summaryrefslogtreecommitdiff
path: root/thirdparty/astcenc/astcenc_symbolic_physical.cpp
blob: 80221a6013ce3d84842ef4f22aab57574a45f60d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
// SPDX-License-Identifier: Apache-2.0
// ----------------------------------------------------------------------------
// Copyright 2011-2021 Arm Limited
//
// Licensed under the Apache License, Version 2.0 (the "License"); you may not
// use this file except in compliance with the License. You may obtain a copy
// of the License at:
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
// License for the specific language governing permissions and limitations
// under the License.
// ----------------------------------------------------------------------------

/**
 * @brief Functions for converting between symbolic and physical encodings.
 */

#include "astcenc_internal.h"

#include <cassert>

/**
 * @brief Write up to 8 bits at an arbitrary bit offset.
 *
 * The stored value is at most 8 bits, but can be stored at an offset of between 0 and 7 bits so
 * may span two separate bytes in memory.
 *
 * @param         value       The value to write.
 * @param         bitcount    The number of bits to write, starting from LSB.
 * @param         bitoffset   The bit offset to store at, between 0 and 7.
 * @param[in,out] ptr         The data pointer to write to.
 */
static inline void write_bits(
	int value,
	int bitcount,
	int bitoffset,
	uint8_t* ptr
) {
	int mask = (1 << bitcount) - 1;
	value &= mask;
	ptr += bitoffset >> 3;
	bitoffset &= 7;
	value <<= bitoffset;
	mask <<= bitoffset;
	mask = ~mask;

	ptr[0] &= mask;
	ptr[0] |= value;
	ptr[1] &= mask >> 8;
	ptr[1] |= value >> 8;
}

/**
 * @brief Read up to 8 bits at an arbitrary bit offset.
 *
 * The stored value is at most 8 bits, but can be stored at an offset of between 0 and 7 bits so may
 * span two separate bytes in memory.
 *
 * @param         bitcount    The number of bits to read.
 * @param         bitoffset   The bit offset to read from, between 0 and 7.
 * @param[in,out] ptr         The data pointer to read from.
 *
 * @return The read value.
 */
static inline int read_bits(
	int bitcount,
	int bitoffset,
	const uint8_t* ptr
) {
	int mask = (1 << bitcount) - 1;
	ptr += bitoffset >> 3;
	bitoffset &= 7;
	int value = ptr[0] | (ptr[1] << 8);
	value >>= bitoffset;
	value &= mask;
	return value;
}

/**
 * @brief Reverse bits in a byte.
 *
 * @param p   The value to reverse.
  *
 * @return The reversed result.
 */
static inline int bitrev8(int p)
{
	p = ((p & 0x0F) << 4) | ((p >> 4) & 0x0F);
	p = ((p & 0x33) << 2) | ((p >> 2) & 0x33);
	p = ((p & 0x55) << 1) | ((p >> 1) & 0x55);
	return p;
}

/* See header for documentation. */
void symbolic_to_physical(
	const block_size_descriptor& bsd,
	const symbolic_compressed_block& scb,
	physical_compressed_block& pcb
) {
	assert(scb.block_type != SYM_BTYPE_ERROR);

	// Constant color block using UNORM16 colors
	if (scb.block_type == SYM_BTYPE_CONST_U16)
	{
		// There is currently no attempt to coalesce larger void-extents
		static const uint8_t cbytes[8] { 0xFC, 0xFD, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
		for (unsigned int i = 0; i < 8; i++)
		{
			pcb.data[i] = cbytes[i];
		}

		for (unsigned int i = 0; i < BLOCK_MAX_COMPONENTS; i++)
		{
			pcb.data[2 * i + 8] = scb.constant_color[i] & 0xFF;
			pcb.data[2 * i + 9] = (scb.constant_color[i] >> 8) & 0xFF;
		}

		return;
	}

	// Constant color block using FP16 colors
	if (scb.block_type == SYM_BTYPE_CONST_F16)
	{
		// There is currently no attempt to coalesce larger void-extents
		static const uint8_t cbytes[8]  { 0xFC, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
		for (unsigned int i = 0; i < 8; i++)
		{
			pcb.data[i] = cbytes[i];
		}

		for (unsigned int i = 0; i < BLOCK_MAX_COMPONENTS; i++)
		{
			pcb.data[2 * i + 8] = scb.constant_color[i] & 0xFF;
			pcb.data[2 * i + 9] = (scb.constant_color[i] >> 8) & 0xFF;
		}

		return;
	}

	unsigned int partition_count = scb.partition_count;

