summaryrefslogtreecommitdiff
path: root/thirdparty/astcenc/astcenc_vecmathlib_neon_4.h
blob: e742eae6cbc3f4ecb45f0be5c55e460033968e76 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
// SPDX-License-Identifier: Apache-2.0
// ----------------------------------------------------------------------------
// Copyright 2019-2022 Arm Limited
//
// Licensed under the Apache License, Version 2.0 (the "License"); you may not
// use this file except in compliance with the License. You may obtain a copy
// of the License at:
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
// License for the specific language governing permissions and limitations
// under the License.
// ----------------------------------------------------------------------------

/**
 * @brief 4x32-bit vectors, implemented using Armv8-A NEON.
 *
 * This module implements 4-wide 32-bit float, int, and mask vectors for
 * Armv8-A NEON.
 *
 * There is a baseline level of functionality provided by all vector widths and
 * implementations. This is implemented using identical function signatures,
 * modulo data type, so we can use them as substitutable implementations in VLA
 * code.
 *
 * The 4-wide vectors are also used as a fixed-width type, and significantly
 * extend the functionality above that available to VLA code.
 */

#ifndef ASTC_VECMATHLIB_NEON_4_H_INCLUDED
#define ASTC_VECMATHLIB_NEON_4_H_INCLUDED

#ifndef ASTCENC_SIMD_INLINE
	#error "Include astcenc_vecmathlib.h, do not include directly"
#endif

#include <cstdio>

// ============================================================================
// vfloat4 data type
// ============================================================================

/**
 * @brief Data type for 4-wide floats.
 */
struct vfloat4
{
	/**
	 * @brief Construct from zero-initialized value.
	 */
	ASTCENC_SIMD_INLINE vfloat4() = default;

	/**
	 * @brief Construct from 4 values loaded from an unaligned address.
	 *
	 * Consider using loada() which is better with vectors if data is aligned
	 * to vector length.
	 */
	ASTCENC_SIMD_INLINE explicit vfloat4(const float *p)
	{
		m = vld1q_f32(p);
	}

	/**
	 * @brief Construct from 1 scalar value replicated across all lanes.
	 *
	 * Consider using zero() for constexpr zeros.
	 */
	ASTCENC_SIMD_INLINE explicit vfloat4(float a)
	{
		m = vdupq_n_f32(a);
	}

	/**
	 * @brief Construct from 4 scalar values.
	 *
	 * The value of @c a is stored to lane 0 (LSB) in the SIMD register.
	 */
	ASTCENC_SIMD_INLINE explicit vfloat4(float a, float b, float c, float d)
	{
		float v[4] { a, b, c, d };
		m = vld1q_f32(v);
	}

	/**
	 * @brief Construct from an existing SIMD register.
	 */
	ASTCENC_SIMD_INLINE explicit vfloat4(float32x4_t a)
	{
		m = a;
	}

	/**
	 * @brief Get the scalar value of a single lane.
	 */
	template <int l> ASTCENC_SIMD_INLINE float lane() const
	{
		return vgetq_lane_f32(m, l);
	}

	/**
	 * @brief Set the scalar value of a single lane.
	 */
	template <int l> ASTCENC_SIMD_INLINE void set_lane(float a)
	{
		m = vsetq_lane_f32(a, m, l);
	}

	/**
	 * @brief Factory that returns a vector of zeros.
	 */
	static ASTCENC_SIMD_INLINE vfloat4 zero()
	{
		return vfloat4(vdupq_n_f32(0.0f));
	}

	/**
	 * @brief Factory that returns a replicated scalar loaded from memory.
	 */
	static ASTCENC_SIMD_INLINE vfloat4 load1(const float* p)
	{
		return vfloat4(vld1q_dup_f32(p));
	}

	/**
	 * @brief Factory that returns a vector loaded from 16B aligned memory.
	 */
	static ASTCENC_SIMD_INLINE vfloat4 loada(const float* p)
	{
		return vfloat4(vld1q_f32(p));
	}

