summaryrefslogtreecommitdiff
path: root/thirdparty/astcenc/astcenc_pick_best_endpoint_format.cpp
blob: f25140d4c75ccf5d4a8118c929fef77d5c6d77a4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
// SPDX-License-Identifier: Apache-2.0
// ----------------------------------------------------------------------------
// Copyright 2011-2022 Arm Limited
//
// Licensed under the Apache License, Version 2.0 (the "License"); you may not
// use this file except in compliance with the License. You may obtain a copy
// of the License at:
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
// License for the specific language governing permissions and limitations
// under the License.
// ----------------------------------------------------------------------------

#if !defined(ASTCENC_DECOMPRESS_ONLY)

/**
 * @brief Functions for finding best endpoint format.
 *
 * We assume there are two independent sources of error in any given partition:
 *
 *   - Encoding choice errors
 *   - Quantization errors
 *
 * Encoding choice errors are caused by encoder decisions. For example:
 *
 *   - Using luminance instead of separate RGB components.
 *   - Using a constant 1.0 alpha instead of storing an alpha component.
 *   - Using RGB+scale instead of storing two full RGB endpoints.
 *
 * Quantization errors occur due to the limited precision we use for storage. These errors generally
 * scale with quantization level, but are not actually independent of color encoding. In particular:
 *
 *   - If we can use offset encoding then quantization error is halved.
 *   - If we can use blue-contraction then quantization error for RG is halved.
 *   - If we use HDR endpoints the quantization error is higher.
 *
 * Apart from these effects, we assume the error is proportional to the quantization step size.
 */


#include "astcenc_internal.h"
#include "astcenc_vecmathlib.h"

#include <assert.h>

/**
 * @brief Compute the errors of the endpoint line options for one partition.
 *
 * Uncorrelated data assumes storing completely independent RGBA channels for each endpoint. Same
 * chroma data assumes storing RGBA endpoints which pass though the origin (LDR only). RGBL data
 * assumes storing RGB + lumashift (HDR only). Luminance error assumes storing RGB channels as a
 * single value.
 *
 *
 * @param      pi                The partition info data.
 * @param      partition_index   The partition index to compule the error for.
 * @param      blk               The image block.
 * @param      uncor_pline       The endpoint line assuming uncorrelated endpoints.
 * @param[out] uncor_err         The computed error for the uncorrelated endpoint line.
 * @param      samec_pline       The endpoint line assuming the same chroma for both endpoints.
 * @param[out] samec_err         The computed error for the uncorrelated endpoint line.
 * @param      rgbl_pline        The endpoint line assuming RGB + lumashift data.
 * @param[out] rgbl_err          The computed error for the RGB + lumashift endpoint line.
 * @param      l_pline           The endpoint line assuming luminance data.
 * @param[out] l_err             The computed error for the luminance endpoint line.
 * @param[out] a_drop_err        The computed error for dropping the alpha component.
 */
static void compute_error_squared_rgb_single_partition(
	const partition_info& pi,
	int partition_index,
	const image_block& blk,
	const processed_line3& uncor_pline,
	float& uncor_err,
	const processed_line3& samec_pline,
	float& samec_err,
	const processed_line3& rgbl_pline,
	float& rgbl_err,
	const processed_line3& l_pline,
	float& l_err,
	float& a_drop_err
) {
	vfloat4 ews = blk.channel_weight;

	unsigned int texel_count = pi.partition_texel_count[partition_index];
	const uint8_t* texel_indexes = pi.texels_of_partition[partition_index];
	promise(texel_count > 0);

	vfloatacc a_drop_errv = vfloatacc::zero();
	vfloat default_a(blk.get_default_alpha());

	vfloatacc uncor_errv = vfloatacc::zero();
	vfloat uncor_bs0(uncor_pline.bs.lane<0>());
	vfloat uncor_bs1(uncor_pline.bs.lane<1>());
	vfloat uncor_bs2(uncor_pline.bs.lane<2>());

	vfloat uncor_amod0(uncor_pline.amod.lane<0>());
	vfloat uncor_amod1(uncor_pline.amod.lane<1>());
	vfloat uncor_amod2(uncor_pline.amod.lane<2>());

	vfloatacc samec_errv = vfloatacc::zero();
	vfloat samec_bs0(samec_pline.bs.lane<0>());
	vfloat samec_bs1(samec_pline.bs.lane<1>());
	vfloat samec_bs2(samec_pline.bs.lane<2>());

	vfloatacc rgbl_errv = vfloatacc::zero();
	vfloat rgbl_bs0(rgbl_pline.bs.lane<0>());
	vfloat rgbl_bs1(rgbl_pline.bs.lane<1>());
	vfloat rgbl_bs2(rgbl_pline.bs.lane<2>());

	vfloat rgbl_amod0(rgbl_pline.amod.lane<0>());
	vfloat rgbl_amod1(rgbl_pline.amod.lane<1>());
	vfloat rgbl_amod2(rgbl_pline.amod.lane<2>());

	vfloatacc l_errv = vfloatacc::zero();
	vfloat l_bs0(l_pline.bs.lane<0>());
	vfloat l_bs1(l_pline.bs.lane<1>());
	vfloat l_bs2(l_pline.bs.lane<2>());

	vint lane_ids = vint::lane_id();
	for (unsigned int i = 0; i < texel_count; i += ASTCENC_SIMD_WIDTH)
	{
		vint tix(texel_indexes + i);

		vmask mask = lane_ids < vint(texel_count);
		lane_ids += vint(ASTCENC_SIMD_WIDTH);

