summaryrefslogtreecommitdiff
path: root/thirdparty/astcenc/astcenc_weight_align.cpp
blob: e40a318cf52a12a7a19d81d1b2df10f3e3ccefa0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
// SPDX-License-Identifier: Apache-2.0
// ----------------------------------------------------------------------------
// Copyright 2011-2022 Arm Limited
//
// Licensed under the Apache License, Version 2.0 (the "License"); you may not
// use this file except in compliance with the License. You may obtain a copy
// of the License at:
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
// License for the specific language governing permissions and limitations
// under the License.
// ----------------------------------------------------------------------------

#if !defined(ASTCENC_DECOMPRESS_ONLY)

/**
 * @brief Functions for angular-sum algorithm for weight alignment.
 *
 * This algorithm works as follows:
 * - we compute a complex number P as (cos s*i, sin s*i) for each weight,
 *   where i is the input value and s is a scaling factor based on the spacing between the weights.
 * - we then add together complex numbers for all the weights.
 * - we then compute the length and angle of the resulting sum.
 *
 * This should produce the following results:
 * - perfect alignment results in a vector whose length is equal to the sum of lengths of all inputs
 * - even distribution results in a vector of length 0.
 * - all samples identical results in perfect alignment for every scaling.
 *
 * For each scaling factor within a given set, we compute an alignment factor from 0 to 1. This
 * should then result in some scalings standing out as having particularly good alignment factors;
 * we can use this to produce a set of candidate scale/shift values for various quantization levels;
 * we should then actually try them and see what happens.
 */

#include "astcenc_internal.h"
#include "astcenc_vecmathlib.h"

#include <stdio.h>
#include <cassert>
#include <cstring>

static constexpr unsigned int ANGULAR_STEPS { 32 };

static_assert((ANGULAR_STEPS % ASTCENC_SIMD_WIDTH) == 0,
              "ANGULAR_STEPS must be multiple of ASTCENC_SIMD_WIDTH");

static_assert(ANGULAR_STEPS >= 32,
              "ANGULAR_STEPS must be at least max(steps_for_quant_level)");

// Store a reduced sin/cos table for 64 possible weight values; this causes
// slight quality loss compared to using sin() and cos() directly. Must be 2^N.
static constexpr unsigned int SINCOS_STEPS { 64 };

static const uint8_t steps_for_quant_level[12] {
	2, 3, 4, 5, 6, 8, 10, 12, 16, 20, 24, 32
};

alignas(ASTCENC_VECALIGN) static float sin_table[SINCOS_STEPS][ANGULAR_STEPS];
alignas(ASTCENC_VECALIGN) static float cos_table[SINCOS_STEPS][ANGULAR_STEPS];

#if defined(ASTCENC_DIAGNOSTICS)
	static bool print_once { true };
#endif

/* See header for documentation. */
void prepare_angular_tables()
{
	for (unsigned int i = 0; i < ANGULAR_STEPS; i++)
	{
		float angle_step = static_cast<float>(i + 1);

		for (unsigned int j = 0; j < SINCOS_STEPS; j++)
		{
			sin_table[j][i] = static_cast<float>(sinf((2.0f * astc::PI / (SINCOS_STEPS - 1.0f)) * angle_step * static_cast<float>(j)));
			cos_table[j][i] = static_cast<float>(cosf((2.0f * astc::PI / (SINCOS_STEPS - 1.0f)) * angle_step * static_cast<float>(j)));
		}
	}
}

/**
 * @brief Compute the angular alignment factors and offsets.
 *
 * @param      weight_count              The number of (decimated) weights.
 * @param      dec_weight_ideal_value    The ideal decimated unquantized weight values.
 * @param      max_angular_steps         The maximum number of steps to be tested.
 * @param[out] offsets                   The output angular offsets array.
 */
static void compute_angular_offsets(
	unsigned int weight_count,
	const float* dec_weight_ideal_value,
	unsigned int max_angular_steps,
	float* offsets
) {
	promise(weight_count > 0);
	promise(max_angular_steps > 0);

	alignas(ASTCENC_VECALIGN) int isamplev[BLOCK_MAX_WEIGHTS];

