1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
|
// SPDX-License-Identifier: Apache-2.0
// ----------------------------------------------------------------------------
// Copyright 2019-2022 Arm Limited
// Copyright 2008 Jose Fonseca
//
// Licensed under the Apache License, Version 2.0 (the "License"); you may not
// use this file except in compliance with the License. You may obtain a copy
// of the License at:
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
// License for the specific language governing permissions and limitations
// under the License.
// ----------------------------------------------------------------------------
/*
* This module implements vector support for floats, ints, and vector lane
* control masks. It provides access to both explicit vector width types, and
* flexible N-wide types where N can be determined at compile time.
*
* The design of this module encourages use of vector length agnostic code, via
* the vint, vfloat, and vmask types. These will take on the widest SIMD vector
* with that is available at compile time. The current vector width is
* accessible for e.g. loop strides via the ASTCENC_SIMD_WIDTH constant.
*
* Explicit scalar types are accessible via the vint1, vfloat1, vmask1 types.
* These are provided primarily for prototyping and algorithm debug of VLA
* implementations.
*
* Explicit 4-wide types are accessible via the vint4, vfloat4, and vmask4
* types. These are provided for use by VLA code, but are also expected to be
* used as a fixed-width type and will supported a reference C++ fallback for
* use on platforms without SIMD intrinsics.
*
* Explicit 8-wide types are accessible via the vint8, vfloat8, and vmask8
* types. These are provide for use by VLA code, and are not expected to be
* used as a fixed-width type in normal code. No reference C implementation is
* provided on platforms without underlying SIMD intrinsics.
*
* With the current implementation ISA support is provided for:
*
* * 1-wide for scalar reference.
* * 4-wide for Armv8-A NEON.
* * 4-wide for x86-64 SSE2.
* * 4-wide for x86-64 SSE4.1.
* * 8-wide for x86-64 AVX2.
*/
#ifndef ASTC_VECMATHLIB_H_INCLUDED
#define ASTC_VECMATHLIB_H_INCLUDED
#if ASTCENC_SSE != 0 || ASTCENC_AVX != 0
#include <immintrin.h>
#elif ASTCENC_NEON != 0
#include <arm_neon.h>
#endif
#if !defined(__clang__) && defined(_MSC_VER)
#define ASTCENC_SIMD_INLINE __forceinline
#define ASTCENC_NO_INLINE
#elif defined(__GNUC__) && !defined(__clang__)
#define ASTCENC_SIMD_INLINE __attribute__((always_inline)) inline
#define ASTCENC_NO_INLINE __attribute__ ((noinline))
#else
#define ASTCENC_SIMD_INLINE __attribute__((always_inline, nodebug)) inline
#define ASTCENC_NO_INLINE __attribute__ ((noinline))
#endif
#if ASTCENC_AVX >= 2
/* If we have AVX2 expose 8-wide VLA. */
#include "astcenc_vecmathlib_sse_4.h"
#include "astcenc_vecmathlib_common_4.h"
#include "astcenc_vecmathlib_avx2_8.h"
#define ASTCENC_SIMD_WIDTH 8
using vfloat = vfloat8;
#if defined(ASTCENC_NO_INVARIANCE)
using vfloatacc = vfloat8;
#else
using vfloatacc = vfloat4;
#endif
using vint = vint8;
using vmask = vmask8;
constexpr auto loada = vfloat8::loada;
constexpr auto load1 = vfloat8::load1;
#elif ASTCENC_SSE >= 20
/* If we have SSE expose 4-wide VLA, and 4-wide fixed width. */
#include "astcenc_vecmathlib_sse_4.h"
#include "astcenc_vecmathlib_common_4.h"
#define ASTCENC_SIMD_WIDTH 4
using vfloat = vfloat4;
using vfloatacc = vfloat4;
using vint = vint4;
using vmask = vmask4;
constexpr auto loada = vfloat4::loada;
constexpr auto load1 = vfloat4::load1;
#elif ASTCENC_NEON > 0
/* If we have NEON expose 4-wide VLA. */
#include "astcenc_vecmathlib_neon_4.h"
#include "astcenc_vecmathlib_common_4.h"
#define ASTCENC_SIMD_WIDTH 4
using vfloat = vfloat4;
using vfloatacc = vfloat4;
using vint = vint4;
using vmask = vmask4;
constexpr auto loada = vfloat4::loada;
constexpr auto load1 = vfloat4::load1;
#else
// If we have nothing expose 4-wide VLA, and 4-wide fixed width.
// Note: We no longer expose the 1-wide scalar fallback because it is not
// invariant with the 4-wide path due to algorithms that use horizontal
// operations that accumulate a local vector sum before accumulating into
// a running sum.