		// Compute the error that arises from just ditching alpha
		vfloat data_a = gatherf(blk.data_a, tix);
		vfloat alpha_diff = data_a - default_a;
		alpha_diff = alpha_diff * alpha_diff;

		haccumulate(a_drop_errv, alpha_diff, mask);

		vfloat data_r = gatherf(blk.data_r, tix);
		vfloat data_g = gatherf(blk.data_g, tix);
		vfloat data_b = gatherf(blk.data_b, tix);

		// Compute uncorrelated error
		vfloat param = data_r * uncor_bs0
		             + data_g * uncor_bs1
		             + data_b * uncor_bs2;

		vfloat dist0 = (uncor_amod0 + param * uncor_bs0) - data_r;
		vfloat dist1 = (uncor_amod1 + param * uncor_bs1) - data_g;
		vfloat dist2 = (uncor_amod2 + param * uncor_bs2) - data_b;

		vfloat error = dist0 * dist0 * ews.lane<0>()
		             + dist1 * dist1 * ews.lane<1>()
		             + dist2 * dist2 * ews.lane<2>();

		haccumulate(uncor_errv, error, mask);

		// Compute same chroma error - no "amod", its always zero
		param = data_r * samec_bs0
		      + data_g * samec_bs1
		      + data_b * samec_bs2;

		dist0 = (param * samec_bs0) - data_r;
		dist1 = (param * samec_bs1) - data_g;
		dist2 = (param * samec_bs2) - data_b;

		error = dist0 * dist0 * ews.lane<0>()
		      + dist1 * dist1 * ews.lane<1>()
		      + dist2 * dist2 * ews.lane<2>();

		haccumulate(samec_errv, error, mask);

		// Compute rgbl error
		param = data_r * rgbl_bs0
		      + data_g * rgbl_bs1
		      + data_b * rgbl_bs2;

		dist0 = (rgbl_amod0 + param * rgbl_bs0) - data_r;
		dist1 = (rgbl_amod1 + param * rgbl_bs1) - data_g;
		dist2 = (rgbl_amod2 + param * rgbl_bs2) - data_b;

		error = dist0 * dist0 * ews.lane<0>()
		      + dist1 * dist1 * ews.lane<1>()
		      + dist2 * dist2 * ews.lane<2>();

		haccumulate(rgbl_errv, error, mask);

		// Compute luma error - no "amod", its always zero
		param = data_r * l_bs0
		      + data_g * l_bs1
		      + data_b * l_bs2;

		dist0 = (param * l_bs0) - data_r;
		dist1 = (param * l_bs1) - data_g;
		dist2 = (param * l_bs2) - data_b;

		error = dist0 * dist0 * ews.lane<0>()
		      + dist1 * dist1 * ews.lane<1>()
		      + dist2 * dist2 * ews.lane<2>();

		haccumulate(l_errv, error, mask);
	}

	a_drop_err = hadd_s(a_drop_errv) * ews.lane<3>();
	uncor_err = hadd_s(uncor_errv);
	samec_err = hadd_s(samec_errv);
	rgbl_err = hadd_s(rgbl_errv);
	l_err = hadd_s(l_errv);
}

/**
 * @brief For a given set of input colors and partitioning determine endpoint encode errors.
 *
 * This function determines the color error that results from RGB-scale encoding (LDR only),
 * RGB-lumashift encoding (HDR only), luminance-encoding, and alpha drop. Also determines whether
 * the endpoints are eligible for offset encoding or blue-contraction
 *
 * @param      blk   The image block.
 * @param      pi    The partition info data.
 * @param      ep    The idealized endpoints.
 * @param[out] eci   The resulting encoding choice error metrics.
  */
static void compute_encoding_choice_errors(
	const image_block& blk,
	const partition_info& pi,
	const endpoints& ep,
	encoding_choice_errors eci[BLOCK_MAX_PARTITIONS])
{
	int partition_count = pi.partition_count;
	promise(partition_count > 0);

	partition_metrics pms[BLOCK_MAX_PARTITIONS];

	compute_avgs_and_dirs_3_comp_rgb(pi, blk, pms);

	for (int i = 0; i < partition_count; i++)
	{
		partition_metrics& pm = pms[i];

		line3 uncor_rgb_lines;
		line3 samec_rgb_lines;  // for LDR-RGB-scale
		line3 rgb_luma_lines;   // for HDR-RGB-scale

		processed_line3 uncor_rgb_plines;
		processed_line3 samec_rgb_plines;
		processed_line3 rgb_luma_plines;
		processed_line3 luminance_plines;

		float uncorr_rgb_error;
		float samechroma_rgb_error;
		float rgb_luma_error;
		float luminance_rgb_error;
		float alpha_drop_error;

		uncor_rgb_lines.a = pm.avg;
		uncor_rgb_lines.b = normalize_safe(pm.dir, unit3());

		samec_rgb_lines.a = vfloat4::zero();
		samec_rgb_lines.b = normalize_safe(pm.avg, unit3());

		rgb_luma_lines.a = pm.avg;
		rgb_luma_lines.b = unit3();

		uncor_rgb_plines.amod = uncor_rgb_lines.a - uncor_rgb_lines.b * dot3(uncor_rgb_lines.a, uncor_rgb_lines.b);
		uncor_rgb_plines.bs   = uncor_rgb_lines.b;

		// Same chroma always goes though zero, so this is simpler than the others
		samec_rgb_plines.amod = vfloat4::zero();
		samec_rgb_plines.bs   = samec_rgb_lines.b;

		rgb_luma_plines.amod = rgb_luma_lines.a - rgb_luma_lines.b * dot3(rgb_luma_lines.a, rgb_luma_lines.b);
		rgb_luma_plines.bs   = rgb_luma_lines.b;