	// Compress the weights.
	// They are encoded as an ordinary integer-sequence, then bit-reversed
	uint8_t weightbuf[16] { 0 };

	const auto& bm = bsd.get_block_mode(scb.block_mode);
	const auto& di = bsd.get_decimation_info(bm.decimation_mode);
	int weight_count = di.weight_count;
	quant_method weight_quant_method = bm.get_weight_quant_mode();
	float weight_quant_levels = static_cast<float>(get_quant_level(weight_quant_method));
	int is_dual_plane = bm.is_dual_plane;

	const auto& qat = quant_and_xfer_tables[weight_quant_method];

	int real_weight_count = is_dual_plane ? 2 * weight_count : weight_count;

	int bits_for_weights = get_ise_sequence_bitcount(real_weight_count, weight_quant_method);

	uint8_t weights[64];
	if (is_dual_plane)
	{
		for (int i = 0; i < weight_count; i++)
		{
			float uqw = static_cast<float>(scb.weights[i]);
			float qw = (uqw / 64.0f) * (weight_quant_levels - 1.0f);
			int qwi = static_cast<int>(qw + 0.5f);
			weights[2 * i] = qat.scramble_map[qwi];

			uqw = static_cast<float>(scb.weights[i + WEIGHTS_PLANE2_OFFSET]);
			qw = (uqw / 64.0f) * (weight_quant_levels - 1.0f);
			qwi = static_cast<int>(qw + 0.5f);
			weights[2 * i + 1] = qat.scramble_map[qwi];
		}
	}
	else
	{
		for (int i = 0; i < weight_count; i++)
		{
			float uqw = static_cast<float>(scb.weights[i]);
			float qw = (uqw / 64.0f) * (weight_quant_levels - 1.0f);
			int qwi = static_cast<int>(qw + 0.5f);
			weights[i] = qat.scramble_map[qwi];
		}
	}

	encode_ise(weight_quant_method, real_weight_count, weights, weightbuf, 0);

	for (int i = 0; i < 16; i++)
	{
		pcb.data[i] = static_cast<uint8_t>(bitrev8(weightbuf[15 - i]));
	}

	write_bits(scb.block_mode, 11, 0, pcb.data);
	write_bits(partition_count - 1, 2, 11, pcb.data);

	int below_weights_pos = 128 - bits_for_weights;

	// Encode partition index and color endpoint types for blocks with 2+ partitions
	if (partition_count > 1)
	{
		write_bits(scb.partition_index, 6, 13, pcb.data);
		write_bits(scb.partition_index >> 6, PARTITION_INDEX_BITS - 6, 19, pcb.data);

		if (scb.color_formats_matched)
		{
			write_bits(scb.color_formats[0] << 2, 6, 13 + PARTITION_INDEX_BITS, pcb.data);
		}
		else
		{
			// Check endpoint types for each partition to determine the lowest class present
			int low_class = 4;

			for (unsigned int i = 0; i < partition_count; i++)
			{
				int class_of_format = scb.color_formats[i] >> 2;
				low_class = astc::min(class_of_format, low_class);
			}

			if (low_class == 3)
			{
				low_class = 2;
			}

			int encoded_type = low_class + 1;
			int bitpos = 2;

			for (unsigned int i = 0; i < partition_count; i++)
			{
				int classbit_of_format = (scb.color_formats[i] >> 2) - low_class;
				encoded_type |= classbit_of_format << bitpos;
				bitpos++;
			}

			for (unsigned int i = 0; i < partition_count; i++)
			{
				int lowbits_of_format = scb.color_formats[i] & 3;
				encoded_type |= lowbits_of_format << bitpos;
				bitpos += 2;
			}

			int encoded_type_lowpart = encoded_type & 0x3F;
			int encoded_type_highpart = encoded_type >> 6;
			int encoded_type_highpart_size = (3 * partition_count) - 4;
			int encoded_type_highpart_pos = 128 - bits_for_weights - encoded_type_highpart_size;
			write_bits(encoded_type_lowpart, 6, 13 + PARTITION_INDEX_BITS, pcb.data);
			write_bits(encoded_type_highpart, encoded_type_highpart_size, encoded_type_highpart_pos, pcb.data);
			below_weights_pos -= encoded_type_highpart_size;
		}
	}
	else
	{
		write_bits(scb.color_formats[0], 4, 13, pcb.data);
	}

	// In dual-plane mode, encode the color component of the second plane of weights
	if (is_dual_plane)
	{
		write_bits(scb.plane2_component, 2, below_weights_pos - 2, pcb.data);
	}

	// Encode the color components
	uint8_t values_to_encode[32];
	int valuecount_to_encode = 0;

	const uint8_t* pack_table = color_uquant_to_scrambled_pquant_tables[scb.quant_mode - QUANT_6];
	for (unsigned int i = 0; i < scb.partition_count; i++)
	{
		int vals = 2 * (scb.color_formats[i] >> 2) + 2;
		assert(vals <= 8);
		for (int j = 0; j < vals; j++)
		{
			values_to_encode[j + valuecount_to_encode] = pack_table[scb.color_values[i][j]];
		}
		valuecount_to_encode += vals;
	}

	encode_ise(scb.get_color_quant_mode(), valuecount_to_encode, values_to_encode, pcb.data,
	           scb.partition_count == 1 ? 17 : 19 + PARTITION_INDEX_BITS);
}