	/**
	 * @brief Factory that returns a vector containing the lane IDs.
	 */
	static ASTCENC_SIMD_INLINE vfloat4 lane_id()
	{
		alignas(16) float data[4] { 0.0f, 1.0f, 2.0f, 3.0f };
		return vfloat4(vld1q_f32(data));
	}

	/**
	 * @brief Return a swizzled float 2.
	 */
	template <int l0, int l1> ASTCENC_SIMD_INLINE vfloat4 swz() const
	{
		return vfloat4(lane<l0>(), lane<l1>(), 0.0f, 0.0f);
	}

	/**
	 * @brief Return a swizzled float 3.
	 */
	template <int l0, int l1, int l2> ASTCENC_SIMD_INLINE vfloat4 swz() const
	{
		return vfloat4(lane<l0>(), lane<l1>(), lane<l2>(), 0.0f);
	}

	/**
	 * @brief Return a swizzled float 4.
	 */
	template <int l0, int l1, int l2, int l3> ASTCENC_SIMD_INLINE vfloat4 swz() const
	{
		return vfloat4(lane<l0>(), lane<l1>(), lane<l2>(), lane<l3>());
	}

	/**
	 * @brief The vector ...
	 */
	float32x4_t m;
};

// ============================================================================
// vint4 data type
// ============================================================================

/**
 * @brief Data type for 4-wide ints.
 */
struct vint4
{
	/**
	 * @brief Construct from zero-initialized value.
	 */
	ASTCENC_SIMD_INLINE vint4() = default;

	/**
	 * @brief Construct from 4 values loaded from an unaligned address.
	 *
	 * Consider using loada() which is better with vectors if data is aligned
	 * to vector length.
	 */
	ASTCENC_SIMD_INLINE explicit vint4(const int *p)
	{
		m = vld1q_s32(p);
	}

	/**
	 * @brief Construct from 4 uint8_t loaded from an unaligned address.
	 */
	ASTCENC_SIMD_INLINE explicit vint4(const uint8_t *p)
	{
		// Cast is safe - NEON loads are allowed to be unaligned
		uint32x2_t t8 = vld1_dup_u32(reinterpret_cast<const uint32_t*>(p));
		uint16x4_t t16 = vget_low_u16(vmovl_u8(vreinterpret_u8_u32(t8)));
		m = vreinterpretq_s32_u32(vmovl_u16(t16));
	}

	/**
	 * @brief Construct from 1 scalar value replicated across all lanes.
	 *
	 * Consider using vfloat4::zero() for constexpr zeros.
	 */
	ASTCENC_SIMD_INLINE explicit vint4(int a)
	{
		m = vdupq_n_s32(a);
	}

	/**
	 * @brief Construct from 4 scalar values.
	 *
	 * The value of @c a is stored to lane 0 (LSB) in the SIMD register.
	 */
	ASTCENC_SIMD_INLINE explicit vint4(int a, int b, int c, int d)
	{
		int v[4] { a, b, c, d };
		m = vld1q_s32(v);
	}

	/**
	 * @brief Construct from an existing SIMD register.
	 */
	ASTCENC_SIMD_INLINE explicit vint4(int32x4_t a)
	{
		m = a;
	}

	/**
	 * @brief Get the scalar from a single lane.
	 */
	template <int l> ASTCENC_SIMD_INLINE int lane() const
	{
		return vgetq_lane_s32(m, l);
	}

	/**
	 * @brief Set the scalar value of a single lane.
	 */
	template <int l> ASTCENC_SIMD_INLINE void set_lane(int a)
	{
		m = vsetq_lane_s32(a, m, l);
	}

	/**
	 * @brief Factory that returns a vector of zeros.
	 */
	static ASTCENC_SIMD_INLINE vint4 zero()
	{
		return vint4(0);
	}

	/**
	 * @brief Factory that returns a replicated scalar loaded from memory.
	 */
	static ASTCENC_SIMD_INLINE vint4 load1(const int* p)
	{
		return vint4(*p);
	}

	/**
	 * @brief Factory that returns a vector loaded from 16B aligned memory.
	 */
	static ASTCENC_SIMD_INLINE vint4 loada(const int* p)
	{
		return vint4(p);
	}