	// Precompute isample; arrays are always allocated 64 elements long
	for (unsigned int i = 0; i < weight_count; i += ASTCENC_SIMD_WIDTH)
	{
		// Add 2^23 and interpreting bits extracts round-to-nearest int
		vfloat sample = loada(dec_weight_ideal_value + i) * (SINCOS_STEPS - 1.0f) + vfloat(12582912.0f);
		vint isample = float_as_int(sample) & vint((SINCOS_STEPS - 1));
		storea(isample, isamplev + i);
	}

	// Arrays are multiple of SIMD width (ANGULAR_STEPS), safe to overshoot max
	vfloat mult = vfloat(1.0f / (2.0f * astc::PI));

	for (unsigned int i = 0; i < max_angular_steps; i += ASTCENC_SIMD_WIDTH)
	{
		vfloat anglesum_x = vfloat::zero();
		vfloat anglesum_y = vfloat::zero();

		for (unsigned int j = 0; j < weight_count; j++)
		{
			int isample = isamplev[j];
			anglesum_x += loada(cos_table[isample] + i);
			anglesum_y += loada(sin_table[isample] + i);
		}

		vfloat angle = atan2(anglesum_y, anglesum_x);
		vfloat ofs = angle * mult;
		storea(ofs, offsets + i);
	}
}

/**
 * @brief For a given step size compute the lowest and highest weight.
 *
 * Compute the lowest and highest weight that results from quantizing using the given stepsize and
 * offset, and then compute the resulting error. The cut errors indicate the error that results from
 * forcing samples that should have had one weight value one step up or down.
 *
 * @param      weight_count              The number of (decimated) weights.
 * @param      dec_weight_ideal_value    The ideal decimated unquantized weight values.
 * @param      max_angular_steps         The maximum number of steps to be tested.
 * @param      max_quant_steps           The maximum quantization level to be tested.
 * @param      offsets                   The angular offsets array.
 * @param[out] lowest_weight             Per angular step, the lowest weight.
 * @param[out] weight_span               Per angular step, the span between lowest and highest weight.
 * @param[out] error                     Per angular step, the error.
 * @param[out] cut_low_weight_error      Per angular step, the low weight cut error.
 * @param[out] cut_high_weight_error     Per angular step, the high weight cut error.
 */
static void compute_lowest_and_highest_weight(
	unsigned int weight_count,
	const float* dec_weight_ideal_value,
	unsigned int max_angular_steps,
	unsigned int max_quant_steps,
	const float* offsets,
	float* lowest_weight,
	int* weight_span,
	float* error,
	float* cut_low_weight_error,
	float* cut_high_weight_error
) {
	promise(weight_count > 0);
	promise(max_angular_steps > 0);

	vfloat rcp_stepsize = vfloat::lane_id() + vfloat(1.0f);

	// Arrays are ANGULAR_STEPS long, so always safe to run full vectors
	for (unsigned int sp = 0; sp < max_angular_steps; sp += ASTCENC_SIMD_WIDTH)
	{
		vfloat minidx(128.0f);
		vfloat maxidx(-128.0f);
		vfloat errval = vfloat::zero();
		vfloat cut_low_weight_err = vfloat::zero();
		vfloat cut_high_weight_err = vfloat::zero();
		vfloat offset = loada(offsets + sp);

		for (unsigned int j = 0; j < weight_count; j++)
		{
			vfloat sval = load1(dec_weight_ideal_value + j) * rcp_stepsize - offset;
			vfloat svalrte = round(sval);
			vfloat diff = sval - svalrte;
			errval += diff * diff;

			// Reset tracker on min hit
			vmask mask = svalrte < minidx;
			minidx = select(minidx, svalrte, mask);
			cut_low_weight_err = select(cut_low_weight_err, vfloat::zero(), mask);

			// Accumulate on min hit
			mask = svalrte == minidx;
			vfloat accum = cut_low_weight_err + vfloat(1.0f) - vfloat(2.0f) * diff;
			cut_low_weight_err = select(cut_low_weight_err, accum, mask);

			// Reset tracker on max hit
			mask = svalrte > maxidx;
			maxidx = select(maxidx, svalrte, mask);
			cut_high_weight_err = select(cut_high_weight_err, vfloat::zero(), mask);