/* See header for documentation. */
void physical_to_symbolic(
	const block_size_descriptor& bsd,
	const physical_compressed_block& pcb,
	symbolic_compressed_block& scb
) {
	uint8_t bswapped[16];

	scb.block_type = SYM_BTYPE_NONCONST;

	// Extract header fields
	int block_mode = read_bits(11, 0, pcb.data);
	if ((block_mode & 0x1FF) == 0x1FC)
	{
		// Constant color block

		// Check what format the data has
		if (block_mode & 0x200)
		{
			scb.block_type = SYM_BTYPE_CONST_F16;
		}
		else
		{
			scb.block_type = SYM_BTYPE_CONST_U16;
		}

		scb.partition_count = 0;
		for (int i = 0; i < 4; i++)
		{
			scb.constant_color[i] = pcb.data[2 * i + 8] | (pcb.data[2 * i + 9] << 8);
		}

		// Additionally, check that the void-extent
		if (bsd.zdim == 1)
		{
			// 2D void-extent
			int rsvbits = read_bits(2, 10, pcb.data);
			if (rsvbits != 3)
			{
				scb.block_type = SYM_BTYPE_ERROR;
				return;
			}

			int vx_low_s = read_bits(8, 12, pcb.data) | (read_bits(5, 12 + 8, pcb.data) << 8);
			int vx_high_s = read_bits(8, 25, pcb.data) | (read_bits(5, 25 + 8, pcb.data) << 8);
			int vx_low_t = read_bits(8, 38, pcb.data) | (read_bits(5, 38 + 8, pcb.data) << 8);
			int vx_high_t = read_bits(8, 51, pcb.data) | (read_bits(5, 51 + 8, pcb.data) << 8);

			int all_ones = vx_low_s == 0x1FFF && vx_high_s == 0x1FFF && vx_low_t == 0x1FFF && vx_high_t == 0x1FFF;

			if ((vx_low_s >= vx_high_s || vx_low_t >= vx_high_t) && !all_ones)
			{
				scb.block_type = SYM_BTYPE_ERROR;
				return;
			}
		}
		else
		{
			// 3D void-extent
			int vx_low_s = read_bits(9, 10, pcb.data);
			int vx_high_s = read_bits(9, 19, pcb.data);
			int vx_low_t = read_bits(9, 28, pcb.data);
			int vx_high_t = read_bits(9, 37, pcb.data);
			int vx_low_p = read_bits(9, 46, pcb.data);
			int vx_high_p = read_bits(9, 55, pcb.data);

			int all_ones = vx_low_s == 0x1FF && vx_high_s == 0x1FF && vx_low_t == 0x1FF && vx_high_t == 0x1FF && vx_low_p == 0x1FF && vx_high_p == 0x1FF;

			if ((vx_low_s >= vx_high_s || vx_low_t >= vx_high_t || vx_low_p >= vx_high_p) && !all_ones)
			{
				scb.block_type = SYM_BTYPE_ERROR;
				return;
			}
		}

		return;
	}

	unsigned int packed_index = bsd.block_mode_packed_index[block_mode];
	if (packed_index == BLOCK_BAD_BLOCK_MODE)
	{
		scb.block_type = SYM_BTYPE_ERROR;
		return;
	}

	const auto& bm = bsd.get_block_mode(block_mode);
	const auto& di = bsd.get_decimation_info(bm.decimation_mode);

	int weight_count = di.weight_count;
	promise(weight_count > 0);

	quant_method weight_quant_method = static_cast<quant_method>(bm.quant_mode);
	int is_dual_plane = bm.is_dual_plane;

	int real_weight_count = is_dual_plane ? 2 * weight_count : weight_count;

	int partition_count = read_bits(2, 11, pcb.data) + 1;
	promise(partition_count > 0);

	scb.block_mode = static_cast<uint16_t>(block_mode);
	scb.partition_count = static_cast<uint8_t>(partition_count);

	for (int i = 0; i < 16; i++)
	{
		bswapped[i] = static_cast<uint8_t>(bitrev8(pcb.data[15 - i]));
	}

	int bits_for_weights = get_ise_sequence_bitcount(real_weight_count, weight_quant_method);

	int below_weights_pos = 128 - bits_for_weights;

	uint8_t indices[64];
	const auto& qat = quant_and_xfer_tables[weight_quant_method];