	/**
	 * @brief Factory that returns a vector containing the lane IDs.
	 */
	static ASTCENC_SIMD_INLINE vint4 lane_id()
	{
		alignas(16) static const int data[4] { 0, 1, 2, 3 };
		return vint4(vld1q_s32(data));
	}

	/**
	 * @brief The vector ...
	 */
	int32x4_t m;
};

// ============================================================================
// vmask4 data type
// ============================================================================

/**
 * @brief Data type for 4-wide control plane masks.
 */
struct vmask4
{
	/**
	 * @brief Construct from an existing SIMD register.
	 */
	ASTCENC_SIMD_INLINE explicit vmask4(uint32x4_t a)
	{
		m = a;
	}

#if !defined(_MSC_VER)
	/**
	 * @brief Construct from an existing SIMD register.
	 */
	ASTCENC_SIMD_INLINE explicit vmask4(int32x4_t a)
	{
		m = vreinterpretq_u32_s32(a);
	}
#endif

	/**
	 * @brief Construct from 1 scalar value.
	 */
	ASTCENC_SIMD_INLINE explicit vmask4(bool a)
	{
		m = vreinterpretq_u32_s32(vdupq_n_s32(a == true ? -1 : 0));
	}

	/**
	 * @brief Construct from 4 scalar values.
	 *
	 * The value of @c a is stored to lane 0 (LSB) in the SIMD register.
	 */
	ASTCENC_SIMD_INLINE explicit vmask4(bool a, bool b, bool c, bool d)
	{
		int v[4] {
			a == true ? -1 : 0,
			b == true ? -1 : 0,
			c == true ? -1 : 0,
			d == true ? -1 : 0
		};

		int32x4_t ms = vld1q_s32(v);
		m = vreinterpretq_u32_s32(ms);
	}

	/**
	 * @brief Get the scalar from a single lane.
	 */
	template <int32_t l> ASTCENC_SIMD_INLINE uint32_t lane() const
	{
		return vgetq_lane_u32(m, l);
	}

	/**
	 * @brief The vector ...
	 */
	uint32x4_t m;
};

// ============================================================================
// vmask4 operators and functions
// ============================================================================

/**
 * @brief Overload: mask union (or).
 */
ASTCENC_SIMD_INLINE vmask4 operator|(vmask4 a, vmask4 b)
{
	return vmask4(vorrq_u32(a.m, b.m));
}

/**
 * @brief Overload: mask intersect (and).
 */
ASTCENC_SIMD_INLINE vmask4 operator&(vmask4 a, vmask4 b)
{
	return vmask4(vandq_u32(a.m, b.m));
}

/**
 * @brief Overload: mask difference (xor).
 */
ASTCENC_SIMD_INLINE vmask4 operator^(vmask4 a, vmask4 b)
{
	return vmask4(veorq_u32(a.m, b.m));
}

/**
 * @brief Overload: mask invert (not).
 */
ASTCENC_SIMD_INLINE vmask4 operator~(vmask4 a)
{
	return vmask4(vmvnq_u32(a.m));
}

/**
 * @brief Return a 4-bit mask code indicating mask status.
 *
 * bit0 = lane 0
 */
ASTCENC_SIMD_INLINE unsigned int mask(vmask4 a)
{
	static const int shifta[4] { 0, 1, 2, 3 };
	static const int32x4_t shift = vld1q_s32(shifta);

	uint32x4_t tmp = vshrq_n_u32(a.m, 31);
	return vaddvq_u32(vshlq_u32(tmp, shift));
}

// ============================================================================
// vint4 operators and functions
// ============================================================================

/**
 * @brief Overload: vector by vector addition.
 */
ASTCENC_SIMD_INLINE vint4 operator+(vint4 a, vint4 b)
{
	return vint4(vaddq_s32(a.m, b.m));
}

/**
 * @brief Overload: vector by vector subtraction.
 */
ASTCENC_SIMD_INLINE vint4 operator-(vint4 a, vint4 b)
{
	return vint4(vsubq_s32(a.m, b.m));
}

/**
 * @brief Overload: vector by vector multiplication.
 */
ASTCENC_SIMD_INLINE vint4 operator*(vint4 a, vint4 b)
{
	return vint4(vmulq_s32(a.m, b.m));
}