		// Luminance always goes though zero, so this is simpler than the others
		luminance_plines.amod = vfloat4::zero();
		luminance_plines.bs   = unit3();

		compute_error_squared_rgb_single_partition(
		    pi, i, blk,
		    uncor_rgb_plines, uncorr_rgb_error,
		    samec_rgb_plines, samechroma_rgb_error,
		    rgb_luma_plines,  rgb_luma_error,
		    luminance_plines, luminance_rgb_error,
		                      alpha_drop_error);

		// Determine if we can offset encode RGB lanes
		vfloat4 endpt0 = ep.endpt0[i];
		vfloat4 endpt1 = ep.endpt1[i];
		vfloat4 endpt_diff = abs(endpt1 - endpt0);
		vmask4 endpt_can_offset = endpt_diff < vfloat4(0.12f * 65535.0f);
		bool can_offset_encode = (mask(endpt_can_offset) & 0x7) == 0x7;

		// Store out the settings
		eci[i].rgb_scale_error = (samechroma_rgb_error - uncorr_rgb_error) * 0.7f;  // empirical
		eci[i].rgb_luma_error  = (rgb_luma_error - uncorr_rgb_error) * 1.5f;        // wild guess
		eci[i].luminance_error = (luminance_rgb_error - uncorr_rgb_error) * 3.0f;   // empirical
		eci[i].alpha_drop_error = alpha_drop_error * 3.0f;
		eci[i].can_offset_encode = can_offset_encode;
		eci[i].can_blue_contract = !blk.is_luminance();
	}
}

/**
 * @brief For a given partition compute the error for every endpoint integer count and quant level.
 *
 * @param      encode_hdr_rgb     @c true if using HDR for RGB, @c false for LDR.
 * @param      encode_hdr_alpha   @c true if using HDR for alpha, @c false for LDR.
 * @param      partition_index    The partition index.
 * @param      pi                 The partition info.
 * @param      eci                The encoding choice error metrics.
 * @param      ep                 The idealized endpoints.
 * @param      error_weight       The resulting encoding choice error metrics.
 * @param[out] best_error         The best error for each integer count and quant level.
 * @param[out] format_of_choice   The preferred endpoint format for each integer count and quant level.
 */
static void compute_color_error_for_every_integer_count_and_quant_level(
	bool encode_hdr_rgb,
	bool encode_hdr_alpha,
	int partition_index,
	const partition_info& pi,
	const encoding_choice_errors& eci,
	const endpoints& ep,
	vfloat4 error_weight,
	float best_error[21][4],
	uint8_t format_of_choice[21][4]
) {
	int partition_size = pi.partition_texel_count[partition_index];

	static const float baseline_quant_error[21 - QUANT_6] {
		(65536.0f * 65536.0f / 18.0f) / (5 * 5),
		(65536.0f * 65536.0f / 18.0f) / (7 * 7),
		(65536.0f * 65536.0f / 18.0f) / (9 * 9),
		(65536.0f * 65536.0f / 18.0f) / (11 * 11),
		(65536.0f * 65536.0f / 18.0f) / (15 * 15),
		(65536.0f * 65536.0f / 18.0f) / (19 * 19),
		(65536.0f * 65536.0f / 18.0f) / (23 * 23),
		(65536.0f * 65536.0f / 18.0f) / (31 * 31),
		(65536.0f * 65536.0f / 18.0f) / (39 * 39),
		(65536.0f * 65536.0f / 18.0f) / (47 * 47),
		(65536.0f * 65536.0f / 18.0f) / (63 * 63),
		(65536.0f * 65536.0f / 18.0f) / (79 * 79),
		(65536.0f * 65536.0f / 18.0f) / (95 * 95),
		(65536.0f * 65536.0f / 18.0f) / (127 * 127),
		(65536.0f * 65536.0f / 18.0f) / (159 * 159),
		(65536.0f * 65536.0f / 18.0f) / (191 * 191),
		(65536.0f * 65536.0f / 18.0f) / (255 * 255)
	};

	vfloat4 ep0 = ep.endpt0[partition_index];
	vfloat4 ep1 = ep.endpt1[partition_index];

	float ep1_min = hmin_rgb_s(ep1);
	ep1_min = astc::max(ep1_min, 0.0f);

	float error_weight_rgbsum = hadd_rgb_s(error_weight);

	float range_upper_limit_rgb = encode_hdr_rgb ? 61440.0f : 65535.0f;
	float range_upper_limit_alpha = encode_hdr_alpha ? 61440.0f : 65535.0f;

	// It is possible to get endpoint colors significantly outside [0,upper-limit] even if the
	// input data are safely contained in [0,upper-limit]; we need to add an error term for this
	vfloat4 offset(range_upper_limit_rgb, range_upper_limit_rgb, range_upper_limit_rgb, range_upper_limit_alpha);
	vfloat4 ep0_range_error_high = max(ep0 - offset, 0.0f);
	vfloat4 ep1_range_error_high = max(ep1 - offset, 0.0f);

	vfloat4 ep0_range_error_low = min(ep0, 0.0f);
	vfloat4 ep1_range_error_low = min(ep1, 0.0f);

	vfloat4 sum_range_error =
		(ep0_range_error_low * ep0_range_error_low) +
		(ep1_range_error_low * ep1_range_error_low) +
		(ep0_range_error_high * ep0_range_error_high) +
		(ep1_range_error_high * ep1_range_error_high);

	float rgb_range_error = dot3_s(sum_range_error, error_weight)
	                      * 0.5f * static_cast<float>(partition_size);
	float alpha_range_error = sum_range_error.lane<3>() * error_weight.lane<3>()
	                        * 0.5f * static_cast<float>(partition_size);

	if (encode_hdr_rgb)
	{

		// Collect some statistics
		float af, cf;
		if (ep1.lane<0>() > ep1.lane<1>() && ep1.lane<0>() > ep1.lane<2>())
		{
			af = ep1.lane<0>();
			cf = ep1.lane<0>() - ep0.lane<0>();
		}
		else if (ep1.lane<1>() > ep1.lane<2>())
		{
			af = ep1.lane<1>();
			cf = ep1.lane<1>() - ep0.lane<1>();
		}
		else
		{
			af = ep1.lane<2>();
			cf = ep1.lane<2>() - ep0.lane<2>();
		}