			// Accumulate on max hit
			mask = svalrte == maxidx;
			accum = cut_high_weight_err + vfloat(1.0f) + vfloat(2.0f) * diff;
			cut_high_weight_err = select(cut_high_weight_err, accum, mask);
		}

		// Write out min weight and weight span; clamp span to a usable range
		vint span = float_to_int(maxidx - minidx + vfloat(1));
		span = min(span, vint(max_quant_steps + 3));
		span = max(span, vint(2));
		storea(minidx, lowest_weight + sp);
		storea(span, weight_span + sp);

		// The cut_(lowest/highest)_weight_error indicate the error that results from  forcing
		// samples that should have had the weight value one step (up/down).
		vfloat ssize = 1.0f / rcp_stepsize;
		vfloat errscale = ssize * ssize;
		storea(errval * errscale, error + sp);
		storea(cut_low_weight_err * errscale, cut_low_weight_error + sp);
		storea(cut_high_weight_err * errscale, cut_high_weight_error + sp);

		rcp_stepsize = rcp_stepsize + vfloat(ASTCENC_SIMD_WIDTH);
	}
}

/**
 * @brief The main function for the angular algorithm.
 *
 * @param      weight_count              The number of (decimated) weights.
 * @param      dec_weight_ideal_value    The ideal decimated unquantized weight values.
 * @param      max_quant_level           The maximum quantization level to be tested.
 * @param[out] low_value                 Per angular step, the lowest weight value.
 * @param[out] high_value                Per angular step, the highest weight value.
 */
static void compute_angular_endpoints_for_quant_levels(
	unsigned int weight_count,
	const float* dec_weight_ideal_value,
	unsigned int max_quant_level,
	float low_value[TUNE_MAX_ANGULAR_QUANT + 1],
	float high_value[TUNE_MAX_ANGULAR_QUANT + 1]
) {
	unsigned int max_quant_steps = steps_for_quant_level[max_quant_level];
	unsigned int max_angular_steps = steps_for_quant_level[max_quant_level];

	alignas(ASTCENC_VECALIGN) float angular_offsets[ANGULAR_STEPS];

	compute_angular_offsets(weight_count, dec_weight_ideal_value,
	                        max_angular_steps, angular_offsets);

	alignas(ASTCENC_VECALIGN) float lowest_weight[ANGULAR_STEPS];
	alignas(ASTCENC_VECALIGN) int32_t weight_span[ANGULAR_STEPS];
	alignas(ASTCENC_VECALIGN) float error[ANGULAR_STEPS];
	alignas(ASTCENC_VECALIGN) float cut_low_weight_error[ANGULAR_STEPS];
	alignas(ASTCENC_VECALIGN) float cut_high_weight_error[ANGULAR_STEPS];

	compute_lowest_and_highest_weight(weight_count, dec_weight_ideal_value,
	                                  max_angular_steps, max_quant_steps,
	                                  angular_offsets, lowest_weight, weight_span, error,
	                                  cut_low_weight_error, cut_high_weight_error);

	// For each quantization level, find the best error terms. Use packed vectors so data-dependent
	// branches can become selects. This involves some integer to float casts, but the values are
	// small enough so they never round the wrong way.
	vfloat4 best_results[36];

	// Initialize the array to some safe defaults
	promise(max_quant_steps > 0);
	for (unsigned int i = 0; i < (max_quant_steps + 4); i++)
	{
		// Lane<0> = Best error
		// Lane<1> = Best scale; -1 indicates no solution found
		// Lane<2> = Cut low weight
		best_results[i] = vfloat4(ERROR_CALC_DEFAULT, -1.0f, 0.0f, 0.0f);
	}

	promise(max_angular_steps > 0);
	for (unsigned int i = 0; i < max_angular_steps; i++)
	{
		float i_flt = static_cast<float>(i);

		int idx_span = weight_span[i];

		float error_cut_low = error[i] + cut_low_weight_error[i];
		float error_cut_high = error[i] + cut_high_weight_error[i];
		float error_cut_low_high = error[i] + cut_low_weight_error[i] + cut_high_weight_error[i];