/**
 * @brief Overload: vector bit invert.
 */
ASTCENC_SIMD_INLINE vint4 operator~(vint4 a)
{
	return vint4(vmvnq_s32(a.m));
}

/**
 * @brief Overload: vector by vector bitwise or.
 */
ASTCENC_SIMD_INLINE vint4 operator|(vint4 a, vint4 b)
{
	return vint4(vorrq_s32(a.m, b.m));
}

/**
 * @brief Overload: vector by vector bitwise and.
 */
ASTCENC_SIMD_INLINE vint4 operator&(vint4 a, vint4 b)
{
	return vint4(vandq_s32(a.m, b.m));
}

/**
 * @brief Overload: vector by vector bitwise xor.
 */
ASTCENC_SIMD_INLINE vint4 operator^(vint4 a, vint4 b)
{
	return vint4(veorq_s32(a.m, b.m));
}

/**
 * @brief Overload: vector by vector equality.
 */
ASTCENC_SIMD_INLINE vmask4 operator==(vint4 a, vint4 b)
{
	return vmask4(vceqq_s32(a.m, b.m));
}

/**
 * @brief Overload: vector by vector inequality.
 */
ASTCENC_SIMD_INLINE vmask4 operator!=(vint4 a, vint4 b)
{
	return ~vmask4(vceqq_s32(a.m, b.m));
}

/**
 * @brief Overload: vector by vector less than.
 */
ASTCENC_SIMD_INLINE vmask4 operator<(vint4 a, vint4 b)
{
	return vmask4(vcltq_s32(a.m, b.m));
}

/**
 * @brief Overload: vector by vector greater than.
 */
ASTCENC_SIMD_INLINE vmask4 operator>(vint4 a, vint4 b)
{
	return vmask4(vcgtq_s32(a.m, b.m));
}

/**
 * @brief Logical shift left.
 */
template <int s> ASTCENC_SIMD_INLINE vint4 lsl(vint4 a)
{
	return vint4(vshlq_s32(a.m, vdupq_n_s32(s)));
}

/**
 * @brief Logical shift right.
 */
template <int s> ASTCENC_SIMD_INLINE vint4 lsr(vint4 a)
{
	uint32x4_t ua = vreinterpretq_u32_s32(a.m);
	ua = vshlq_u32(ua, vdupq_n_s32(-s));
	return vint4(vreinterpretq_s32_u32(ua));
}

/**
 * @brief Arithmetic shift right.
 */
template <int s> ASTCENC_SIMD_INLINE vint4 asr(vint4 a)
{
	return vint4(vshlq_s32(a.m, vdupq_n_s32(-s)));
}

/**
 * @brief Return the min vector of two vectors.
 */
ASTCENC_SIMD_INLINE vint4 min(vint4 a, vint4 b)
{
	return vint4(vminq_s32(a.m, b.m));
}

/**
 * @brief Return the max vector of two vectors.
 */
ASTCENC_SIMD_INLINE vint4 max(vint4 a, vint4 b)
{
	return vint4(vmaxq_s32(a.m, b.m));
}

/**
 * @brief Return the horizontal minimum of a vector.
 */
ASTCENC_SIMD_INLINE vint4 hmin(vint4 a)
{
	return vint4(vminvq_s32(a.m));
}

/**
 * @brief Return the horizontal maximum of a vector.
 */
ASTCENC_SIMD_INLINE vint4 hmax(vint4 a)
{
	return vint4(vmaxvq_s32(a.m));
}

/**
 * @brief Return the horizontal sum of a vector.
 */
ASTCENC_SIMD_INLINE int hadd_s(vint4 a)
{
	int32x2_t t = vadd_s32(vget_high_s32(a.m), vget_low_s32(a.m));
	return vget_lane_s32(vpadd_s32(t, t), 0);
}

/**
 * @brief Store a vector to a 16B aligned memory address.
 */
ASTCENC_SIMD_INLINE void storea(vint4 a, int* p)
{
	vst1q_s32(p, a.m);
}

