOMPRESS
#include "basisu_astc_decomp.h"
#endif
#include "basisu_bc7enc.h"

namespace basisu
{
	void unpack_etc2_eac(const void *pBlock_bits, color_rgba *pPixels)
	{
		static_assert(sizeof(eac_a8_block) == 8, "sizeof(eac_a8_block) == 8");

		const eac_a8_block *pBlock = static_cast<const eac_a8_block *>(pBlock_bits);

		const int8_t *pTable = g_etc2_eac_tables[pBlock->m_table];
		
		const uint64_t selector_bits = pBlock->get_selector_bits();
		
		const int32_t base = pBlock->m_base;
		const int32_t mul = pBlock->m_multiplier;

		pPixels[0].a = clamp255(base + pTable[pBlock->get_selector(0, 0, selector_bits)] * mul);
		pPixels[1].a = clamp255(base + pTable[pBlock->get_selector(1, 0, selector_bits)] * mul);
		pPixels[2].a = clamp255(base + pTable[pBlock->get_selector(2, 0, selector_bits)] * mul);
		pPixels[3].a = clamp255(base + pTable[pBlock->get_selector(3, 0, selector_bits)] * mul);

		pPixels[4].a = clamp255(base + pTable[pBlock->get_selector(0, 1, selector_bits)] * mul);
		pPixels[5].a = clamp255(base + pTable[pBlock->get_selector(1, 1, selector_bits)] * mul);
		pPixels[6].a = clamp255(base + pTable[pBlock->get_selector(2, 1, selector_bits)] * mul);
		pPixels[7].a = clamp255(base + pTable[pBlock->get_selector(3, 1, selector_bits)] * mul);

		pPixels[8].a = clamp255(base + pTable[pBlock->get_selector(0, 2, selector_bits)] * mul);
		pPixels[9].a = clamp255(base + pTable[pBlock->get_selector(1, 2, selector_bits)] * mul);
		pPixels[10].a = clamp255(base + pTable[pBlock->get_selector(2, 2, selector_bits)] * mul);
		pPixels[11].a = clamp255(base + pTable[pBlock->get_selector(3, 2, selector_bits)] * mul);

		pPixels[12].a = clamp255(base + pTable[pBlock->get_selector(0, 3, selector_bits)] * mul);
		pPixels[13].a = clamp255(base + pTable[pBlock->get_selector(1, 3, selector_bits)] * mul);
		pPixels[14].a = clamp255(base + pTable[pBlock->get_selector(2, 3, selector_bits)] * mul);
		pPixels[15].a = clamp255(base + pTable[pBlock->get_selector(3, 3, selector_bits)] * mul);
	}

	struct bc1_block
	{
		enum { cTotalEndpointBytes = 2, cTotalSelectorBytes = 4 };

		uint8_t m_low_color[cTotalEndpointBytes];
		uint8_t m_high_color[cTotalEndpointBytes];
		uint8_t m_selectors[cTotalSelectorBytes];
				
		inline uint32_t get_high_color() const	{ return m_high_color[0] | (m_high_color[1] << 8U); }
		inline uint32_t get_low_color() const { return m_low_color[0] | (m_low_color[1] << 8U); }

		static void unpack_color(uint32_t c, uint32_t &r, uint32_t &g, uint32_t &b) 
		{
			r = (c >> 11) & 31;
			g = (c >> 5) & 63;
			b = c & 31;
			
			r = (r << 3) | (r >> 2);
			g = (g << 2) | (g >> 4);
			b = (b << 3) | (b >> 2);
		}

		inline uint32_t get_selector(uint32_t x, uint32_t y) const { assert((x < 4U) && (y < 4U)); return (m_selectors[y] >> (x * 2)) & 3; }
	};

	// Returns true if the block uses 3 color punchthrough alpha mode.
	bool unpack_bc1(const void *pBlock_bits, color_rgba *pPixels, bool set_alpha)
	{
		static_assert(sizeof(bc1_block) == 8, "sizeof(bc1_block) == 8");

		const bc1_block *pBlock = static_cast<const bc1_block *>(pBlock_bits);

		const uint32_t l = pBlock->get_low_color();
		const uint32_t h = pBlock->get_high_color();

		color_rgba c[4];

		uint32_t r0, g0, b0, r1, g1, b1;
		bc1_block::unpack_color(l, r0, g0, b0);
		bc1_block::unpack_color(h, r1, g1, b1);

		c[0].set_noclamp_rgba(r0, g0, b0, 255);
		c[1].set_noclamp_rgba(r1, g1, b1, 255);

		bool used_punchthrough = false;

		if (l > h)
		{
			c[2].set_noclamp_rgba((r0 * 2 + r1) / 3, (g0 * 2 + g1) / 3, (b0 * 2 + b1) / 3, 255);
			c[3].set_noclamp_rgba((r1 * 2 + r0) / 3, (g1 * 2 + g0) / 3, (b1 * 2 + b0) / 3, 255);
		}
		else
		{
			c[2].set_noclamp_rgba((r0 + r1) / 2, (g0 + g1) / 2, (b0 + b1) / 2, 255);
			c[3].set_noclamp_rgba(0, 0, 0, 0);
			used_punchthrough = true;
		}

		if (set_alpha)
		{
			for (uint32_t y = 0; y < 4; y++, pPixels += 4)
			{
				pPixels[0] = c[pBlock->get_selector(0, y)]; 
				pPixels[1] = c[pBlock->get_selector(1, y)]; 
				pPixels[2] = c[pBlock->get_selector(2, y)]; 
				pPixels[3] = c[pBlock->get_selector(3, y)];
			}
		}
		else
		{
			for (uint32_t y = 0; y < 4; y++, pPixels += 4)
			{
				pPixels[0].set_rgb(c[pBlock->get_selector(0, y)]); 
				pPixels[1].set_rgb(c[pBlock->get_selector(1, y)]); 
				pPixels[2].set_rgb(c[pBlock->get_selector(2, y)]); 
				pPixels[3].set_rgb(c[pBlock->get_selector(3, y)]);
			}
		}

		return used_punchthrough;
	}

	bool unpack_bc1_nv(const void *pBlock_bits, color_rgba *pPixels, bool set_alpha)
	{
		static_assert(sizeof(bc1_block) == 8, "sizeof(bc1_block) == 8");

		const bc1_block *pBlock = static_cast<const bc1_block *>(pBlock_bits);

		const uint32_t l = pBlock->get_low_color();
		const uint32_t h = pBlock->get_high_color();

		color_rgba c[4];

		int r0 = (l >> 11) & 31;
		int g0 = (l >> 5) & 63;
		int b0 = l & 31;
		int r1 = (h >> 11) & 31;
		int g1 = (h >> 5) & 63;
		int b1 = h & 31;

		c[0].b = (uint8_t)((3 * b0 * 22) / 8);
		c[0].g = (uint8_t)((g0 << 2) | (g0 >> 4));
		c[0].r = (uint8_t)((3 * r0 * 22) / 8);
		c[0].a = 0xFF;

		c[1].r = (uint8_t)((3 * r1 * 22) / 8);
		c[1].g = (uint8_t)((g1 << 2) | (g1 >> 4));
		c[1].b = (uint8_t)((3 * b1 * 22) / 8);
		c[1].a = 0xFF;

		int gdiff = c[1].g - c[0].g;

		bool used_punchthrough = false;

		if (l > h)
		{
			c[2].r = (uint8_t)(((2 * r0 + r1) * 22) / 8);
			c[2].g = (uint8_t)(((256 * c[0].g + gdiff/4 + 128 + gdiff * 80) / 256));
			c[2].b = (uint8_t)(((2 * b0 + b1) * 22) / 8);
			c[2].a = 0xFF;

			c[3].r = (uint8_t)(((2 * r1 + r0) * 22) / 8);
			c[3].g = (uint8_t)((256 * c[1].g - gdiff/4 + 128 - gdiff * 80) / 256);
			c[3].b = (uint8_t)(((2 * b1 + b0) * 22) / 8);
			c[3].a = 0xFF;
		}
		else
		{
			c[2].r = (uint8_t)(((r0 + r1) * 33) / 8);
			c[2].g = (uint8_t)((256 * c[0].g + gdiff/4 + 128 + gdiff * 128) / 256);
			c[2].b = (uint8_t)(((b0 + b1) * 33) / 8);
			c[2].a = 0xFF;