		// Estimate of color-component spread in high endpoint color
		float bf = af - ep1_min;
		vfloat4 prd = (ep1 - vfloat4(cf)).swz<0, 1, 2>();
		vfloat4 pdif = prd - ep0.swz<0, 1, 2>();
		// Estimate of color-component spread in low endpoint color
		float df = hmax_s(abs(pdif));

		int b = static_cast<int>(bf);
		int c = static_cast<int>(cf);
		int d = static_cast<int>(df);

		// Determine which one of the 6 submodes is likely to be used in case of an RGBO-mode
		int rgbo_mode = 5;		// 7 bits per component
		// mode 4: 8 7 6
		if (b < 32768 && c < 16384)
		{
			rgbo_mode = 4;
		}

		// mode 3: 9 6 7
		if (b < 8192 && c < 16384)
		{
			rgbo_mode = 3;
		}

		// mode 2: 10 5 8
		if (b < 2048 && c < 16384)
		{
			rgbo_mode = 2;
		}

		// mode 1: 11 6 5
		if (b < 2048 && c < 1024)
		{
			rgbo_mode = 1;
		}

		// mode 0: 11 5 7
		if (b < 1024 && c < 4096)
		{
			rgbo_mode = 0;
		}

		// Determine which one of the 9 submodes is likely to be used in case of an RGB-mode.
		int rgb_mode = 8;		// 8 bits per component, except 7 bits for blue

		// mode 0: 9 7 6 7
		if (b < 16384 && c < 8192 && d < 8192)
		{
			rgb_mode = 0;
		}

		// mode 1: 9 8 6 6
		if (b < 32768 && c < 8192 && d < 4096)
		{
			rgb_mode = 1;
		}

		// mode 2: 10 6 7 7
		if (b < 4096 && c < 8192 && d < 4096)
		{
			rgb_mode = 2;
		}

		// mode 3: 10 7 7 6
		if (b < 8192 && c < 8192 && d < 2048)
		{
			rgb_mode = 3;
		}

		// mode 4: 11 8 6 5
		if (b < 8192 && c < 2048 && d < 512)
		{
			rgb_mode = 4;
		}

		// mode 5: 11 6 8 6
		if (b < 2048 && c < 8192 && d < 1024)
		{
			rgb_mode = 5;
		}

		// mode 6: 12 7 7 5
		if (b < 2048 && c < 2048 && d < 256)
		{
			rgb_mode = 6;
		}

		// mode 7: 12 6 7 6
		if (b < 1024 && c < 2048 && d < 512)
		{
			rgb_mode = 7;
		}

		static const float rgbo_error_scales[6] { 4.0f, 4.0f, 16.0f, 64.0f, 256.0f, 1024.0f };
		static const float rgb_error_scales[9] { 64.0f, 64.0f, 16.0f, 16.0f, 4.0f, 4.0f, 1.0f, 1.0f, 384.0f };

		float mode7mult = rgbo_error_scales[rgbo_mode] * 0.0015f;  // Empirically determined ....
		float mode11mult = rgb_error_scales[rgb_mode] * 0.010f;    // Empirically determined ....


		float lum_high = hadd_rgb_s(ep1) * (1.0f / 3.0f);
		float lum_low = hadd_rgb_s(ep0) * (1.0f / 3.0f);
		float lumdif = lum_high - lum_low;
		float mode23mult = lumdif < 960 ? 4.0f : lumdif < 3968 ? 16.0f : 128.0f;

		mode23mult *= 0.0005f;  // Empirically determined ....

		// Pick among the available HDR endpoint modes
		for (int i = QUANT_2; i < QUANT_16; i++)
		{
			best_error[i][3] = ERROR_CALC_DEFAULT;
			best_error[i][2] = ERROR_CALC_DEFAULT;
			best_error[i][1] = ERROR_CALC_DEFAULT;
			best_error[i][0] = ERROR_CALC_DEFAULT;

			format_of_choice[i][3] = static_cast<uint8_t>(encode_hdr_alpha ? FMT_HDR_RGBA : FMT_HDR_RGB_LDR_ALPHA);
			format_of_choice[i][2] = FMT_HDR_RGB;
			format_of_choice[i][1] = FMT_HDR_RGB_SCALE;
			format_of_choice[i][0] = FMT_HDR_LUMINANCE_LARGE_RANGE;
		}

		for (int i = QUANT_16; i <= QUANT_256; i++)
		{
			// The base_quant_error should depend on the scale-factor that would be used during
			// actual encode of the color value

			float base_quant_error = baseline_quant_error[i - QUANT_6] * static_cast<float>(partition_size);
			float rgb_quantization_error = error_weight_rgbsum * base_quant_error * 2.0f;
			float alpha_quantization_error = error_weight.lane<3>() * base_quant_error * 2.0f;
			float rgba_quantization_error = rgb_quantization_error + alpha_quantization_error;