/**
 * @brief Store a vector to an unaligned memory address.
 */
ASTCENC_SIMD_INLINE void store(vint4 a, int* p)
{
	vst1q_s32(p, a.m);
}

/**
 * @brief Store lowest N (vector width) bytes into an unaligned address.
 */
ASTCENC_SIMD_INLINE void store_nbytes(vint4 a, uint8_t* p)
{
	vst1q_lane_s32(reinterpret_cast<int32_t*>(p), a.m, 0);
}

/**
 * @brief Gather N (vector width) indices from the array.
 */
ASTCENC_SIMD_INLINE vint4 gatheri(const int* base, vint4 indices)
{
	alignas(16) int idx[4];
	storea(indices, idx);
	alignas(16) int vals[4];
	vals[0] = base[idx[0]];
	vals[1] = base[idx[1]];
	vals[2] = base[idx[2]];
	vals[3] = base[idx[3]];
	return vint4(vals);
}

/**
 * @brief Pack low 8 bits of N (vector width) lanes into bottom of vector.
 */
ASTCENC_SIMD_INLINE vint4 pack_low_bytes(vint4 a)
{
	alignas(16) uint8_t shuf[16] {
		0, 4, 8, 12,   0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0
	};
	uint8x16_t idx = vld1q_u8(shuf);
	int8x16_t av = vreinterpretq_s8_s32(a.m);
	return vint4(vreinterpretq_s32_s8(vqtbl1q_s8(av, idx)));
}

/**
 * @brief Return lanes from @c b if @c cond is set, else @c a.
 */
ASTCENC_SIMD_INLINE vint4 select(vint4 a, vint4 b, vmask4 cond)
{
	return vint4(vbslq_s32(cond.m, b.m, a.m));
}

// ============================================================================
// vfloat4 operators and functions
// ============================================================================

/**
 * @brief Overload: vector by vector addition.
 */
ASTCENC_SIMD_INLINE vfloat4 operator+(vfloat4 a, vfloat4 b)
{
	return vfloat4(vaddq_f32(a.m, b.m));
}

/**
 * @brief Overload: vector by vector subtraction.
 */
ASTCENC_SIMD_INLINE vfloat4 operator-(vfloat4 a, vfloat4 b)
{
	return vfloat4(vsubq_f32(a.m, b.m));
}

/**
 * @brief Overload: vector by vector multiplication.
 */
ASTCENC_SIMD_INLINE vfloat4 operator*(vfloat4 a, vfloat4 b)
{
	return vfloat4(vmulq_f32(a.m, b.m));
}

/**
 * @brief Overload: vector by vector division.
 */
ASTCENC_SIMD_INLINE vfloat4 operator/(vfloat4 a, vfloat4 b)
{
	return vfloat4(vdivq_f32(a.m, b.m));
}

/**
 * @brief Overload: vector by vector equality.
 */
ASTCENC_SIMD_INLINE vmask4 operator==(vfloat4 a, vfloat4 b)
{
	return vmask4(vceqq_f32(a.m, b.m));
}

/**
 * @brief Overload: vector by vector inequality.
 */
ASTCENC_SIMD_INLINE vmask4 operator!=(vfloat4 a, vfloat4 b)
{
	return vmask4(vmvnq_u32(vceqq_f32(a.m, b.m)));
}

/**
 * @brief Overload: vector by vector less than.
 */
ASTCENC_SIMD_INLINE vmask4 operator<(vfloat4 a, vfloat4 b)
{
	return vmask4(vcltq_f32(a.m, b.m));
}

/**
 * @brief Overload: vector by vector greater than.
 */
ASTCENC_SIMD_INLINE vmask4 operator>(vfloat4 a, vfloat4 b)
{
	return vmask4(vcgtq_f32(a.m, b.m));
}

/**
 * @brief Overload: vector by vector less than or equal.
 */
ASTCENC_SIMD_INLINE vmask4 operator<=(vfloat4 a, vfloat4 b)
{
	return vmask4(vcleq_f32(a.m, b.m));
}

/**
 * @brief Overload: vector by vector greater than or equal.
 */
ASTCENC_SIMD_INLINE vmask4 operator>=(vfloat4 a, vfloat4 b)
{
	return vmask4(vcgeq_f32(a.m, b.m));
}