			c[3].set_noclamp_rgba(0, 0, 0, 0);
			used_punchthrough = true;
		}

		if (set_alpha)
		{
			for (uint32_t y = 0; y < 4; y++, pPixels += 4)
			{
				pPixels[0] = c[pBlock->get_selector(0, y)]; 
				pPixels[1] = c[pBlock->get_selector(1, y)]; 
				pPixels[2] = c[pBlock->get_selector(2, y)]; 
				pPixels[3] = c[pBlock->get_selector(3, y)];
			}
		}
		else
		{
			for (uint32_t y = 0; y < 4; y++, pPixels += 4)
			{
				pPixels[0].set_rgb(c[pBlock->get_selector(0, y)]); 
				pPixels[1].set_rgb(c[pBlock->get_selector(1, y)]); 
				pPixels[2].set_rgb(c[pBlock->get_selector(2, y)]); 
				pPixels[3].set_rgb(c[pBlock->get_selector(3, y)]);
			}
		}

		return used_punchthrough;
	}

	static inline int interp_5_6_amd(int c0, int c1) { assert(c0 < 256 && c1 < 256); return (c0 * 43 + c1 * 21 + 32) >> 6; }
	static inline int interp_half_5_6_amd(int c0, int c1) { assert(c0 < 256 && c1 < 256); return (c0 + c1 + 1) >> 1; }

	bool unpack_bc1_amd(const void *pBlock_bits, color_rgba *pPixels, bool set_alpha)
	{
		const bc1_block *pBlock = static_cast<const bc1_block *>(pBlock_bits);

		const uint32_t l = pBlock->get_low_color();
		const uint32_t h = pBlock->get_high_color();

		color_rgba c[4];

		uint32_t r0, g0, b0, r1, g1, b1;
		bc1_block::unpack_color(l, r0, g0, b0);
		bc1_block::unpack_color(h, r1, g1, b1);

		c[0].set_noclamp_rgba(r0, g0, b0, 255);
		c[1].set_noclamp_rgba(r1, g1, b1, 255);
				
		bool used_punchthrough = false;

		if (l > h)
		{
			c[2].set_noclamp_rgba(interp_5_6_amd(r0, r1), interp_5_6_amd(g0, g1), interp_5_6_amd(b0, b1), 255);
			c[3].set_noclamp_rgba(interp_5_6_amd(r1, r0), interp_5_6_amd(g1, g0), interp_5_6_amd(b1, b0), 255);
		}
		else
		{
			c[2].set_noclamp_rgba(interp_half_5_6_amd(r0, r1), interp_half_5_6_amd(g0, g1), interp_half_5_6_amd(b0, b1), 255);
			c[3].set_noclamp_rgba(0, 0, 0, 0);
			used_punchthrough = true;
		}

		if (set_alpha)
		{
			for (uint32_t y = 0; y < 4; y++, pPixels += 4)
			{
				pPixels[0] = c[pBlock->get_selector(0, y)]; 
				pPixels[1] = c[pBlock->get_selector(1, y)]; 
				pPixels[2] = c[pBlock->get_selector(2, y)]; 
				pPixels[3] = c[pBlock->get_selector(3, y)];
			}
		}
		else
		{
			for (uint32_t y = 0; y < 4; y++, pPixels += 4)
			{
				pPixels[0].set_rgb(c[pBlock->get_selector(0, y)]); 
				pPixels[1].set_rgb(c[pBlock->get_selector(1, y)]); 
				pPixels[2].set_rgb(c[pBlock->get_selector(2, y)]); 
				pPixels[3].set_rgb(c[pBlock->get_selector(3, y)]);
			}
		}

		return used_punchthrough;
	}

	struct bc4_block
	{
		enum { cBC4SelectorBits = 3, cTotalSelectorBytes = 6, cMaxSelectorValues = 8 };
		uint8_t m_endpoints[2];

		uint8_t m_selectors[cTotalSelectorBytes];

		inline uint32_t get_low_alpha() const { return m_endpoints[0]; }
		inline uint32_t get_high_alpha() const { return m_endpoints[1]; }
		inline bool is_alpha6_block() const { return get_low_alpha() <= get_high_alpha(); }

		inline uint64_t get_selector_bits() const
		{ 
			return ((uint64_t)((uint32_t)m_selectors[0] | ((uint32_t)m_selectors[1] << 8U) | ((uint32_t)m_selectors[2] << 16U) | ((uint32_t)m_selectors[3] << 24U))) |
				(((uint64_t)m_selectors[4]) << 32U) |
				(((uint64_t)m_selectors[5]) << 40U);
		}

		inline uint32_t get_selector(uint32_t x, uint32_t y, uint64_t selector_bits) const
		{
			assert((x < 4U) && (y < 4U));
			return (selector_bits >> (((y * 4) + x) * cBC4SelectorBits)) & (cMaxSelectorValues - 1);
		}
				
		static inline uint32_t get_block_values6(uint8_t *pDst, uint32_t l, uint32_t h)
		{
			pDst[0] = static_cast<uint8_t>(l);
			pDst[1] = static_cast<uint8_t>(h);
			pDst[2] = static_cast<uint8_t>((l * 4 + h) / 5);
			pDst[3] = static_cast<uint8_t>((l * 3 + h * 2) / 5);
			pDst[4] = static_cast<uint8_t>((l * 2 + h * 3) / 5);
			pDst[5] = static_cast<uint8_t>((l + h * 4) / 5);
			pDst[6] = 0;
			pDst[7] = 255;
			return 6;
		}

		static inline uint32_t get_block_values8(uint8_t *pDst, uint32_t l, uint32_t h)
		{
			pDst[0] = static_cast<uint8_t>(l);
			pDst[1] = static_cast<uint8_t>(h);
			pDst[2] = static_cast<uint8_t>((l * 6 + h) / 7);
			pDst[3] = static_cast<uint8_t>((l * 5 + h * 2) / 7);
			pDst[4] = static_cast<uint8_t>((l * 4 + h * 3) / 7);
			pDst[5] = static_cast<uint8_t>((l * 3 + h * 4) / 7);
			pDst[6] = static_cast<uint8_t>((l * 2 + h * 5) / 7);
			pDst[7] = static_cast<uint8_t>((l + h * 6) / 7);
			return 8;
		}

		static inline uint32_t get_block_values(uint8_t *pDst, uint32_t l, uint32_t h)
		{
			if (l > h)
				return get_block_values8(pDst, l, h);
			else
				return get_block_values6(pDst, l, h);
		}
	};

	void unpack_bc4(const void *pBlock_bits, uint8_t *pPixels, uint32_t stride)
	{
		static_assert(sizeof(bc4_block) == 8, "sizeof(bc4_block) == 8");

		const bc4_block *pBlock = static_cast<const bc4_block *>(pBlock_bits);

		uint8_t sel_values[8];
		bc4_block::get_block_values(sel_values, pBlock->get_low_alpha(), pBlock->get_high_alpha());

		const uint64_t selector_bits = pBlock->get_selector_bits();

		for (uint32_t y = 0; y < 4; y++, pPixels += (stride * 4U))
		{
			pPixels[0] = sel_values[pBlock->get_selector(0, y, selector_bits)];
			pPixels[stride * 1] = sel_values[pBlock->get_selector(1, y, selector_bits)];
			pPixels[stride * 2] = sel_values[pBlock->get_selector(2, y, selector_bits)];
			pPixels[stride * 3] = sel_values[pBlock->get_selector(3, y, selector_bits)];
		}
	}
	
	// Returns false if the block uses 3-color punchthrough alpha mode, which isn't supported on some GPU's for BC3.
	bool unpack_bc3(const void *pBlock_bits, color_rgba *pPixels)
	{
		bool success = true;

		if (unpack_bc1((const uint8_t *)pBlock_bits + sizeof(bc4_block), pPixels, true))
			success = false;

		unpack_bc4(pBlock_bits, &pPixels[0].a, sizeof(color_rgba));
		
		return success;
	}

	// writes RG
	void unpack_bc5(const void *pBlock_bits, color_rgba *pPixels)
	{
		unpack_bc4(pBlock_bits, &pPixels[0].r, sizeof(color_rgba));
		unpack_bc4((const uint8_t *)pBlock_bits + sizeof(bc4_block), &pPixels[0].g, sizeof(color_rgba));
	}