			// For 8 integers, we have two encodings: one with HDR A and another one with LDR A

			float full_hdr_rgba_error = rgba_quantization_error + rgb_range_error + alpha_range_error;
			best_error[i][3] = full_hdr_rgba_error;
			format_of_choice[i][3] = static_cast<uint8_t>(encode_hdr_alpha ? FMT_HDR_RGBA : FMT_HDR_RGB_LDR_ALPHA);

			// For 6 integers, we have one HDR-RGB encoding
			float full_hdr_rgb_error = (rgb_quantization_error * mode11mult) + rgb_range_error + eci.alpha_drop_error;
			best_error[i][2] = full_hdr_rgb_error;
			format_of_choice[i][2] = FMT_HDR_RGB;

			// For 4 integers, we have one HDR-RGB-Scale encoding
			float hdr_rgb_scale_error = (rgb_quantization_error * mode7mult) + rgb_range_error + eci.alpha_drop_error + eci.rgb_luma_error;

			best_error[i][1] = hdr_rgb_scale_error;
			format_of_choice[i][1] = FMT_HDR_RGB_SCALE;

			// For 2 integers, we assume luminance-with-large-range
			float hdr_luminance_error = (rgb_quantization_error * mode23mult) + rgb_range_error + eci.alpha_drop_error + eci.luminance_error;
			best_error[i][0] = hdr_luminance_error;
			format_of_choice[i][0] = FMT_HDR_LUMINANCE_LARGE_RANGE;
		}
	}
	else
	{
		for (int i = QUANT_2; i < QUANT_6; i++)
		{
			best_error[i][3] = ERROR_CALC_DEFAULT;
			best_error[i][2] = ERROR_CALC_DEFAULT;
			best_error[i][1] = ERROR_CALC_DEFAULT;
			best_error[i][0] = ERROR_CALC_DEFAULT;

			format_of_choice[i][3] = FMT_RGBA;
			format_of_choice[i][2] = FMT_RGB;
			format_of_choice[i][1] = FMT_RGB_SCALE;
			format_of_choice[i][0] = FMT_LUMINANCE;
		}

		float base_quant_error_rgb = error_weight_rgbsum * static_cast<float>(partition_size);
		float base_quant_error_a = error_weight.lane<3>() * static_cast<float>(partition_size);
		float base_quant_error_rgba = base_quant_error_rgb + base_quant_error_a;

		float error_scale_bc_rgba = eci.can_blue_contract ? 0.625f : 1.0f;
		float error_scale_oe_rgba = eci.can_offset_encode ? 0.5f : 1.0f;

		float error_scale_bc_rgb = eci.can_blue_contract ? 0.5f : 1.0f;
		float error_scale_oe_rgb = eci.can_offset_encode ? 0.25f : 1.0f;

		// Pick among the available LDR endpoint modes
		for (int i = QUANT_6; i <= QUANT_256; i++)
		{
			// Offset encoding not possible at higher quant levels
			if (i >= QUANT_192)
			{
				error_scale_oe_rgba = 1.0f;
				error_scale_oe_rgb = 1.0f;
			}

			float base_quant_error = baseline_quant_error[i - QUANT_6];
			float quant_error_rgb  = base_quant_error_rgb * base_quant_error;
			float quant_error_rgba = base_quant_error_rgba * base_quant_error;

			// 8 integers can encode as RGBA+RGBA
			float full_ldr_rgba_error = quant_error_rgba
			                          * error_scale_bc_rgba
			                          * error_scale_oe_rgba
			                          + rgb_range_error
			                          + alpha_range_error;

			best_error[i][3] = full_ldr_rgba_error;
			format_of_choice[i][3] = FMT_RGBA;

			// 6 integers can encode as RGB+RGB or RGBS+AA
			float full_ldr_rgb_error = quant_error_rgb
			                         * error_scale_bc_rgb
			                         * error_scale_oe_rgb
			                         + rgb_range_error
			                         + eci.alpha_drop_error;

			float rgbs_alpha_error = quant_error_rgba
			                       + eci.rgb_scale_error
			                       + rgb_range_error
			                       + alpha_range_error;

			if (rgbs_alpha_error < full_ldr_rgb_error)
			{
				best_error[i][2] = rgbs_alpha_error;
				format_of_choice[i][2] = FMT_RGB_SCALE_ALPHA;
			}
			else
			{
				best_error[i][2] = full_ldr_rgb_error;
				format_of_choice[i][2] = FMT_RGB;
			}

			// 4 integers can encode as RGBS or LA+LA
			float ldr_rgbs_error = quant_error_rgb
			                     + rgb_range_error
			                     + eci.alpha_drop_error
			                     + eci.rgb_scale_error;

			float lum_alpha_error = quant_error_rgba
			                      + rgb_range_error
			                      + alpha_range_error
			                      + eci.luminance_error;

			if (ldr_rgbs_error < lum_alpha_error)
			{
				best_error[i][1] = ldr_rgbs_error;
				format_of_choice[i][1] = FMT_RGB_SCALE;
			}
			else
			{
				best_error[i][1] = lum_alpha_error;
				format_of_choice[i][1] = FMT_LUMINANCE_ALPHA;
			}

			// 2 integers can encode as L+L
			float luminance_error = quant_error_rgb
			                      + rgb_range_error
			                      + eci.alpha_drop_error
			                      + eci.luminance_error;

			best_error[i][0] = luminance_error;
			format_of_choice[i][0] = FMT_LUMINANCE;
		}
	}
}