/**
 * @brief Return the min vector of two vectors.
 *
 * If either lane value is NaN, @c b will be returned for that lane.
 */
ASTCENC_SIMD_INLINE vfloat4 min(vfloat4 a, vfloat4 b)
{
	// Do not reorder - second operand will return if either is NaN
	return vfloat4(vminnmq_f32(a.m, b.m));
}

/**
 * @brief Return the max vector of two vectors.
 *
 * If either lane value is NaN, @c b will be returned for that lane.
 */
ASTCENC_SIMD_INLINE vfloat4 max(vfloat4 a, vfloat4 b)
{
	// Do not reorder - second operand will return if either is NaN
	return vfloat4(vmaxnmq_f32(a.m, b.m));
}

/**
 * @brief Return the absolute value of the float vector.
 */
ASTCENC_SIMD_INLINE vfloat4 abs(vfloat4 a)
{
	float32x4_t zero = vdupq_n_f32(0.0f);
	float32x4_t inv = vsubq_f32(zero, a.m);
	return vfloat4(vmaxq_f32(a.m, inv));
}

/**
 * @brief Return a float rounded to the nearest integer value.
 */
ASTCENC_SIMD_INLINE vfloat4 round(vfloat4 a)
{
	return vfloat4(vrndnq_f32(a.m));
}

/**
 * @brief Return the horizontal minimum of a vector.
 */
ASTCENC_SIMD_INLINE vfloat4 hmin(vfloat4 a)
{
	return vfloat4(vminvq_f32(a.m));
}

/**
 * @brief Return the horizontal maximum of a vector.
 */
ASTCENC_SIMD_INLINE vfloat4 hmax(vfloat4 a)
{
	return vfloat4(vmaxvq_f32(a.m));
}

/**
 * @brief Return the horizontal sum of a vector.
 */
ASTCENC_SIMD_INLINE float hadd_s(vfloat4 a)
{
	// Perform halving add to ensure invariance; we cannot use vaddqv as this
	// does (0 + 1 + 2 + 3) which is not invariant with x86 (0 + 2) + (1 + 3).
	float32x2_t t = vadd_f32(vget_high_f32(a.m), vget_low_f32(a.m));
	return vget_lane_f32(vpadd_f32(t, t), 0);
}

/**
 * @brief Return the sqrt of the lanes in the vector.
 */
ASTCENC_SIMD_INLINE vfloat4 sqrt(vfloat4 a)
{
	return vfloat4(vsqrtq_f32(a.m));
}

/**
 * @brief Return lanes from @c b if @c cond is set, else @c a.
 */
ASTCENC_SIMD_INLINE vfloat4 select(vfloat4 a, vfloat4 b, vmask4 cond)
{
	return vfloat4(vbslq_f32(cond.m, b.m, a.m));
}

/**
 * @brief Return lanes from @c b if MSB of @c cond is set, else @c a.
 */
ASTCENC_SIMD_INLINE vfloat4 select_msb(vfloat4 a, vfloat4 b, vmask4 cond)
{
	static const uint32x4_t msb = vdupq_n_u32(0x80000000u);
	uint32x4_t mask = vcgeq_u32(cond.m, msb);
	return vfloat4(vbslq_f32(mask, b.m, a.m));
}

/**
 * @brief Load a vector of gathered results from an array;
 */
ASTCENC_SIMD_INLINE vfloat4 gatherf(const float* base, vint4 indices)
{
	alignas(16) int idx[4];
	storea(indices, idx);
	alignas(16) float vals[4];
	vals[0] = base[idx[0]];
	vals[1] = base[idx[1]];
	vals[2] = base[idx[2]];
	vals[3] = base[idx[3]];
	return vfloat4(vals);
}

/**
 * @brief Store a vector to an unaligned memory address.
 */
ASTCENC_SIMD_INLINE void store(vfloat4 a, float* p)
{
	vst1q_f32(p, a.m);
}