	// ATC isn't officially documented, so I'm assuming these references:
	// http://www.guildsoftware.com/papers/2012.Converting.DXTC.to.ATC.pdf
	// https://github.com/Triang3l/S3TConv/blob/master/s3tconv_atitc.c
	// The paper incorrectly says the ATC lerp factors are 1/3 and 2/3, but they are actually 3/8 and 5/8.
	void unpack_atc(const void* pBlock_bits, color_rgba* pPixels)
	{
		const uint8_t* pBytes = static_cast<const uint8_t*>(pBlock_bits);

		const uint16_t color0 = pBytes[0] | (pBytes[1] << 8U);
		const uint16_t color1 = pBytes[2] | (pBytes[3] << 8U);
		uint32_t sels = pBytes[4] | (pBytes[5] << 8U) | (pBytes[6] << 16U) | (pBytes[7] << 24U);

		const bool mode = (color0 & 0x8000) != 0;

		color_rgba c[4];

		c[0].set((color0 >> 10) & 31, (color0 >> 5) & 31, color0 & 31, 255);
		c[0].r = (c[0].r << 3) | (c[0].r >> 2);
		c[0].g = (c[0].g << 3) | (c[0].g >> 2);
		c[0].b = (c[0].b << 3) | (c[0].b >> 2);

		c[3].set((color1 >> 11) & 31, (color1 >> 5) & 63, color1 & 31, 255);
		c[3].r = (c[3].r << 3) | (c[3].r >> 2);
		c[3].g = (c[3].g << 2) | (c[3].g >> 4);
		c[3].b = (c[3].b << 3) | (c[3].b >> 2);

		if (mode)
		{
			c[1].set(basisu::maximum(0, c[0].r - (c[3].r >> 2)), basisu::maximum(0, c[0].g - (c[3].g >> 2)), basisu::maximum(0, c[0].b - (c[3].b >> 2)), 255);
			c[2] = c[0];
			c[0].set(0, 0, 0, 255);
		}
		else
		{
			c[1].r = (c[0].r * 5 + c[3].r * 3) >> 3;
			c[1].g = (c[0].g * 5 + c[3].g * 3) >> 3;
			c[1].b = (c[0].b * 5 + c[3].b * 3) >> 3;

			c[2].r = (c[0].r * 3 + c[3].r * 5) >> 3;
			c[2].g = (c[0].g * 3 + c[3].g * 5) >> 3;
			c[2].b = (c[0].b * 3 + c[3].b * 5) >> 3;
		}

		for (uint32_t i = 0; i < 16; i++)
		{
			const uint32_t s = sels & 3;
			
			pPixels[i] = c[s];
							
			sels >>= 2;
		}
	}

	// BC7 mode 0-7 decompression.
	// Instead of one monster routine to unpack all the BC7 modes, we're lumping the 3 subset, 2 subset, 1 subset, and dual plane modes together into simple shared routines.

	static inline uint32_t bc7_dequant(uint32_t val, uint32_t pbit, uint32_t val_bits) { assert(val < (1U << val_bits)); assert(pbit < 2); assert(val_bits >= 4 && val_bits <= 8); const uint32_t total_bits = val_bits + 1; val = (val << 1) | pbit; val <<= (8 - total_bits); val |= (val >> total_bits); assert(val <= 255); return val; }
	static inline uint32_t bc7_dequant(uint32_t val, uint32_t val_bits) { assert(val < (1U << val_bits)); assert(val_bits >= 4 && val_bits <= 8); val <<= (8 - val_bits); val |= (val >> val_bits); assert(val <= 255); return val; }

	static inline uint32_t bc7_interp2(uint32_t l, uint32_t h, uint32_t w) { assert(w < 4); return (l * (64 - basist::g_bc7_weights2[w]) + h * basist::g_bc7_weights2[w] + 32) >> 6; }
	static inline uint32_t bc7_interp3(uint32_t l, uint32_t h, uint32_t w) { assert(w < 8); return (l * (64 - basist::g_bc7_weights3[w]) + h * basist::g_bc7_weights3[w] + 32) >> 6; }
	static inline uint32_t bc7_interp4(uint32_t l, uint32_t h, uint32_t w) { assert(w < 16); return (l * (64 - basist::g_bc7_weights4[w]) + h * basist::g_bc7_weights4[w] + 32) >> 6; }
	static inline uint32_t bc7_interp(uint32_t l, uint32_t h, uint32_t w, uint32_t bits)
	{
		assert(l <= 255 && h <= 255);
		switch (bits)
		{
		case 2: return bc7_interp2(l, h, w);
		case 3: return bc7_interp3(l, h, w);
		case 4: return bc7_interp4(l, h, w);
		default: 
			break;
		}
		return 0;
	}
		
	bool unpack_bc7_mode0_2(uint32_t mode, const void* pBlock_bits, color_rgba* pPixels)
	{
		//const uint32_t SUBSETS = 3;
		const uint32_t ENDPOINTS = 6;
		const uint32_t COMPS = 3;
		const uint32_t WEIGHT_BITS = (mode == 0) ? 3 : 2;
		const uint32_t ENDPOINT_BITS = (mode == 0) ? 4 : 5;
		const uint32_t PBITS = (mode == 0) ? 6 : 0;
		const uint32_t WEIGHT_VALS = 1 << WEIGHT_BITS;
		
		uint32_t bit_offset = 0;
		const uint8_t* pBuf = static_cast<const uint8_t*>(pBlock_bits);

		if (read_bits32(pBuf, bit_offset, mode + 1) != (1U << mode)) return false;

		const uint32_t part = read_bits32(pBuf, bit_offset, (mode == 0) ? 4 : 6);

		color_rgba endpoints[ENDPOINTS];
		for (uint32_t c = 0; c < COMPS; c++)
			for (uint32_t e = 0; e < ENDPOINTS; e++)
				endpoints[e][c] = (uint8_t)read_bits32(pBuf, bit_offset, ENDPOINT_BITS);

		uint32_t pbits[6];
		for (uint32_t p = 0; p < PBITS; p++)
			pbits[p] = read_bits32(pBuf, bit_offset, 1);

		uint32_t weights[16];
		for (uint32_t i = 0; i < 16; i++)
			weights[i] = read_bits32(pBuf, bit_offset, ((!i) || (i == basist::g_bc7_table_anchor_index_third_subset_1[part]) || (i == basist::g_bc7_table_anchor_index_third_subset_2[part])) ? (WEIGHT_BITS - 1) : WEIGHT_BITS);

		assert(bit_offset == 128);

		for (uint32_t e = 0; e < ENDPOINTS; e++)
			for (uint32_t c = 0; c < 4; c++)
				endpoints[e][c] = (uint8_t)((c == 3) ? 255 : (PBITS ? bc7_dequant(endpoints[e][c], pbits[e], ENDPOINT_BITS) : bc7_dequant(endpoints[e][c], ENDPOINT_BITS)));

		color_rgba block_colors[3][8];
		for (uint32_t s = 0; s < 3; s++)
			for (uint32_t i = 0; i < WEIGHT_VALS; i++)
			{
				for (uint32_t c = 0; c < 3; c++)
					block_colors[s][i][c] = (uint8_t)bc7_interp(endpoints[s * 2 + 0][c], endpoints[s * 2 + 1][c], i, WEIGHT_BITS);
				block_colors[s][i][3] = 255;
			}

		for (uint32_t i = 0; i < 16; i++)
			pPixels[i] = block_colors[basist::g_bc7_partition3[part * 16 + i]][weights[i]];

		return true;
	}

	bool unpack_bc7_mode1_3_7(uint32_t mode, const void* pBlock_bits, color_rgba* pPixels)
	{
		//const uint32_t SUBSETS = 2;
		const uint32_t ENDPOINTS = 4;
		const uint32_t COMPS = (mode == 7) ? 4 : 3;
		const uint32_t WEIGHT_BITS = (mode == 1) ? 3 : 2;
		const uint32_t ENDPOINT_BITS = (mode == 7) ? 5 : ((mode == 1) ? 6 : 7);
		const uint32_t PBITS = (mode == 1) ? 2 : 4;
		const uint32_t SHARED_PBITS = (mode == 1) ? true : false;
		const uint32_t WEIGHT_VALS = 1 << WEIGHT_BITS;
		
		uint32_t bit_offset = 0;
		const uint8_t* pBuf = static_cast<const uint8_t*>(pBlock_bits);

		if (read_bits32(pBuf, bit_offset, mode + 1) != (1U << mode)) return false;

		const uint32_t part = read_bits32(pBuf, bit_offset, 6);

		color_rgba endpoints[ENDPOINTS];
		for (uint32_t c = 0; c < COMPS; c++)
			for (uint32_t e = 0; e < ENDPOINTS; e++)
				endpoints[e][c] = (uint8_t)read_bits32(pBuf, bit_offset, ENDPOINT_BITS);
		
		uint32_t pbits[4];
		for (uint32_t p = 0; p < PBITS; p++)
			pbits[p] = read_bits32(pBuf, bit_offset, 1);
						
		uint32_t weights[16];
		for (uint32_t i = 0; i < 16; i++)
			weights[i] = read_bits32(pBuf, bit_offset, ((!i) || (i == basist::g_bc7_table_anchor_index_second_subset[part])) ? (WEIGHT_BITS - 1) : WEIGHT_BITS);
		