/**
 * @brief For one partition compute the best format and quantization for a given bit count.
 *
 * @param      best_combined_error    The best error for each quant level and integer count.
 * @param      best_combined_format   The best format for each quant level and integer count.
 * @param      bits_available         The number of bits available for encoding.
 * @param[out] best_quant_level       The output best color quant level.
 * @param[out] best_format            The output best color format.
 *
 * @return The output error for the best pairing.
 */
static float one_partition_find_best_combination_for_bitcount(
	const float best_combined_error[21][4],
	const uint8_t best_combined_format[21][4],
	int bits_available,
	uint8_t& best_quant_level,
	uint8_t& best_format
) {
	int best_integer_count = 0;
	float best_integer_count_error = ERROR_CALC_DEFAULT;

	for (int integer_count = 1; integer_count <= 4;  integer_count++)
	{
		// Compute the quantization level for a given number of integers and a given number of bits
		int quant_level = quant_mode_table[integer_count][bits_available];

		// Don't have enough bits to represent a given endpoint format at all!
		if (quant_level < QUANT_6)
		{
			continue;
		}

		float integer_count_error = best_combined_error[quant_level][integer_count - 1];
		if (integer_count_error < best_integer_count_error)
		{
			best_integer_count_error = integer_count_error;
			best_integer_count = integer_count - 1;
		}
	}

	int ql = quant_mode_table[best_integer_count + 1][bits_available];

	best_quant_level = static_cast<uint8_t>(ql);
	best_format = FMT_LUMINANCE;

	if (ql >= QUANT_6)
	{
		best_format = best_combined_format[ql][best_integer_count];
	}

	return best_integer_count_error;
}

/**
 * @brief For 2 partitions compute the best format combinations for every pair of quant mode and integer count.
 *
 * @param      best_error             The best error for a single endpoint quant level and integer count.
 * @param      best_format            The best format for a single endpoint quant level and integer count.
 * @param[out] best_combined_error    The best combined error pairings for the 2 partitions.
 * @param[out] best_combined_format   The best combined format pairings for the 2 partitions.
 */
static void two_partitions_find_best_combination_for_every_quantization_and_integer_count(
	const float best_error[2][21][4],	// indexed by (partition, quant-level, integer-pair-count-minus-1)
	const uint8_t best_format[2][21][4],
	float best_combined_error[21][7],	// indexed by (quant-level, integer-pair-count-minus-2)
	uint8_t best_combined_format[21][7][2]
) {
	for (int i = QUANT_2; i <= QUANT_256; i++)
	{
		for (int j = 0; j < 7; j++)
		{
			best_combined_error[i][j] = ERROR_CALC_DEFAULT;
		}
	}

	for (int quant = QUANT_6; quant <= QUANT_256; quant++)
	{
		for (int i = 0; i < 4; i++)	// integer-count for first endpoint-pair
		{
			for (int j = 0; j < 4; j++)	// integer-count for second endpoint-pair
			{
				int low2 = astc::min(i, j);
				int high2 = astc::max(i, j);
				if ((high2 - low2) > 1)
				{
					continue;
				}

				int intcnt = i + j;
				float errorterm = astc::min(best_error[0][quant][i] + best_error[1][quant][j], 1e10f);
				if (errorterm <= best_combined_error[quant][intcnt])
				{
					best_combined_error[quant][intcnt] = errorterm;
					best_combined_format[quant][intcnt][0] = best_format[0][quant][i];
					best_combined_format[quant][intcnt][1] = best_format[1][quant][j];
				}
			}
		}
	}
}

/**
 * @brief For 2 partitions compute the best format and quantization for a given bit count.
 *
 * @param      best_combined_error    The best error for each quant level and integer count.
 * @param      best_combined_format   The best format for each quant level and integer count.
 * @param      bits_available         The number of bits available for encoding.
 * @param[out] best_quant_level       The output best color quant level.
 * @param[out] best_quant_level_mod   The output best color quant level assuming two more bits are available.
 * @param[out] best_formats           The output best color formats.
 *
 * @return The output error for the best pairing.
 */
static float two_partitions_find_best_combination_for_bitcount(
	float best_combined_error[21][7],
	uint8_t best_combined_format[21][7][2],
	int bits_available,
	uint8_t& best_quant_level,
	uint8_t& best_quant_level_mod,
	uint8_t* best_formats
) {
	int best_integer_count = 0;
	float best_integer_count_error = ERROR_CALC_DEFAULT;

	for (int integer_count = 2; integer_count <= 8; integer_count++)
	{
		// Compute the quantization level for a given number of integers and a given number of bits
		int quant_level = quant_mode_table[integer_count][bits_available];

		// Don't have enough bits to represent a given endpoint format at all!
		if (quant_level < QUANT_6)
		{
			break;
		}

		float integer_count_error = best_combined_error[quant_level][integer_count - 2];
		if (integer_count_error < best_integer_count_error)
		{
			best_integer_count_error = integer_count_error;
			best_integer_count = integer_count;
		}
	}

	int ql = quant_mode_table[best_integer_count][bits_available];
	int ql_mod = quant_mode_table[best_integer_count][bits_available + 2];

	best_quant_level = static_cast<uint8_t>(ql);
	best_quant_level_mod = static_cast<uint8_t>(ql_mod);

	if (ql >= QUANT_6)
	{
		for (int i = 0; i < 2; i++)
		{
			best_formats[i] = best_combined_format[ql][best_integer_count - 2][i];
		}
	}
	else
	{
		for (int i = 0; i < 2; i++)
		{
			best_formats[i] = FMT_LUMINANCE;
		}
	}