/**
 * @brief Store a vector to a 16B aligned memory address.
 */
ASTCENC_SIMD_INLINE void storea(vfloat4 a, float* p)
{
	vst1q_f32(p, a.m);
}

/**
 * @brief Return a integer value for a float vector, using truncation.
 */
ASTCENC_SIMD_INLINE vint4 float_to_int(vfloat4 a)
{
	return vint4(vcvtq_s32_f32(a.m));
}

/**
 * @brief Return a integer value for a float vector, using round-to-nearest.
 */
ASTCENC_SIMD_INLINE vint4 float_to_int_rtn(vfloat4 a)
{
	a = round(a);
	return vint4(vcvtq_s32_f32(a.m));
}

/**
 * @brief Return a float value for an integer vector.
 */
ASTCENC_SIMD_INLINE vfloat4 int_to_float(vint4 a)
{
	return vfloat4(vcvtq_f32_s32(a.m));
}

/**
 * @brief Return a float16 value for a float vector, using round-to-nearest.
 */
ASTCENC_SIMD_INLINE vint4 float_to_float16(vfloat4 a)
{
	// Generate float16 value
	float16x4_t f16 = vcvt_f16_f32(a.m);

	// Convert each 16-bit float pattern to a 32-bit pattern
	uint16x4_t u16 = vreinterpret_u16_f16(f16);
	uint32x4_t u32 = vmovl_u16(u16);
	return vint4(vreinterpretq_s32_u32(u32));
}

/**
 * @brief Return a float16 value for a float scalar, using round-to-nearest.
 */
static inline uint16_t float_to_float16(float a)
{
	vfloat4 av(a);
	return static_cast<uint16_t>(float_to_float16(av).lane<0>());
}

/**
 * @brief Return a float value for a float16 vector.
 */
ASTCENC_SIMD_INLINE vfloat4 float16_to_float(vint4 a)
{
	// Convert each 32-bit float pattern to a 16-bit pattern
	uint32x4_t u32 = vreinterpretq_u32_s32(a.m);
	uint16x4_t u16 = vmovn_u32(u32);
	float16x4_t f16 = vreinterpret_f16_u16(u16);

	// Generate float16 value
	return vfloat4(vcvt_f32_f16(f16));
}

/**
 * @brief Return a float value for a float16 scalar.
 */
ASTCENC_SIMD_INLINE float float16_to_float(uint16_t a)
{
	vint4 av(a);
	return float16_to_float(av).lane<0>();
}

/**
 * @brief Return a float value as an integer bit pattern (i.e. no conversion).
 *
 * It is a common trick to convert floats into integer bit patterns, perform
 * some bit hackery based on knowledge they are IEEE 754 layout, and then
 * convert them back again. This is the first half of that flip.
 */
ASTCENC_SIMD_INLINE vint4 float_as_int(vfloat4 a)
{
	return vint4(vreinterpretq_s32_f32(a.m));
}

/**
 * @brief Return a integer value as a float bit pattern (i.e. no conversion).
 *
 * It is a common trick to convert floats into integer bit patterns, perform
 * some bit hackery based on knowledge they are IEEE 754 layout, and then
 * convert them back again. This is the second half of that flip.
 */
ASTCENC_SIMD_INLINE vfloat4 int_as_float(vint4 v)
{
	return vfloat4(vreinterpretq_f32_s32(v.m));
}

/**
 * @brief Prepare a vtable lookup table for use with the native SIMD size.
 */
ASTCENC_SIMD_INLINE void vtable_prepare(vint4 t0, vint4& t0p)
{
	t0p = t0;
}


/**
 * @brief Prepare a vtable lookup table for use with the native SIMD size.
 */
ASTCENC_SIMD_INLINE void vtable_prepare(vint4 t0, vint4 t1, vint4& t0p, vint4& t1p)
{
	t0p = t0;
	t1p = t1;
}

/**
 * @brief Prepare a vtable lookup table for use with the native SIMD size.
 */
ASTCENC_SIMD_INLINE void vtable_prepare(
	vint4 t0, vint4 t1, vint4 t2, vint4 t3,
	vint4& t0p, vint4& t1p, vint4& t2p, vint4& t3p)
{
	t0p = t0;
	t1p = t1;
	t2p = t2;
	t3p = t3;
}