	decode_ise(weight_quant_method, real_weight_count, bswapped, indices, 0);

	if (is_dual_plane)
	{
		for (int i = 0; i < weight_count; i++)
		{
			scb.weights[i] = qat.unscramble_and_unquant_map[indices[2 * i]];
			scb.weights[i + WEIGHTS_PLANE2_OFFSET] = qat.unscramble_and_unquant_map[indices[2 * i + 1]];
		}
	}
	else
	{
		for (int i = 0; i < weight_count; i++)
		{
			scb.weights[i] = qat.unscramble_and_unquant_map[indices[i]];
		}
	}

	if (is_dual_plane && partition_count == 4)
	{
		scb.block_type = SYM_BTYPE_ERROR;
		return;
	}

	scb.color_formats_matched = 0;

	// Determine the format of each endpoint pair
	int color_formats[BLOCK_MAX_PARTITIONS];
	int encoded_type_highpart_size = 0;
	if (partition_count == 1)
	{
		color_formats[0] = read_bits(4, 13, pcb.data);
		scb.partition_index = 0;
	}
	else
	{
		encoded_type_highpart_size = (3 * partition_count) - 4;
		below_weights_pos -= encoded_type_highpart_size;
		int encoded_type = read_bits(6, 13 + PARTITION_INDEX_BITS, pcb.data) | (read_bits(encoded_type_highpart_size, below_weights_pos, pcb.data) << 6);
		int baseclass = encoded_type & 0x3;
		if (baseclass == 0)
		{
			for (int i = 0; i < partition_count; i++)
			{
				color_formats[i] = (encoded_type >> 2) & 0xF;
			}

			below_weights_pos += encoded_type_highpart_size;
			scb.color_formats_matched = 1;
			encoded_type_highpart_size = 0;
		}
		else
		{
			int bitpos = 2;
			baseclass--;

			for (int i = 0; i < partition_count; i++)
			{
				color_formats[i] = (((encoded_type >> bitpos) & 1) + baseclass) << 2;
				bitpos++;
			}

			for (int i = 0; i < partition_count; i++)
			{
				color_formats[i] |= (encoded_type >> bitpos) & 3;
				bitpos += 2;
			}
		}
		scb.partition_index = static_cast<uint16_t>(read_bits(6, 13, pcb.data) | (read_bits(PARTITION_INDEX_BITS - 6, 19, pcb.data) << 6));
	}

	for (int i = 0; i < partition_count; i++)
	{
		scb.color_formats[i] = static_cast<uint8_t>(color_formats[i]);
	}

	// Determine number of color endpoint integers
	int color_integer_count = 0;
	for (int i = 0; i < partition_count; i++)
	{
		int endpoint_class = color_formats[i] >> 2;
		color_integer_count += (endpoint_class + 1) * 2;
	}

	if (color_integer_count > 18)
	{
		scb.block_type = SYM_BTYPE_ERROR;
		return;
	}

	// Determine the color endpoint format to use
	static const int color_bits_arr[5] { -1, 115 - 4, 113 - 4 - PARTITION_INDEX_BITS, 113 - 4 - PARTITION_INDEX_BITS, 113 - 4 - PARTITION_INDEX_BITS };
	int color_bits = color_bits_arr[partition_count] - bits_for_weights - encoded_type_highpart_size;
	if (is_dual_plane)
	{
		color_bits -= 2;
	}

	if (color_bits < 0)
	{
		color_bits = 0;
	}

	int color_quant_level = quant_mode_table[color_integer_count >> 1][color_bits];
	if (color_quant_level < QUANT_6)
	{
		scb.block_type = SYM_BTYPE_ERROR;
		return;
	}

	// Unpack the integer color values and assign to endpoints
	scb.quant_mode = static_cast<quant_method>(color_quant_level);

	uint8_t values_to_decode[32];
	decode_ise(static_cast<quant_method>(color_quant_level), color_integer_count, pcb.data,
	           values_to_decode, (partition_count == 1 ? 17 : 19 + PARTITION_INDEX_BITS));

	int valuecount_to_decode = 0;
	const uint8_t* unpack_table = color_scrambled_pquant_to_uquant_tables[scb.quant_mode - QUANT_6];
	for (int i = 0; i < partition_count; i++)
	{
		int vals = 2 * (color_formats[i] >> 2) + 2;
		for (int j = 0; j < vals; j++)
		{
			scb.color_values[i][j] = unpack_table[values_to_decode[j + valuecount_to_decode]];
		}
		valuecount_to_decode += vals;
	}

	// Fetch component for second-plane in the case of dual plane of weights.
	scb.plane2_component = -1;
	if (is_dual_plane)
	{
		scb.plane2_component = static_cast<int8_t>(read_bits(2, below_weights_pos - 2, pcb.data));
	}
}