		assert(bit_offset == 128);

		for (uint32_t e = 0; e < ENDPOINTS; e++)
			for (uint32_t c = 0; c < 4; c++)
				endpoints[e][c] = (uint8_t)((c == ((mode == 7U) ? 4U : 3U)) ? 255 : bc7_dequant(endpoints[e][c], pbits[SHARED_PBITS ? (e >> 1) : e], ENDPOINT_BITS));
		
		color_rgba block_colors[2][8];
		for (uint32_t s = 0; s < 2; s++)
			for (uint32_t i = 0; i < WEIGHT_VALS; i++)
			{
				for (uint32_t c = 0; c < COMPS; c++)
					block_colors[s][i][c] = (uint8_t)bc7_interp(endpoints[s * 2 + 0][c], endpoints[s * 2 + 1][c], i, WEIGHT_BITS);
				block_colors[s][i][3] = (COMPS == 3) ? 255 : block_colors[s][i][3];
			}

		for (uint32_t i = 0; i < 16; i++)
			pPixels[i] = block_colors[basist::g_bc7_partition2[part * 16 + i]][weights[i]];

		return true;
	}

	bool unpack_bc7_mode4_5(uint32_t mode, const void* pBlock_bits, color_rgba* pPixels)
	{
		const uint32_t ENDPOINTS = 2;
		const uint32_t COMPS = 4;
		const uint32_t WEIGHT_BITS = 2;
		const uint32_t A_WEIGHT_BITS = (mode == 4) ? 3 : 2;
		const uint32_t ENDPOINT_BITS = (mode == 4) ? 5 : 7;
		const uint32_t A_ENDPOINT_BITS = (mode == 4) ? 6 : 8;
		//const uint32_t WEIGHT_VALS = 1 << WEIGHT_BITS;
		//const uint32_t A_WEIGHT_VALS = 1 << A_WEIGHT_BITS;

		uint32_t bit_offset = 0;
		const uint8_t* pBuf = static_cast<const uint8_t*>(pBlock_bits);

		if (read_bits32(pBuf, bit_offset, mode + 1) != (1U << mode)) return false;

		const uint32_t comp_rot = read_bits32(pBuf, bit_offset, 2);
		const uint32_t index_mode = (mode == 4) ? read_bits32(pBuf, bit_offset, 1) : 0;

		color_rgba endpoints[ENDPOINTS];
		for (uint32_t c = 0; c < COMPS; c++)
			for (uint32_t e = 0; e < ENDPOINTS; e++)
				endpoints[e][c] = (uint8_t)read_bits32(pBuf, bit_offset, (c == 3) ? A_ENDPOINT_BITS : ENDPOINT_BITS);
		
		const uint32_t weight_bits[2] = { index_mode ? A_WEIGHT_BITS : WEIGHT_BITS,  index_mode ? WEIGHT_BITS : A_WEIGHT_BITS };
		
		uint32_t weights[16], a_weights[16];
		
		for (uint32_t i = 0; i < 16; i++)
			(index_mode ? a_weights : weights)[i] = read_bits32(pBuf, bit_offset, weight_bits[index_mode] - ((!i) ? 1 : 0));

		for (uint32_t i = 0; i < 16; i++)
			(index_mode ? weights : a_weights)[i] = read_bits32(pBuf, bit_offset, weight_bits[1 - index_mode] - ((!i) ? 1 : 0));

		assert(bit_offset == 128);

		for (uint32_t e = 0; e < ENDPOINTS; e++)
			for (uint32_t c = 0; c < 4; c++)
				endpoints[e][c] = (uint8_t)bc7_dequant(endpoints[e][c], (c == 3) ? A_ENDPOINT_BITS : ENDPOINT_BITS);

		color_rgba block_colors[8];
		for (uint32_t i = 0; i < (1U << weight_bits[0]); i++)
			for (uint32_t c = 0; c < 3; c++)
				block_colors[i][c] = (uint8_t)bc7_interp(endpoints[0][c], endpoints[1][c], i, weight_bits[0]);

		for (uint32_t i = 0; i < (1U << weight_bits[1]); i++)
			block_colors[i][3] = (uint8_t)bc7_interp(endpoints[0][3], endpoints[1][3], i, weight_bits[1]);

		for (uint32_t i = 0; i < 16; i++)
		{
			pPixels[i] = block_colors[weights[i]];
			pPixels[i].a = block_colors[a_weights[i]].a;
			if (comp_rot >= 1)
				std::swap(pPixels[i].a, pPixels[i].m_comps[comp_rot - 1]);
		}

		return true;
	}

	struct bc7_mode_6
	{
		struct
		{
			uint64_t m_mode : 7;
			uint64_t m_r0 : 7;
			uint64_t m_r1 : 7;
			uint64_t m_g0 : 7;
			uint64_t m_g1 : 7;
			uint64_t m_b0 : 7;
			uint64_t m_b1 : 7;
			uint64_t m_a0 : 7;
			uint64_t m_a1 : 7;
			uint64_t m_p0 : 1;
		} m_lo;

		union
		{
			struct
			{
				uint64_t m_p1 : 1;
				uint64_t m_s00 : 3;
				uint64_t m_s10 : 4;
				uint64_t m_s20 : 4;
				uint64_t m_s30 : 4;

				uint64_t m_s01 : 4;
				uint64_t m_s11 : 4;
				uint64_t m_s21 : 4;
				uint64_t m_s31 : 4;

				uint64_t m_s02 : 4;
				uint64_t m_s12 : 4;
				uint64_t m_s22 : 4;
				uint64_t m_s32 : 4;

				uint64_t m_s03 : 4;
				uint64_t m_s13 : 4;
				uint64_t m_s23 : 4;
				uint64_t m_s33 : 4;

			} m_hi;

			uint64_t m_hi_bits;
		};
	};

	bool unpack_bc7_mode6(const void *pBlock_bits, color_rgba *pPixels)
	{
		static_assert(sizeof(bc7_mode_6) == 16, "sizeof(bc7_mode_6) == 16");

		const bc7_mode_6 &block = *static_cast<const bc7_mode_6 *>(pBlock_bits);

		if (block.m_lo.m_mode != (1 << 6))
			return false;

		const uint32_t r0 = (uint32_t)((block.m_lo.m_r0 << 1) | block.m_lo.m_p0);
		const uint32_t g0 = (uint32_t)((block.m_lo.m_g0 << 1) | block.m_lo.m_p0);
		const uint32_t b0 = (uint32_t)((block.m_lo.m_b0 << 1) | block.m_lo.m_p0);
		const uint32_t a0 = (uint32_t)((block.m_lo.m_a0 << 1) | block.m_lo.m_p0);
		const uint32_t r1 = (uint32_t)((block.m_lo.m_r1 << 1) | block.m_hi.m_p1);
		const uint32_t g1 = (uint32_t)((block.m_lo.m_g1 << 1) | block.m_hi.m_p1);
		const uint32_t b1 = (uint32_t)((block.m_lo.m_b1 << 1) | block.m_hi.m_p1);
		const uint32_t a1 = (uint32_t)((block.m_lo.m_a1 << 1) | block.m_hi.m_p1);

		color_rgba vals[16];
		for (uint32_t i = 0; i < 16; i++)
		{
			const uint32_t w = basist::g_bc7_weights4[i];
			const uint32_t iw = 64 - w;
			vals[i].set_noclamp_rgba( 
				(r0 * iw + r1 * w + 32) >> 6, 
				(g0 * iw + g1 * w + 32) >> 6, 
				(b0 * iw + b1 * w + 32) >> 6, 
				(a0 * iw + a1 * w + 32) >> 6);
		}

		pPixels[0] = vals[block.m_hi.m_s00];
		pPixels[1] = vals[block.m_hi.m_s10];
		pPixels[2] = vals[block.m_hi.m_s20];
		pPixels[3] = vals[block.m_hi.m_s30];

		pPixels[4] = vals[block.m_hi.m_s01];
		pPixels[5] = vals[block.m_hi.m_s11];
		pPixels[6] = vals[block.m_hi.m_s21];
		pPixels[7] = vals[block.m_hi.m_s31];
		
		pPixels[8] = vals[block.m_hi.m_s02];
		pPixels[9] = vals[block.m_hi.m_s12];
		pPixels[10] = vals[block.m_hi.m_s22];
		pPixels[11] = vals[block.m_hi.m_s32];

		pPixels[12] = vals[block.m_hi.m_s03];
		pPixels[13] = vals[block.m_hi.m_s13];
		pPixels[14] = vals[block.m_hi.m_s23];
		pPixels[15] = vals[block.m_hi.m_s33];