/**
 * @brief Perform an 8-bit 16-entry table lookup, with 32-bit indexes.
 */
ASTCENC_SIMD_INLINE vint4 vtable_8bt_32bi(vint4 t0, vint4 idx)
{
	int8x16_t table {
		vreinterpretq_s8_s32(t0.m)
	};

	// Set index byte above max index for unused bytes so table lookup returns zero
	int32x4_t idx_masked = vorrq_s32(idx.m, vdupq_n_s32(0xFFFFFF00));
	uint8x16_t idx_bytes = vreinterpretq_u8_s32(idx_masked);

	return vint4(vreinterpretq_s32_s8(vqtbl1q_s8(table, idx_bytes)));
}

/**
 * @brief Perform an 8-bit 32-entry table lookup, with 32-bit indexes.
 */
ASTCENC_SIMD_INLINE vint4 vtable_8bt_32bi(vint4 t0, vint4 t1, vint4 idx)
{
	int8x16x2_t table {
		vreinterpretq_s8_s32(t0.m),
		vreinterpretq_s8_s32(t1.m)
	};

	// Set index byte above max index for unused bytes so table lookup returns zero
	int32x4_t idx_masked = vorrq_s32(idx.m, vdupq_n_s32(0xFFFFFF00));
	uint8x16_t idx_bytes = vreinterpretq_u8_s32(idx_masked);

	return vint4(vreinterpretq_s32_s8(vqtbl2q_s8(table, idx_bytes)));
}

/**
 * @brief Perform an 8-bit 64-entry table lookup, with 32-bit indexes.
 */
ASTCENC_SIMD_INLINE vint4 vtable_8bt_32bi(vint4 t0, vint4 t1, vint4 t2, vint4 t3, vint4 idx)
{
	int8x16x4_t table {
		vreinterpretq_s8_s32(t0.m),
		vreinterpretq_s8_s32(t1.m),
		vreinterpretq_s8_s32(t2.m),
		vreinterpretq_s8_s32(t3.m)
	};

	// Set index byte above max index for unused bytes so table lookup returns zero
	int32x4_t idx_masked = vorrq_s32(idx.m, vdupq_n_s32(0xFFFFFF00));
	uint8x16_t idx_bytes = vreinterpretq_u8_s32(idx_masked);

	return vint4(vreinterpretq_s32_s8(vqtbl4q_s8(table, idx_bytes)));
}

/**
 * @brief Return a vector of interleaved RGBA data.
 *
 * Input vectors have the value stored in the bottom 8 bits of each lane,
 * with high  bits set to zero.
 *
 * Output vector stores a single RGBA texel packed in each lane.
 */
ASTCENC_SIMD_INLINE vint4 interleave_rgba8(vint4 r, vint4 g, vint4 b, vint4 a)
{
	return r + lsl<8>(g) + lsl<16>(b) + lsl<24>(a);
}

/**
 * @brief Store a vector, skipping masked lanes.
 *
 * All masked lanes must be at the end of vector, after all non-masked lanes.
 */
ASTCENC_SIMD_INLINE void store_lanes_masked(int* base, vint4 data, vmask4 mask)
{
	if (mask.lane<3>())
	{
		store(data, base);
	}
	else if (mask.lane<2>())
	{
		base[0] = data.lane<0>();
		base[1] = data.lane<1>();
		base[2] = data.lane<2>();
	}
	else if (mask.lane<1>())
	{
		base[0] = data.lane<0>();
		base[1] = data.lane<1>();
	}
	else if (mask.lane<0>())
	{
		base[0] = data.lane<0>();
	}
}

#define ASTCENC_USE_NATIVE_POPCOUNT 1

/**
 * @brief Population bit count.
 *
 * @param v   The value to population count.
 *
 * @return The number of 1 bits.
 */
ASTCENC_SIMD_INLINE int popcount(uint64_t v)
{
	return static_cast<int>(vaddlv_u8(vcnt_u8(vcreate_u8(v))));
}

#endif // #ifndef ASTC_VECMATHLIB_NEON_4_H_INCLUDED