//
// For 4 items adding into an accumulator using 1-wide vectors the sum is:
//
// result = ((((sum + l0) + l1) + l2) + l3)
//
// ... whereas the accumulator for a 4-wide vector sum is:
//
// result = sum + ((l0 + l2) + (l1 + l3))
//
// In "normal maths" this is the same, but the floating point reassociation
// differences mean that these will not produce the same result.
#include "astcenc_vecmathlib_none_4.h"
#include "astcenc_vecmathlib_common_4.h"
#define ASTCENC_SIMD_WIDTH 4
using vfloat = vfloat4;
using vfloatacc = vfloat4;
using vint = vint4;
using vmask = vmask4;
constexpr auto loada = vfloat4::loada;
constexpr auto load1 = vfloat4::load1;
#endif
/**
* @brief Round a count down to the largest multiple of 8.
*
* @param count The unrounded value.
*
* @return The rounded value.
*/
ASTCENC_SIMD_INLINE unsigned int round_down_to_simd_multiple_8(unsigned int count)
{
return count & static_cast<unsigned int>(~(8 - 1));
}
/**
* @brief Round a count down to the largest multiple of 4.
*
* @param count The unrounded value.
*
* @return The rounded value.
*/
ASTCENC_SIMD_INLINE unsigned int round_down_to_simd_multiple_4(unsigned int count)
{
return count & static_cast<unsigned int>(~(4 - 1));
}
/**
* @brief Round a count down to the largest multiple of the SIMD width.
*
* Assumption that the vector width is a power of two ...
*
* @param count The unrounded value.
*
* @return The rounded value.
*/
ASTCENC_SIMD_INLINE unsigned int round_down_to_simd_multiple_vla(unsigned int count)
{
return count & static_cast<unsigned int>(~(ASTCENC_SIMD_WIDTH - 1));
}
/**
* @brief Round a count up to the largest multiple of the SIMD width.
*
* Assumption that the vector width is a power of two ...
*
* @param count The unrounded value.
*
* @return The rounded value.
*/
ASTCENC_SIMD_INLINE unsigned int round_up_to_simd_multiple_vla(unsigned int count)
{
unsigned int multiples = (count + ASTCENC_SIMD_WIDTH - 1) / ASTCENC_SIMD_WIDTH;
return multiples * ASTCENC_SIMD_WIDTH;
}
/**
* @brief Return @c a with lanes negated if the @c b lane is negative.
*/
ASTCENC_SIMD_INLINE vfloat change_sign(vfloat a, vfloat b)
{
vint ia = float_as_int(a);
vint ib = float_as_int(b);
vint sign_mask(static_cast<int>(0x80000000));
vint r = ia ^ (ib & sign_mask);
return int_as_float(r);
}
/**
* @brief Return fast, but approximate, vector atan(x).
*
* Max error of this implementation is 0.004883.
*/
ASTCENC_SIMD_INLINE vfloat atan(vfloat x)
{
vmask c = abs(x) > vfloat(1.0f);
vfloat z = change_sign(vfloat(astc::PI_OVER_TWO), x);
vfloat y = select(x, vfloat(1.0f) / x, c);
y = y / (y * y * vfloat(0.28f) + vfloat(1.0f));
return select(y, z - y, c);
}
/**
* @brief Return fast, but approximate, vector atan2(x, y).
*/
ASTCENC_SIMD_INLINE vfloat atan2(vfloat y, vfloat x)
{
vfloat z = atan(abs(y / x));
vmask xmask = vmask(float_as_int(x).m);
return change_sign(select_msb(z, vfloat(astc::PI) - z, xmask), y);
}
/*
* @brief Factory that returns a unit length 4 component vfloat4.
*/
static ASTCENC_SIMD_INLINE vfloat4 unit4()
{
return vfloat4(0.5f);
}
/**
* @brief Factory that returns a unit length 3 component vfloat4.
*/
static ASTCENC_SIMD_INLINE vfloat4 unit3()
{
float val = 0.577350258827209473f;
return vfloat4(val, val, val, 0.0f);
}
/**
* @brief Factory that returns a unit length 2 component vfloat4.
*/
static ASTCENC_SIMD_INLINE vfloat4 unit2()
{
float val = 0.707106769084930420f;
return vfloat4(val, val, 0.0f, 0.0f);
}
/**
* @brief Factory that returns a 3 component vfloat4.
*/
static ASTCENC_SIMD_INLINE vfloat4 vfloat3(float a, float b, float c)
{
return vfloat4(a, b, c, 0.0f);
}
/**
* @brief Factory that returns a 2 component vfloat4.
*/
static ASTCENC_SIMD_INLINE vfloat4 vfloat2(float a, float b)
{
return vfloat4(a, b, 0.0f, 0.0f);
}
/**
* @brief Normalize a non-zero length vector to unit length.