		// Check best error against record N
		vfloat4 best_result = best_results[idx_span];
		vfloat4 new_result = vfloat4(error[i], i_flt, 0.0f, 0.0f);
		vmask4 mask = vfloat4(best_result.lane<0>()) > vfloat4(error[i]);
		best_results[idx_span] = select(best_result, new_result, mask);

		// Check best error against record N-1 with either cut low or cut high
		best_result = best_results[idx_span - 1];

		new_result = vfloat4(error_cut_low, i_flt, 1.0f, 0.0f);
		mask = vfloat4(best_result.lane<0>()) > vfloat4(error_cut_low);
		best_result = select(best_result, new_result, mask);

		new_result = vfloat4(error_cut_high, i_flt, 0.0f, 0.0f);
		mask = vfloat4(best_result.lane<0>()) > vfloat4(error_cut_high);
		best_results[idx_span - 1] = select(best_result, new_result, mask);

		// Check best error against record N-2 with both cut low and high
		best_result = best_results[idx_span - 2];
		new_result = vfloat4(error_cut_low_high, i_flt, 1.0f, 0.0f);
		mask = vfloat4(best_result.lane<0>()) > vfloat4(error_cut_low_high);
		best_results[idx_span - 2] = select(best_result, new_result, mask);
	}

	for (unsigned int i = 0; i <= max_quant_level; i++)
	{
		unsigned int q = steps_for_quant_level[i];
		int bsi = static_cast<int>(best_results[q].lane<1>());

		// Did we find anything?
#if defined(ASTCENC_DIAGNOSTICS)
		if ((bsi < 0) && print_once)
		{
			print_once = false;
			printf("INFO: Unable to find full encoding within search error limit.\n\n");
		}
#endif

		bsi = astc::max(0, bsi);

		float lwi = lowest_weight[bsi] + best_results[q].lane<2>();
		float hwi = lwi + static_cast<float>(q) - 1.0f;

		float stepsize = 1.0f / (1.0f + static_cast<float>(bsi));
		low_value[i]  = (angular_offsets[bsi] + lwi) * stepsize;
		high_value[i] = (angular_offsets[bsi] + hwi) * stepsize;
	}
}

/* See header for documentation. */
void compute_angular_endpoints_1plane(
	bool only_always,
	const block_size_descriptor& bsd,
	const float* dec_weight_ideal_value,
	unsigned int max_weight_quant,
	compression_working_buffers& tmpbuf
) {
	float (&low_value)[WEIGHTS_MAX_BLOCK_MODES] = tmpbuf.weight_low_value1;
	float (&high_value)[WEIGHTS_MAX_BLOCK_MODES] = tmpbuf.weight_high_value1;

	float (&low_values)[WEIGHTS_MAX_DECIMATION_MODES][TUNE_MAX_ANGULAR_QUANT + 1] = tmpbuf.weight_low_values1;
	float (&high_values)[WEIGHTS_MAX_DECIMATION_MODES][TUNE_MAX_ANGULAR_QUANT + 1] = tmpbuf.weight_high_values1;

	unsigned int max_decimation_modes = only_always ? bsd.decimation_mode_count_always
	                                                : bsd.decimation_mode_count_selected;
	promise(max_decimation_modes > 0);
	for (unsigned int i = 0; i < max_decimation_modes; i++)
	{
		const decimation_mode& dm = bsd.decimation_modes[i];
		if (!dm.is_ref_1_plane(static_cast<quant_method>(max_weight_quant)))
		{
			continue;
		}

		unsigned int weight_count = bsd.get_decimation_info(i).weight_count;

		unsigned int max_precision = dm.maxprec_1plane;
		if (max_precision > TUNE_MAX_ANGULAR_QUANT)
		{
			max_precision = TUNE_MAX_ANGULAR_QUANT;
		}

		if (max_precision > max_weight_quant)
		{
			max_precision = max_weight_quant;
		}

		compute_angular_endpoints_for_quant_levels(
		    weight_count,
		    dec_weight_ideal_value + i * BLOCK_MAX_WEIGHTS,
		    max_precision, low_values[i], high_values[i]);
	}

	unsigned int max_block_modes = only_always ? bsd.block_mode_count_1plane_always
	                                           : bsd.block_mode_count_1plane_selected;
	promise(max_block_modes > 0);
	for (unsigned int i = 0; i < max_block_modes; i++)
	{
		const block_mode& bm = bsd.block_modes[i];
		assert(!bm.is_dual_plane);

		unsigned int quant_mode = bm.quant_mode;
		unsigned int decim_mode = bm.decimation_mode;

		if (quant_mode <= TUNE_MAX_ANGULAR_QUANT)
		{
			low_value[i] = low_values[decim_mode][quant_mode];
			high_value[i] = high_values[decim_mode][quant_mode];
		}
		else
		{
			low_value[i] = 0.0f;
			high_value[i] = 1.0f;
		}
	}
}