	return best_integer_count_error;
}

/**
 * @brief For 3 partitions compute the best format combinations for every pair of quant mode and integer count.
 *
 * @param      best_error             The best error for a single endpoint quant level and integer count.
 * @param      best_format            The best format for a single endpoint quant level and integer count.
 * @param[out] best_combined_error    The best combined error pairings for the 3 partitions.
 * @param[out] best_combined_format   The best combined format pairings for the 3 partitions.
 */
static void three_partitions_find_best_combination_for_every_quantization_and_integer_count(
	const float best_error[3][21][4],	// indexed by (partition, quant-level, integer-count)
	const uint8_t best_format[3][21][4],
	float best_combined_error[21][10],
	uint8_t best_combined_format[21][10][3]
) {
	for (int i = QUANT_2; i <= QUANT_256; i++)
	{
		for (int j = 0; j < 10; j++)
		{
			best_combined_error[i][j] = ERROR_CALC_DEFAULT;
		}
	}

	for (int quant = QUANT_6; quant <= QUANT_256; quant++)
	{
		for (int i = 0; i < 4; i++)	// integer-count for first endpoint-pair
		{
			for (int j = 0; j < 4; j++)	// integer-count for second endpoint-pair
			{
				int low2 = astc::min(i, j);
				int high2 = astc::max(i, j);
				if ((high2 - low2) > 1)
				{
					continue;
				}

				for (int k = 0; k < 4; k++)	// integer-count for third endpoint-pair
				{
					int low3 = astc::min(k, low2);
					int high3 = astc::max(k, high2);
					if ((high3 - low3) > 1)
					{
						continue;
					}

					int intcnt = i + j + k;
					float errorterm = astc::min(best_error[0][quant][i] + best_error[1][quant][j] + best_error[2][quant][k], 1e10f);
					if (errorterm <= best_combined_error[quant][intcnt])
					{
						best_combined_error[quant][intcnt] = errorterm;
						best_combined_format[quant][intcnt][0] = best_format[0][quant][i];
						best_combined_format[quant][intcnt][1] = best_format[1][quant][j];
						best_combined_format[quant][intcnt][2] = best_format[2][quant][k];
					}
				}
			}
		}
	}
}

/**
 * @brief For 3 partitions compute the best format and quantization for a given bit count.
 *
 * @param      best_combined_error    The best error for each quant level and integer count.
 * @param      best_combined_format   The best format for each quant level and integer count.
 * @param      bits_available         The number of bits available for encoding.
 * @param[out] best_quant_level       The output best color quant level.
 * @param[out] best_quant_level_mod   The output best color quant level assuming two more bits are available.
 * @param[out] best_formats           The output best color formats.
 *
 * @return The output error for the best pairing.
 */
static float three_partitions_find_best_combination_for_bitcount(
	const float best_combined_error[21][10],
	const uint8_t best_combined_format[21][10][3],
	int bits_available,
	uint8_t& best_quant_level,
	uint8_t& best_quant_level_mod,
	uint8_t* best_formats
) {
	int best_integer_count = 0;
	float best_integer_count_error = ERROR_CALC_DEFAULT;

	for (int integer_count = 3; integer_count <= 9; integer_count++)
	{
		// Compute the quantization level for a given number of integers and a given number of bits
		int quant_level = quant_mode_table[integer_count][bits_available];

		// Don't have enough bits to represent a given endpoint format at all!
		if (quant_level < QUANT_6)
		{
			break;
		}

		float integer_count_error = best_combined_error[quant_level][integer_count - 3];
		if (integer_count_error < best_integer_count_error)
		{
			best_integer_count_error = integer_count_error;
			best_integer_count = integer_count;
		}
	}

	int ql = quant_mode_table[best_integer_count][bits_available];
	int ql_mod = quant_mode_table[best_integer_count][bits_available + 5];

	best_quant_level = static_cast<uint8_t>(ql);
	best_quant_level_mod = static_cast<uint8_t>(ql_mod);

	if (ql >= QUANT_6)
	{
		for (int i = 0; i < 3; i++)
		{
			best_formats[i] = best_combined_format[ql][best_integer_count - 3][i];
		}
	}
	else
	{
		for (int i = 0; i < 3; i++)
		{
			best_formats[i] = FMT_LUMINANCE;
		}
	}

	return best_integer_count_error;
}

/**
 * @brief For 4 partitions compute the best format combinations for every pair of quant mode and integer count.
 *
 * @param      best_error             The best error for a single endpoint quant level and integer count.
 * @param      best_format            The best format for a single endpoint quant level and integer count.
 * @param[out] best_combined_error    The best combined error pairings for the 4 partitions.
 * @param[out] best_combined_format   The best combined format pairings for the 4 partitions.
 */
static void four_partitions_find_best_combination_for_every_quantization_and_integer_count(
	const float best_error[4][21][4],	// indexed by (partition, quant-level, integer-count)
	const uint8_t best_format[4][21][4],
	float best_combined_error[21][13],
	uint8_t best_combined_format[21][13][4]
) {
	for (int i = QUANT_2; i <= QUANT_256; i++)
	{
		for (int j = 0; j < 13; j++)
		{
			best_combined_error[i][j] = ERROR_CALC_DEFAULT;
		}
	}

	for (int quant = QUANT_6; quant <= QUANT_256; quant++)
	{
		for (int i = 0; i < 4; i++)	// integer-count for first endpoint-pair
		{
			for (int j = 0; j < 4; j++)	// integer-count for second endpoint-pair
			{
				int low2 = astc::min(i, j);
				int high2 = astc::max(i, j);
				if ((high2 - low2) > 1)
				{
					continue;
				}