*/
static ASTCENC_SIMD_INLINE vfloat4 normalize(vfloat4 a)
{
vfloat4 length = dot(a, a);
return a / sqrt(length);
}
/**
* @brief Normalize a vector, returning @c safe if len is zero.
*/
static ASTCENC_SIMD_INLINE vfloat4 normalize_safe(vfloat4 a, vfloat4 safe)
{
vfloat4 length = dot(a, a);
if (length.lane<0>() != 0.0f)
{
return a / sqrt(length);
}
return safe;
}
#define POLY0(x, c0) ( c0)
#define POLY1(x, c0, c1) ((POLY0(x, c1) * x) + c0)
#define POLY2(x, c0, c1, c2) ((POLY1(x, c1, c2) * x) + c0)
#define POLY3(x, c0, c1, c2, c3) ((POLY2(x, c1, c2, c3) * x) + c0)
#define POLY4(x, c0, c1, c2, c3, c4) ((POLY3(x, c1, c2, c3, c4) * x) + c0)
#define POLY5(x, c0, c1, c2, c3, c4, c5) ((POLY4(x, c1, c2, c3, c4, c5) * x) + c0)
/**
* @brief Compute an approximate exp2(x) for each lane in the vector.
*
* Based on 5th degree minimax polynomials, ported from this blog
* https://jrfonseca.blogspot.com/2008/09/fast-sse2-pow-tables-or-polynomials.html
*/
static ASTCENC_SIMD_INLINE vfloat4 exp2(vfloat4 x)
{
x = clamp(-126.99999f, 129.0f, x);
vint4 ipart = float_to_int(x - 0.5f);
vfloat4 fpart = x - int_to_float(ipart);
// Integer contrib, using 1 << ipart
vfloat4 iexp = int_as_float(lsl<23>(ipart + 127));
// Fractional contrib, using polynomial fit of 2^x in range [-0.5, 0.5)
vfloat4 fexp = POLY5(fpart,
9.9999994e-1f,
6.9315308e-1f,
2.4015361e-1f,
5.5826318e-2f,
8.9893397e-3f,
1.8775767e-3f);
return iexp * fexp;
}
/**
* @brief Compute an approximate log2(x) for each lane in the vector.
*
* Based on 5th degree minimax polynomials, ported from this blog
* https://jrfonseca.blogspot.com/2008/09/fast-sse2-pow-tables-or-polynomials.html
*/
static ASTCENC_SIMD_INLINE vfloat4 log2(vfloat4 x)
{
vint4 exp(0x7F800000);
vint4 mant(0x007FFFFF);
vint4 one(0x3F800000);
vint4 i = float_as_int(x);
vfloat4 e = int_to_float(lsr<23>(i & exp) - 127);
vfloat4 m = int_as_float((i & mant) | one);
// Polynomial fit of log2(x)/(x - 1), for x in range [1, 2)
vfloat4 p = POLY4(m,
2.8882704548164776201f,
-2.52074962577807006663f,
1.48116647521213171641f,
-0.465725644288844778798f,
0.0596515482674574969533f);
// Increases the polynomial degree, but ensures that log2(1) == 0
p = p * (m - 1.0f);
return p + e;
}
/**
* @brief Compute an approximate pow(x, y) for each lane in the vector.
*
* Power function based on the exp2(log2(x) * y) transform.
*/
static ASTCENC_SIMD_INLINE vfloat4 pow(vfloat4 x, vfloat4 y)
{
vmask4 zero_mask = y == vfloat4(0.0f);
vfloat4 estimate = exp2(log2(x) * y);
// Guarantee that y == 0 returns exactly 1.0f
return select(estimate, vfloat4(1.0f), zero_mask);
}
/**
* @brief Count the leading zeros for each lane in @c a.
*
* Valid for all data values of @c a; will return a per-lane value [0, 32].
*/
static ASTCENC_SIMD_INLINE vint4 clz(vint4 a)
{
// This function is a horrible abuse of floating point exponents to convert
// the original integer value into a 2^N encoding we can recover easily.
// Convert to float without risk of rounding up by keeping only top 8 bits.
// This trick is is guaranteed to keep top 8 bits and clear the 9th.
a = (~lsr<8>(a)) & a;
a = float_as_int(int_to_float(a));
// Extract and unbias exponent
a = vint4(127 + 31) - lsr<23>(a);
// Clamp result to a valid 32-bit range
return clamp(0, 32, a);
}
/**
* @brief Return lanewise 2^a for each lane in @c a.
*
* Use of signed int means that this is only valid for values in range [0, 31].