/* See header for documentation. */
void compute_angular_endpoints_2planes(
	const block_size_descriptor& bsd,
	const float* dec_weight_ideal_value,
	unsigned int max_weight_quant,
	compression_working_buffers& tmpbuf
) {
	float (&low_value1)[WEIGHTS_MAX_BLOCK_MODES] = tmpbuf.weight_low_value1;
	float (&high_value1)[WEIGHTS_MAX_BLOCK_MODES] = tmpbuf.weight_high_value1;
	float (&low_value2)[WEIGHTS_MAX_BLOCK_MODES] = tmpbuf.weight_low_value2;
	float (&high_value2)[WEIGHTS_MAX_BLOCK_MODES] = tmpbuf.weight_high_value2;

	float (&low_values1)[WEIGHTS_MAX_DECIMATION_MODES][TUNE_MAX_ANGULAR_QUANT + 1] = tmpbuf.weight_low_values1;
	float (&high_values1)[WEIGHTS_MAX_DECIMATION_MODES][TUNE_MAX_ANGULAR_QUANT + 1] = tmpbuf.weight_high_values1;
	float (&low_values2)[WEIGHTS_MAX_DECIMATION_MODES][TUNE_MAX_ANGULAR_QUANT + 1] = tmpbuf.weight_low_values2;
	float (&high_values2)[WEIGHTS_MAX_DECIMATION_MODES][TUNE_MAX_ANGULAR_QUANT + 1] = tmpbuf.weight_high_values2;

	promise(bsd.decimation_mode_count_selected > 0);
	for (unsigned int i = 0; i < bsd.decimation_mode_count_selected; i++)
	{
		const decimation_mode& dm = bsd.decimation_modes[i];
		if (!dm.is_ref_2_plane(static_cast<quant_method>(max_weight_quant)))
		{
			continue;
		}

		unsigned int weight_count = bsd.get_decimation_info(i).weight_count;

		unsigned int max_precision = dm.maxprec_2planes;
		if (max_precision > TUNE_MAX_ANGULAR_QUANT)
		{
			max_precision = TUNE_MAX_ANGULAR_QUANT;
		}

		if (max_precision > max_weight_quant)
		{
			max_precision = max_weight_quant;
		}

		compute_angular_endpoints_for_quant_levels(
		    weight_count,
		    dec_weight_ideal_value + i * BLOCK_MAX_WEIGHTS,
		    max_precision, low_values1[i], high_values1[i]);

		compute_angular_endpoints_for_quant_levels(
		    weight_count,
		    dec_weight_ideal_value + i * BLOCK_MAX_WEIGHTS + WEIGHTS_PLANE2_OFFSET,
		    max_precision, low_values2[i], high_values2[i]);
	}

	unsigned int start = bsd.block_mode_count_1plane_selected;
	unsigned int end = bsd.block_mode_count_1plane_2plane_selected;
	for (unsigned int i = start; i < end; i++)
	{
		const block_mode& bm = bsd.block_modes[i];
		unsigned int quant_mode = bm.quant_mode;
		unsigned int decim_mode = bm.decimation_mode;

		if (quant_mode <= TUNE_MAX_ANGULAR_QUANT)
		{
			low_value1[i] = low_values1[decim_mode][quant_mode];
			high_value1[i] = high_values1[decim_mode][quant_mode];
			low_value2[i] = low_values2[decim_mode][quant_mode];
			high_value2[i] = high_values2[decim_mode][quant_mode];
		}
		else
		{
			low_value1[i] = 0.0f;
			high_value1[i] = 1.0f;
			low_value2[i] = 0.0f;
			high_value2[i] = 1.0f;
		}
	}
}

#endif