		return true;
	}

	bool unpack_bc7(const void *pBlock, color_rgba *pPixels)
	{
		const uint32_t first_byte = static_cast<const uint8_t*>(pBlock)[0];

		for (uint32_t mode = 0; mode <= 7; mode++)
		{
			if (first_byte & (1U << mode))
			{
				switch (mode)
				{
				case 0:
				case 2:
					return unpack_bc7_mode0_2(mode, pBlock, pPixels);
				case 1:
				case 3:
				case 7:
					return unpack_bc7_mode1_3_7(mode, pBlock, pPixels);
				case 4:
				case 5:
					return unpack_bc7_mode4_5(mode, pBlock, pPixels);
				case 6:
					return unpack_bc7_mode6(pBlock, pPixels);
				default:
					break;
				}
			}
		}

		return false;
	}
	
	struct fxt1_block
	{
		union
		{
			struct
			{
				uint64_t m_t00 : 2;
				uint64_t m_t01 : 2;
				uint64_t m_t02 : 2;
				uint64_t m_t03 : 2;
				uint64_t m_t04 : 2;
				uint64_t m_t05 : 2;
				uint64_t m_t06 : 2;
				uint64_t m_t07 : 2;
				uint64_t m_t08 : 2;
				uint64_t m_t09 : 2;
				uint64_t m_t10 : 2;
				uint64_t m_t11 : 2;
				uint64_t m_t12 : 2;
				uint64_t m_t13 : 2;
				uint64_t m_t14 : 2;
				uint64_t m_t15 : 2;
				uint64_t m_t16 : 2;
				uint64_t m_t17 : 2;
				uint64_t m_t18 : 2;
				uint64_t m_t19 : 2;
				uint64_t m_t20 : 2;
				uint64_t m_t21 : 2;
				uint64_t m_t22 : 2;
				uint64_t m_t23 : 2;
				uint64_t m_t24 : 2;
				uint64_t m_t25 : 2;
				uint64_t m_t26 : 2;
				uint64_t m_t27 : 2;
				uint64_t m_t28 : 2;
				uint64_t m_t29 : 2;
				uint64_t m_t30 : 2;
				uint64_t m_t31 : 2;
			} m_lo;
			uint64_t m_lo_bits;
			uint8_t m_sels[8];
		};

		union
		{
			struct
			{
#ifdef BASISU_USE_ORIGINAL_3DFX_FXT1_ENCODING
				// This is the format that 3DFX's DECOMP.EXE tool expects, which I'm assuming is what the actual 3DFX hardware wanted.
				// Unfortunately, color0/color1 and color2/color3 are flipped relative to the official OpenGL extension and Intel's documentation!
				uint64_t m_b1 : 5;
				uint64_t m_g1 : 5;
				uint64_t m_r1 : 5;
				uint64_t m_b0 : 5;
				uint64_t m_g0 : 5;
				uint64_t m_r0 : 5;
				uint64_t m_b3 : 5;
				uint64_t m_g3 : 5;
				uint64_t m_r3 : 5;
				uint64_t m_b2 : 5;
				uint64_t m_g2 : 5;
				uint64_t m_r2 : 5;
#else
				// Intel's encoding, and the encoding in the OpenGL FXT1 spec.
				uint64_t m_b0 : 5;
				uint64_t m_g0 : 5;
				uint64_t m_r0 : 5;
				uint64_t m_b1 : 5;
				uint64_t m_g1 : 5;
				uint64_t m_r1 : 5;
				uint64_t m_b2 : 5;
				uint64_t m_g2 : 5;
				uint64_t m_r2 : 5;
				uint64_t m_b3 : 5;
				uint64_t m_g3 : 5;
				uint64_t m_r3 : 5;
#endif
				uint64_t m_alpha : 1;
				uint64_t m_glsb : 2;
				uint64_t m_mode : 1;
			} m_hi;

			uint64_t m_hi_bits;
		};
	};

	static color_rgba expand_565(const color_rgba& c)
	{
		return color_rgba((c.r << 3) | (c.r >> 2), (c.g << 2) | (c.g >> 4), (c.b << 3) | (c.b >> 2), 255);
	}

	// We only support CC_MIXED non-alpha blocks here because that's the only mode the transcoder uses at the moment.
	bool unpack_fxt1(const void *p, color_rgba *pPixels)
	{
		const fxt1_block* pBlock = static_cast<const fxt1_block*>(p);

		if (pBlock->m_hi.m_mode == 0)
			return false;
		if (pBlock->m_hi.m_alpha == 1)
			return false;
				
		color_rgba colors[4];

		colors[0].r = pBlock->m_hi.m_r0;
		colors[0].g = (uint8_t)((pBlock->m_hi.m_g0 << 1) | ((pBlock->m_lo.m_t00 >> 1) ^ (pBlock->m_hi.m_glsb & 1)));
		colors[0].b = pBlock->m_hi.m_b0;
		colors[0].a = 255;

		colors[1].r = pBlock->m_hi.m_r1;
		colors[1].g = (uint8_t)((pBlock->m_hi.m_g1 << 1) | (pBlock->m_hi.m_glsb & 1));
		colors[1].b = pBlock->m_hi.m_b1;
		colors[1].a = 255;

		colors[2].r = pBlock->m_hi.m_r2;
		colors[2].g = (uint8_t)((pBlock->m_hi.m_g2 << 1) | ((pBlock->m_lo.m_t16 >> 1) ^ (pBlock->m_hi.m_glsb >> 1)));
		colors[2].b = pBlock->m_hi.m_b2;
		colors[2].a = 255;

		colors[3].r = pBlock->m_hi.m_r3;
		colors[3].g = (uint8_t)((pBlock->m_hi.m_g3 << 1) | (pBlock->m_hi.m_glsb >> 1));
		colors[3].b = pBlock->m_hi.m_b3;
		colors[3].a = 255;

		for (uint32_t i = 0; i < 4; i++)
			colors[i] = expand_565(colors[i]);

		color_rgba block0_colors[4];
		block0_colors[0] = colors[0];
		block0_colors[1] = color_rgba((colors[0].r * 2 + colors[1].r + 1) / 3, (colors[0].g * 2 + colors[1].g + 1) / 3, (colors[0].b * 2 + colors[1].b + 1) / 3, 255);
		block0_colors[2] = color_rgba((colors[1].r * 2 + colors[0].r + 1) / 3, (colors[1].g * 2 + colors[0].g + 1) / 3, (colors[1].b * 2 + colors[0].b + 1) / 3, 255);
		block0_colors[3] = colors[1];

		for (uint32_t i = 0; i < 16; i++)
		{
			const uint32_t sel = (pBlock->m_sels[i >> 2] >> ((i & 3) * 2)) & 3;

			const uint32_t x = i & 3;
			const uint32_t y = i >> 2;
			pPixels[x + y * 8] = block0_colors[sel];
		}

		color_rgba block1_colors[4];
		block1_colors[0] = colors[2];
		block1_colors[1] = color_rgba((colors[2].r * 2 + colors[3].r + 1) / 3, (colors[2].g * 2 + colors[3].g + 1) / 3, (colors[2].b * 2 + colors[3].b + 1) / 3, 255);
		block1_colors[2] = color_rgba((colors[3].r * 2 + colors[2].r + 1) / 3, (colors[3].g * 2 + colors[2].g + 1) / 3, (colors[3].b * 2 + colors[2].b + 1) / 3, 255);
		block1_colors[3] = colors[3];

		for (uint32_t i = 0; i < 16; i++)
		{
			const uint32_t sel = (pBlock->m_sels[4 + (i >> 2)] >> ((i & 3) * 2)) & 3;
			
			const uint32_t x = i & 3;
			const uint32_t y = i >> 2;
			pPixels[4 + x + y * 8] = block1_colors[sel];
		}

		return true;
	}

	struct pvrtc2_block
	{
		uint8_t m_modulation[4];

		union
		{
			union
			{
				// Opaque mode: RGB colora=554 and colorb=555
				struct
				{
					uint32_t m_mod_flag : 1;
					uint32_t m_blue_a : 4;
					uint32_t m_green_a : 5;
					uint32_t m_red_a : 5;
					uint32_t m_hard_flag : 1;
					uint32_t m_blue_b : 5;
					uint32_t m_green_b : 5;
					uint32_t m_red_b : 5;
					uint32_t m_opaque_flag : 1;

				} m_opaque_color_data;

				// Transparent mode: RGBA colora=4433 and colorb=4443
				struct
				{
					uint32_t m_mod_flag : 1;
					uint32_t m_blue_a : 3;
					uint32_t m_green_a : 4;
					uint32_t m_red_a : 4;
					uint32_t m_alpha_a : 3;
					uint32_t m_hard_flag : 1;
					uint32_t m_blue_b : 4;
					uint32_t m_green_b : 4;
					uint32_t m_red_b : 4;
					uint32_t m_alpha_b : 3;
					uint32_t m_opaque_flag : 1;