*/
static ASTCENC_SIMD_INLINE vint4 two_to_the_n(vint4 a)
{
// 2^30 is the largest signed number than can be represented
assert(all(a < vint4(31)));
// This function is a horrible abuse of floating point to use the exponent
// and float conversion to generate a 2^N multiple.
// Bias the exponent
vint4 exp = a + 127;
exp = lsl<23>(exp);
// Reinterpret the bits as a float, and then convert to an int
vfloat4 f = int_as_float(exp);
return float_to_int(f);
}
/**
* @brief Convert unorm16 [0, 65535] to float16 in range [0, 1].
*/
static ASTCENC_SIMD_INLINE vint4 unorm16_to_sf16(vint4 p)
{
vint4 fp16_one = vint4(0x3C00);
vint4 fp16_small = lsl<8>(p);
vmask4 is_one = p == vint4(0xFFFF);
vmask4 is_small = p < vint4(4);
// Manually inline clz() on Visual Studio to avoid release build codegen bug
// see https://github.com/ARM-software/astc-encoder/issues/259
#if !defined(__clang__) && defined(_MSC_VER)
vint4 a = (~lsr<8>(p)) & p;
a = float_as_int(int_to_float(a));
a = vint4(127 + 31) - lsr<23>(a);
vint4 lz = clamp(0, 32, a) - 16;
#else
vint4 lz = clz(p) - 16;
#endif
p = p * two_to_the_n(lz + 1);
p = p & vint4(0xFFFF);
p = lsr<6>(p);
p = p | lsl<10>(vint4(14) - lz);
vint4 r = select(p, fp16_one, is_one);
r = select(r, fp16_small, is_small);
return r;
}
/**
* @brief Convert 16-bit LNS to float16.
*/
static ASTCENC_SIMD_INLINE vint4 lns_to_sf16(vint4 p)
{
vint4 mc = p & 0x7FF;
vint4 ec = lsr<11>(p);
vint4 mc_512 = mc * 3;
vmask4 mask_512 = mc < vint4(512);
vint4 mc_1536 = mc * 4 - 512;
vmask4 mask_1536 = mc < vint4(1536);
vint4 mc_else = mc * 5 - 2048;
vint4 mt = mc_else;
mt = select(mt, mc_1536, mask_1536);
mt = select(mt, mc_512, mask_512);
vint4 res = lsl<10>(ec) | lsr<3>(mt);
return min(res, vint4(0x7BFF));
}
/**
* @brief Extract mantissa and exponent of a float value.
*
* @param a The input value.
* @param[out] exp The output exponent.
*
* @return The mantissa.
*/
static ASTCENC_SIMD_INLINE vfloat4 frexp(vfloat4 a, vint4& exp)
{
// Interpret the bits as an integer
vint4 ai = float_as_int(a);
// Extract and unbias the exponent
exp = (lsr<23>(ai) & 0xFF) - 126;
// Extract and unbias the mantissa
vint4 manti = (ai & static_cast<int>(0x807FFFFF)) | 0x3F000000;
return int_as_float(manti);
}
/**
* @brief Convert float to 16-bit LNS.
*/
static ASTCENC_SIMD_INLINE vfloat4 float_to_lns(vfloat4 a)
{
vint4 exp;
vfloat4 mant = frexp(a, exp);
// Do these early before we start messing about ...
vmask4 mask_underflow_nan = ~(a > vfloat4(1.0f / 67108864.0f));
vmask4 mask_infinity = a >= vfloat4(65536.0f);
// If input is smaller than 2^-14, multiply by 2^25 and don't bias.
vmask4 exp_lt_m13 = exp < vint4(-13);
vfloat4 a1a = a * 33554432.0f;
vint4 expa = vint4::zero();
vfloat4 a1b = (mant - 0.5f) * 4096;
vint4 expb = exp + 14;
a = select(a1b, a1a, exp_lt_m13);
exp = select(expb, expa, exp_lt_m13);
vmask4 a_lt_384 = a < vfloat4(384.0f);
vmask4 a_lt_1408 = a <= vfloat4(1408.0f);
vfloat4 a2a = a * (4.0f / 3.0f);
vfloat4 a2b = a + 128.0f;
vfloat4 a2c = (a + 512.0f) * (4.0f / 5.0f);
a = a2c;
a = select(a, a2b, a_lt_1408);
a = select(a, a2a, a_lt_384);
a = a + (int_to_float(exp) * 2048.0f) + 1.0f;
a = select(a, vfloat4(65535.0f), mask_infinity);
a = select(a, vfloat4::zero(), mask_underflow_nan);
return a;
}
namespace astc
{
static ASTCENC_SIMD_INLINE float pow(float x, float y)
{
return pow(vfloat4(x), vfloat4(y)).lane<0>();
}
}
#endif // #ifndef ASTC_VECMATHLIB_H_INCLUDED
|