				} m_trans_color_data;
			};

			uint32_t m_color_data_bits;
		};
	};

	static color_rgba convert_rgb_555_to_888(const color_rgba& col)
	{
		return color_rgba((col[0] << 3) | (col[0] >> 2), (col[1] << 3) | (col[1] >> 2), (col[2] << 3) | (col[2] >> 2), 255);
	}
	
	static color_rgba convert_rgba_5554_to_8888(const color_rgba& col)
	{
		return color_rgba((col[0] << 3) | (col[0] >> 2), (col[1] << 3) | (col[1] >> 2), (col[2] << 3) | (col[2] >> 2), (col[3] << 4) | col[3]);
	}

	// PVRTC2 is currently limited to only what our transcoder outputs (non-interpolated, hard_flag=1 modulation=0). In this mode, PVRTC2 looks much like BC1/ATC.
	bool unpack_pvrtc2(const void *p, color_rgba *pPixels)
	{
		const pvrtc2_block* pBlock = static_cast<const pvrtc2_block*>(p);

		if ((!pBlock->m_opaque_color_data.m_hard_flag) || (pBlock->m_opaque_color_data.m_mod_flag))
		{
			// This mode isn't supported by the transcoder, so we aren't bothering with it here.
			return false;
		}

		color_rgba colors[4];

		if (pBlock->m_opaque_color_data.m_opaque_flag)
		{
			// colora=554
			color_rgba color_a(pBlock->m_opaque_color_data.m_red_a, pBlock->m_opaque_color_data.m_green_a, (pBlock->m_opaque_color_data.m_blue_a << 1) | (pBlock->m_opaque_color_data.m_blue_a >> 3), 255);
			
			// colora=555
			color_rgba color_b(pBlock->m_opaque_color_data.m_red_b, pBlock->m_opaque_color_data.m_green_b, pBlock->m_opaque_color_data.m_blue_b, 255);
						
			colors[0] = convert_rgb_555_to_888(color_a);
			colors[3] = convert_rgb_555_to_888(color_b);

			colors[1].set((colors[0].r * 5 + colors[3].r * 3) / 8, (colors[0].g * 5 + colors[3].g * 3) / 8, (colors[0].b * 5 + colors[3].b * 3) / 8, 255);
			colors[2].set((colors[0].r * 3 + colors[3].r * 5) / 8, (colors[0].g * 3 + colors[3].g * 5) / 8, (colors[0].b * 3 + colors[3].b * 5) / 8, 255);
		}
		else
		{
			// colora=4433 
			color_rgba color_a(
				(pBlock->m_trans_color_data.m_red_a << 1) | (pBlock->m_trans_color_data.m_red_a >> 3), 
				(pBlock->m_trans_color_data.m_green_a << 1) | (pBlock->m_trans_color_data.m_green_a >> 3),
				(pBlock->m_trans_color_data.m_blue_a << 2) | (pBlock->m_trans_color_data.m_blue_a >> 1), 
				pBlock->m_trans_color_data.m_alpha_a << 1);

			//colorb=4443
			color_rgba color_b(
				(pBlock->m_trans_color_data.m_red_b << 1) | (pBlock->m_trans_color_data.m_red_b >> 3),
				(pBlock->m_trans_color_data.m_green_b << 1) | (pBlock->m_trans_color_data.m_green_b >> 3),
				(pBlock->m_trans_color_data.m_blue_b << 1) | (pBlock->m_trans_color_data.m_blue_b >> 3),
				(pBlock->m_trans_color_data.m_alpha_b << 1) | 1);

			colors[0] = convert_rgba_5554_to_8888(color_a);
			colors[3] = convert_rgba_5554_to_8888(color_b);
		}

		colors[1].set((colors[0].r * 5 + colors[3].r * 3) / 8, (colors[0].g * 5 + colors[3].g * 3) / 8, (colors[0].b * 5 + colors[3].b * 3) / 8, (colors[0].a * 5 + colors[3].a * 3) / 8);
		colors[2].set((colors[0].r * 3 + colors[3].r * 5) / 8, (colors[0].g * 3 + colors[3].g * 5) / 8, (colors[0].b * 3 + colors[3].b * 5) / 8, (colors[0].a * 3 + colors[3].a * 5) / 8);

		for (uint32_t i = 0; i < 16; i++)
		{
			const uint32_t sel = (pBlock->m_modulation[i >> 2] >> ((i & 3) * 2)) & 3;
			pPixels[i] = colors[sel];
		}

		return true;
	}

	struct etc2_eac_r11
	{
		uint64_t m_base	: 8;
		uint64_t m_table	: 4;
		uint64_t m_mul		: 4;
		uint64_t m_sels_0 : 8;
		uint64_t m_sels_1 : 8;
		uint64_t m_sels_2 : 8;
		uint64_t m_sels_3 : 8;
		uint64_t m_sels_4 : 8;
		uint64_t m_sels_5 : 8;

		uint64_t get_sels() const
		{
			return ((uint64_t)m_sels_0 << 40U) | ((uint64_t)m_sels_1 << 32U) | ((uint64_t)m_sels_2 << 24U) | ((uint64_t)m_sels_3 << 16U) | ((uint64_t)m_sels_4 << 8U) | m_sels_5;
		}

		void set_sels(uint64_t v)
		{
			m_sels_0 = (v >> 40U) & 0xFF;
			m_sels_1 = (v >> 32U) & 0xFF;
			m_sels_2 = (v >> 24U) & 0xFF;
			m_sels_3 = (v >> 16U) & 0xFF;
			m_sels_4 = (v >> 8U) & 0xFF;
			m_sels_5 = v & 0xFF;
		}
	};

	struct etc2_eac_rg11
	{
		etc2_eac_r11 m_c[2];
	};

	void unpack_etc2_eac_r(const void *p, color_rgba* pPixels, uint32_t c)
	{
		const etc2_eac_r11* pBlock = static_cast<const etc2_eac_r11*>(p);
		const uint64_t sels = pBlock->get_sels();

		const int base = (int)pBlock->m_base * 8 + 4;
		const int mul = pBlock->m_mul ? ((int)pBlock->m_mul * 8) : 1;
		const int table = (int)pBlock->m_table;

		for (uint32_t y = 0; y < 4; y++)
		{
			for (uint32_t x = 0; x < 4; x++)
			{
				const uint32_t shift = 45 - ((y + x * 4) * 3);
				
				const uint32_t sel = (uint32_t)((sels >> shift) & 7);
				
				int val = base + g_etc2_eac_tables[table][sel] * mul;
				val = clamp<int>(val, 0, 2047);

				// Convert to 8-bits with rounding
				//pPixels[x + y * 4].m_comps[c] = static_cast<uint8_t>((val * 255 + 1024) / 2047);
				pPixels[x + y * 4].m_comps[c] = static_cast<uint8_t>((val * 255 + 1023) / 2047);

			} // x
		} // y
	}

	void unpack_etc2_eac_rg(const void* p, color_rgba* pPixels)
	{
		for (uint32_t c = 0; c < 2; c++)
		{
			const etc2_eac_r11* pBlock = &static_cast<const etc2_eac_rg11*>(p)->m_c[c];

			unpack_etc2_eac_r(pBlock, pPixels, c);
		}
	}
	
	void unpack_uastc(const void* p, color_rgba* pPixels)
	{
		basist::unpack_uastc(*static_cast<const basist::uastc_block*>(p), (basist::color32 *)pPixels, false);
	}
	
	// Unpacks to RGBA, R, RG, or A
	bool unpack_block(texture_format fmt, const void* pBlock, color_rgba* pPixels)
	{
		switch (fmt)
		{
		case texture_format::cBC1:
		{
			unpack_bc1(pBlock, pPixels, true);
			break;
		}
		case texture_format::cBC1_NV:
		{
			unpack_bc1_nv(pBlock, pPixels, true);
			break;
		}
		case texture_format::cBC1_AMD:
		{
			unpack_bc1_amd(pBlock, pPixels, true);
			break;
		}
		case texture_format::cBC3:
		{
			return unpack_bc3(pBlock, pPixels);
		}
		case texture_format::cBC4:
		{
			// Unpack to R
			unpack_bc4(pBlock, &pPixels[0].r, sizeof(color_rgba));
			break;
		}
		case texture_format::cBC5:
		{
			unpack_bc5(pBlock, pPixels);
			break;
		}
		case texture_format::cBC7:
		{
			return unpack_bc7(pBlock, pPixels);
		}
		// Full ETC2 color blocks (planar/T/H modes) is currently unsupported in basisu, but we do support ETC2 with alpha (using ETC1 for color)
		case texture_format::cETC2_RGB:
		case texture_format::cETC1:
		case texture_format::cETC1S:
		{
			return unpack_etc1(*static_cast<const etc_block*>(pBlock), pPixels);
		}
		case texture_format::cETC2_RGBA:
		{
			if (!unpack_etc1(static_cast<const etc_block*>(pBlock)[1], pPixels))
				return false;
			unpack_etc2_eac(pBlock, pPixels);
			break;
		}
		case texture_format::cETC2_ALPHA:
		{
			// Unpack to A
			unpack_etc2_eac(pBlock, pPixels);
			break;
		}
		case texture_format::cASTC4x4:
		{
#if BASISU_USE_ASTC_DECOMPRESS
			const bool astc_srgb = false;
			basisu_astc::astc::decompress(reinterpret_cast<uint8_t*>(pPixels), static_cast<const uint8_t*>(pBlock), astc_srgb, 4, 4);
#else
			memset(pPixels, 255, 16 * sizeof(color_rgba));
#endif
			break;
		}
		case texture_format::cATC_RGB:
		{
			unpack_atc(pBlock, pPixels);
			break;
		}
		case texture_format::cATC_RGBA_INTERPOLATED_ALPHA:
		{
			unpack_atc(static_cast<const uint8_t*>(pBlock) + 8, pPixels);
			unpack_bc4(pBlock, &pPixels[0].a, sizeof(color_rgba));
			break;
		}
		case texture_format::cFXT1_RGB:
		{
			unpack_fxt1(pBlock, pPixels);
			break;
		}
		case texture_format::cPVRTC2_4_RGBA:
		{
			unpack_pvrtc2(pBlock, pPixels);
			break;
		}
		case texture_format::cETC2_R11_EAC:
		{
			unpack_etc2_eac_r(static_cast<const etc2_eac_r11 *>(pBlock), pPixels, 0);
			break;
		}
		case texture_format::cETC2_RG11_EAC:
		{
			unpack_etc2_eac_rg(pBlock, pPixels);
			break;
		}
		case texture_format::cUASTC4x4:
		{
			unpack_uastc(pBlock, pPixels);
			break;
		}
		default:
		{
			assert(0);
			// TODO
			return false;
		}
		}
		return true;
	}

	bool gpu_image::unpack(image& img) const
	{
		img.resize(get_pixel_width(), get_pixel_height());
		img.set_all(g_black_color);

		if (!img.get_width() || !img.get_height())
			return true;

		if ((m_fmt == texture_format::cPVRTC1_4_RGB) || (m_fmt == texture_format::cPVRTC1_4_RGBA))
		{
			pvrtc4_image pi(m_width, m_height);
			
			if (get_total_blocks() != pi.get_total_blocks())
				return false;
			
			memcpy(&pi.get_blocks()[0], get_ptr(), get_size_in_bytes());

			pi.deswizzle();

			pi.unpack_all_pixels(img);

			return true;
		}

		assert((m_block_width <= cMaxBlockSize) && (m_block_height <= cMaxBlockSize));
		color_rgba pixels[cMaxBlockSize * cMaxBlockSize];
		for (uint32_t i = 0; i < cMaxBlockSize * cMaxBlockSize; i++)
			pixels[i] = g_black_color;

		bool success = true;

		for (uint32_t by = 0; by < m_blocks_y; by++)
		{
			for (uint32_t bx = 0; bx < m_blocks_x; bx++)
			{
				const void* pBlock = get_block_ptr(bx, by);

				if (!unpack_block(m_fmt, pBlock, pixels))
					success = false;

				img.set_block_clipped(pixels, bx * m_block_width, by * m_block_height, m_block_width, m_block_height);
			} // bx
		} // by

		return success;
	}
		
	static const uint8_t g_ktx_file_id[12] = { 0xAB, 0x4B, 0x54, 0x58, 0x20, 0x31, 0x31, 0xBB, 0x0D, 0x0A, 0x1A, 0x0A };

	// KTX/GL enums
	enum
	{
		KTX_ENDIAN = 0x04030201, 
		KTX_OPPOSITE_ENDIAN = 0x01020304,
		KTX_ETC1_RGB8_OES = 0x8D64,
		KTX_RED = 0x1903,
		KTX_RG = 0x8227,
		KTX_RGB = 0x1907,
		KTX_RGBA = 0x1908,
		KTX_COMPRESSED_RGB_S3TC_DXT1_EXT = 0x83F0,
		KTX_COMPRESSED_RGBA_S3TC_DXT5_EXT = 0x83F3,
		KTX_COMPRESSED_RED_RGTC1_EXT = 0x8DBB,
		KTX_COMPRESSED_RED_GREEN_RGTC2_EXT = 0x8DBD,
		KTX_COMPRESSED_RGB8_ETC2 = 0x9274,
		KTX_COMPRESSED_RGBA8_ETC2_EAC = 0x9278,
		KTX_COMPRESSED_RGBA_BPTC_UNORM = 0x8E8C,
		KTX_COMPRESSED_SRGB_ALPHA_BPTC_UNORM = 0x8E8D,
		KTX_COMPRESSED_RGB_PVRTC_4BPPV1_IMG = 0x8C00,
		KTX_COMPRESSED_RGBA_PVRTC_4BPPV1_IMG = 0x8C02,
		KTX_COMPRESSED_RGBA_ASTC_4x4_KHR = 0x93B0,
		KTX_COMPRESSED_SRGB8_ALPHA8_ASTC_4x4_KHR = 0x93D0,
		KTX_COMPRESSED_RGBA_UASTC_4x4_KHR = 0x94CC, // TODO - Use proper value!
		KTX_ATC_RGB_AMD = 0x8C92,
		KTX_ATC_RGBA_INTERPOLATED_ALPHA_AMD = 0x87EE,
		KTX_COMPRESSED_RGB_FXT1_3DFX = 0x86B0,
		KTX_COMPRESSED_RGBA_FXT1_3DFX = 0x86B1,
		KTX_COMPRESSED_RGBA_PVRTC_4BPPV2_IMG = 0x9138,
		KTX_COMPRESSED_R11_EAC = 0x9270,
		KTX_COMPRESSED_RG11_EAC = 0x9272
	};
		
	struct ktx_header
	{
		uint8_t m_identifier[12];
		packed_uint<4> m_endianness;
		packed_uint<4> m_glType;
		packed_uint<4> m_glTypeSize;
		packed_uint<4> m_glFormat;
		packed_uint<4> m_glInternalFormat;
		packed_uint<4> m_glBaseInternalFormat;
		packed_uint<4> m_pixelWidth;
		packed_uint<4> m_pixelHeight;
		packed_uint<4> m_pixelDepth;
		packed_uint<4> m_numberOfArrayElements;
		packed_uint<4> m_numberOfFaces;
		packed_uint<4> m_numberOfMipmapLevels;
		packed_uint<4> m_bytesOfKeyValueData;

		void clear() { clear_obj(*this);	}
	};

	// Input is a texture array of mipmapped gpu_image's: gpu_images[array_index][level_index]
	bool create_ktx_texture_file(uint8_vec &ktx_data, const basisu::vector<gpu_image_vec>& gpu_images, bool cubemap_flag)
	{
		if (!gpu_images.size())
		{
			assert(0);
			return false;
		}

		uint32_t width = 0, height = 0, total_levels = 0;
		basisu::texture_format fmt = texture_format::cInvalidTextureFormat;

		if (cubemap_flag)
		{
			if ((gpu_images.size() % 6) != 0)
			{
				assert(0);
				return false;
			}
		}

		for (uint32_t array_index = 0; array_index < gpu_images.size(); array_index++)
		{
			const gpu_image_vec &levels = gpu_images[array_index];

			if (!levels.size())
			{
				// Empty mip chain
				assert(0);
				return false;
			}

			if (!array_index)
			{
				width = levels[0].get_pixel_width();
				height = levels[0].get_pixel_height();
				total_levels = (uint32_t)levels.size();
				fmt = levels[0].get_format();
			}
			else
			{
				if ((width != levels[0].get_pixel_width()) ||
				    (height != levels[0].get_pixel_height()) ||
				    (total_levels != levels.size()))
				{
					// All cubemap/texture array faces must be the same dimension
					assert(0);
					return false;
				}
			}

			for (uint32_t level_index = 0; level_index < levels.size(); level_index++)
			{
				if (level_index)
				{
					if ( (levels[level_index].get_pixel_width() != maximum<uint32_t>(1, levels[0].get_pixel_width() >> level_index)) ||
							(levels[level_index].get_pixel_height() != maximum<uint32_t>(1, levels[0].get_pixel_height() >> level_index)) )
					{
						// Malformed mipmap chain
						assert(0);
						return false;
					}
				}

				if (fmt != levels[level_index].get_format())
				{
					// All input textures must use the same GPU format
					assert(0);
					return false;
				}
			}
		}

		uint32_t internal_fmt = KTX_ETC1_RGB8_OES, base_internal_fmt = KTX_RGB;

		switch (fmt)
		{
		case texture_format::cBC1:
		case texture_format::cBC1_NV:
		case texture_format::cBC1_AMD:
		{
			internal_fmt = KTX_COMPRESSED_RGB_S3TC_DXT1_EXT;
			break;
		}
		case texture_format::cBC3:
		{
			internal_fmt = KTX_COMPRESSED_RGBA_S3TC_DXT5_EXT;
			base_internal_fmt = KTX_RGBA;
			break;
		}
		case texture_format::cBC4:
		{
			internal_fmt = KTX_COMPRESSED_RED_RGTC1_EXT;// KTX_COMPRESSED_LUMINANCE_LATC1_EXT;
			base_internal_fmt = KTX_RED;
			break;
		}
		case texture_format::cBC5:
		{
			internal_fmt = KTX_COMPRESSED_RED_GREEN_RGTC2_EXT;
			base_internal_fmt = KTX_RG;
			break;
		}
		case texture_format::cETC1:
		case texture_format::cETC1S:
		{
			internal_fmt = KTX_ETC1_RGB8_OES;
			break;
		}
		case texture_format::cETC2_RGB:
		{
			internal_fmt = KTX_COMPRESSED_RGB8_ETC2;
			break;
		}
		case texture_format::cETC2_RGBA:
		{
			internal_fmt = KTX_COMPRESSED_RGBA8_ETC2_EAC;
			base_internal_fmt = KTX_RGBA;
			break;
		}
		case texture_format::cBC7:
		{
			internal_fmt = KTX_COMPRESSED_RGBA_BPTC_UNORM;
			base_internal_fmt = KTX_RGBA;
			break;
		}
		case texture_format::cPVRTC1_4_RGB:
		{
			internal_fmt = KTX_COMPRESSED_RGB_PVRTC_4BPPV1_IMG;
			break;
		}
		case texture_format::cPVRTC1_4_RGBA:
		{
			internal_fmt = KTX_COMPRESSED_RGBA_PVRTC_4BPPV1_IMG;
			base_internal_fmt = KTX_RGBA;
			break;
		}
		case texture_format::cASTC4x4:
		{
			internal_fmt = KTX_COMPRESSED_RGBA_ASTC_4x4_KHR;
			base_internal_fmt = KTX_RGBA;
			break;
		}
		case texture_format::cATC_RGB:
		{
			internal_fmt = KTX_ATC_RGB_AMD;
			break;
		}
		case texture_format::cATC_RGBA_INTERPOLATED_ALPHA:
		{
			internal_fmt = KTX_ATC_RGBA_INTERPOLATED_ALPHA_AMD;
			base_internal_fmt = KTX_RGBA;
			break;
		}
		case texture_format::cETC2_R11_EAC:
		{
			internal_fmt = KTX_COMPRESSED_R11_EAC;
			base_internal_fmt = KTX_RED;
			break;
		}
		case texture_format::cETC2_RG11_EAC:
		{
			internal_fmt = KTX_COMPRESSED_RG11_EAC;
			base_internal_fmt = KTX_RG;
			break;
		}
		case texture_format::cUASTC4x4:
		{
			internal_fmt = KTX_COMPRESSED_RGBA_UASTC_4x4_KHR;
			base_internal_fmt = KTX_RGBA;
			break;
		}
		case texture_format::cFXT1_RGB:
		{
			internal_fmt = KTX_COMPRESSED_RGB_FXT1_3DFX;
			break;
		}
		case texture_format::cPVRTC2_4_RGBA:
		{
			internal_fmt = KTX_COMPRESSED_RGBA_PVRTC_4BPPV2_IMG;
			base_internal_fmt = KTX_RGBA;
			break;
		}
		default:
		{
			// TODO
			assert(0);
			return false;
		}
		}
		
		ktx_header header;
		header.clear();
		memcpy(&header.m_identifier, g_ktx_file_id, sizeof(g_ktx_file_id));
		header.m_endianness = KTX_ENDIAN;
		
		header.m_pixelWidth = width;
		header.m_pixelHeight = height;
				
		header.m_glTypeSize = 1;
		
		header.m_glInternalFormat = internal_fmt;
		header.m_glBaseInternalFormat = base_internal_fmt;

		header.m_numberOfArrayElements = (uint32_t)(cubemap_flag ? (gpu_images.size() / 6) : gpu_images.size());
		if (header.m_numberOfArrayElements == 1)
			header.m_numberOfArrayElements = 0;

		header.m_numberOfMipmapLevels = total_levels;
		header.m_numberOfFaces = cubemap_flag ? 6 : 1;

		append_vector(ktx_data, (uint8_t *)&header, sizeof(header));

		for (uint32_t level_index = 0; level_index < total_levels; level_index++)
		{
			uint32_t img_size = gpu_images[0][level_index].get_size_in_bytes();
			
			if ((header.m_numberOfFaces == 1) || (header.m_numberOfArrayElements > 1))
			{
				img_size = img_size * header.m_numberOfFaces * maximum<uint32_t>(1, header.m_numberOfArrayElements);
			}

			assert(img_size && ((img_size & 3) == 0));

			packed_uint<4> packed_img_size(img_size);
			append_vector(ktx_data, (uint8_t *)&packed_img_size, sizeof(packed_img_size));

			uint32_t bytes_written = 0;

			for (uint32_t array_index = 0; array_index < maximum<uint32_t>(1, header.m_numberOfArrayElements); array_index++)
			{
				for (uint32_t face_index = 0; face_index < header.m_numberOfFaces; face_index++)
				{
					const gpu_image& img = gpu_images[cubemap_flag ? (array_index * 6 + face_index) : array_index][level_index];

					append_vector(ktx_data, (uint8_t *)img.get_ptr(), img.get_size_in_bytes());
					
					bytes_written += img.get_size_in_bytes();
				}
			
			} // array_index

		} // level_index

		return true;
	}

	bool write_compressed_texture_file(const char* pFilename, const basisu::vector<gpu_image_vec>& g, bool cubemap_flag)
	{
		std::string extension(string_tolower(string_get_extension(pFilename)));

		uint8_vec filedata;
		if (extension == "ktx")
		{
			if (!create_ktx_texture_file(filedata, g, cubemap_flag))
				return false;
		}
		else if (extension == "pvr")
		{
			// TODO
			return false;
		}
		else if (extension == "dds")
		{
			// TODO
			return false;
		}
		else
		{
			// unsupported texture format
			assert(0);
			return false;
		}

		return basisu::write_vec_to_file(pFilename, filedata);
	}

	bool write_compressed_texture_file(const char* pFilename, const gpu_image& g)
	{
		basisu::vector<gpu_image_vec> v;
		enlarge_vector(v, 1)->push_back(g);
		return write_compressed_texture_file(pFilename, v, false);
	}

	//const uint32_t OUT_FILE_MAGIC = 'TEXC';
	struct out_file_header 
	{
		packed_uint<4> m_magic;
		packed_uint<4> m_pad;
		packed_uint<4> m_width;
		packed_uint<4> m_height;
	};

	// As no modern tool supports FXT1 format .KTX files, let's write .OUT files and make sure 3DFX's original tools shipped in 1999 can decode our encoded output.
	bool write_3dfx_out_file(const char* pFilename, const gpu_image& gi)
	{
		out_file_header hdr;
		//hdr.m_magic = OUT_FILE_MAGIC;
		hdr.m_magic.m_bytes[0] = 67;
		hdr.m_magic.m_bytes[1] = 88;
		hdr.m_magic.m_bytes[2] = 69;
		hdr.m_magic.m_bytes[3] = 84;
		hdr.m_pad = 0;
		hdr.m_width = gi.get_blocks_x() * 8;
		hdr.m_height = gi.get_blocks_y() * 4;

		FILE* pFile = nullptr;
#ifdef _WIN32
		fopen_s(&pFile, pFilename, "wb");
#else
		pFile = fopen(pFilename, "wb");
#endif
		if (!pFile)
			return false;

		fwrite(&hdr, sizeof(hdr), 1, pFile);
		fwrite(gi.get_ptr(), gi.get_size_in_bytes(), 1, pFile);
		
		return fclose(pFile) != EOF;
	}
} // basisu