				for (int k = 0; k < 4; k++)	// integer-count for third endpoint-pair
				{
					int low3 = astc::min(k, low2);
					int high3 = astc::max(k, high2);
					if ((high3 - low3) > 1)
					{
						continue;
					}

					for (int l = 0; l < 4; l++)	// integer-count for fourth endpoint-pair
					{
						int low4 = astc::min(l, low3);
						int high4 = astc::max(l, high3);
						if ((high4 - low4) > 1)
						{
							continue;
						}

						int intcnt = i + j + k + l;
						float errorterm = astc::min(best_error[0][quant][i] + best_error[1][quant][j] + best_error[2][quant][k] + best_error[3][quant][l], 1e10f);
						if (errorterm <= best_combined_error[quant][intcnt])
						{
							best_combined_error[quant][intcnt] = errorterm;
							best_combined_format[quant][intcnt][0] = best_format[0][quant][i];
							best_combined_format[quant][intcnt][1] = best_format[1][quant][j];
							best_combined_format[quant][intcnt][2] = best_format[2][quant][k];
							best_combined_format[quant][intcnt][3] = best_format[3][quant][l];
						}
					}
				}
			}
		}
	}
}

/**
 * @brief For 4 partitions compute the best format and quantization for a given bit count.
 *
 * @param      best_combined_error    The best error for each quant level and integer count.
 * @param      best_combined_format   The best format for each quant level and integer count.
 * @param      bits_available         The number of bits available for encoding.
 * @param[out] best_quant_level       The output best color quant level.
 * @param[out] best_quant_level_mod   The output best color quant level assuming two more bits are available.
 * @param[out] best_formats           The output best color formats.
 *
 * @return best_error The output error for the best pairing.
 */
static float four_partitions_find_best_combination_for_bitcount(
	const float best_combined_error[21][13],
	const uint8_t best_combined_format[21][13][4],
	int bits_available,
	uint8_t& best_quant_level,
	uint8_t& best_quant_level_mod,
	uint8_t* best_formats
) {
	int best_integer_count = 0;
	float best_integer_count_error = ERROR_CALC_DEFAULT;

	for (int integer_count = 4; integer_count <= 9; integer_count++)
	{
		// Compute the quantization level for a given number of integers and a given number of bits
		int quant_level = quant_mode_table[integer_count][bits_available];

		// Don't have enough bits to represent a given endpoint format at all!
		if (quant_level < QUANT_6)
		{
			break;
		}

		float integer_count_error = best_combined_error[quant_level][integer_count - 4];
		if (integer_count_error < best_integer_count_error)
		{
			best_integer_count_error = integer_count_error;
			best_integer_count = integer_count;
		}
	}

	int ql = quant_mode_table[best_integer_count][bits_available];
	int ql_mod = quant_mode_table[best_integer_count][bits_available + 8];

	best_quant_level = static_cast<uint8_t>(ql);
	best_quant_level_mod = static_cast<uint8_t>(ql_mod);

	if (ql >= QUANT_6)
	{
		for (int i = 0; i < 4; i++)
		{
			best_formats[i] = best_combined_format[ql][best_integer_count - 4][i];
		}
	}
	else
	{
		for (int i = 0; i < 4; i++)
		{
			best_formats[i] = FMT_LUMINANCE;
		}
	}

	return best_integer_count_error;
}

/* See header for documentation. */
unsigned int compute_ideal_endpoint_formats(
	const partition_info& pi,
	const image_block& blk,
	const endpoints& ep,
	 // bitcounts and errors computed for the various quantization methods
	const int8_t* qwt_bitcounts,
	const float* qwt_errors,
	unsigned int tune_candidate_limit,
	unsigned int start_block_mode,
	unsigned int end_block_mode,
	// output data
	uint8_t partition_format_specifiers[TUNE_MAX_TRIAL_CANDIDATES][BLOCK_MAX_PARTITIONS],
	int block_mode[TUNE_MAX_TRIAL_CANDIDATES],
	quant_method quant_level[TUNE_MAX_TRIAL_CANDIDATES],
	quant_method quant_level_mod[TUNE_MAX_TRIAL_CANDIDATES],
	compression_working_buffers& tmpbuf
) {
	int partition_count = pi.partition_count;

	promise(partition_count > 0);

	bool encode_hdr_rgb = static_cast<bool>(blk.rgb_lns[0]);
	bool encode_hdr_alpha = static_cast<bool>(blk.alpha_lns[0]);

	// Compute the errors that result from various encoding choices (such as using luminance instead
	// of RGB, discarding Alpha, using RGB-scale in place of two separate RGB endpoints and so on)
	encoding_choice_errors eci[BLOCK_MAX_PARTITIONS];
	compute_encoding_choice_errors(blk, pi, ep, eci);

	float best_error[BLOCK_MAX_PARTITIONS][21][4];
	uint8_t format_of_choice[BLOCK_MAX_PARTITIONS][21][4];
	for (int i = 0; i < partition_count; i++)
	{
		compute_color_error_for_every_integer_count_and_quant_level(
		    encode_hdr_rgb, encode_hdr_alpha, i,
		    pi, eci[i], ep, blk.channel_weight, best_error[i],
		    format_of_choice[i]);
	}

	float* errors_of_best_combination = tmpbuf.errors_of_best_combination;
	uint8_t* best_quant_levels = tmpbuf.best_quant_levels;
	uint8_t* best_quant_levels_mod = tmpbuf.best_quant_levels_mod;
	uint8_t (&best_ep_formats)[WEIGHTS_MAX_BLOCK_MODES][BLOCK_MAX_PARTITIONS] = tmpbuf.best_ep_formats;

	// Ensure that the first iteration understep contains data that will never be picked
	vfloat clear_error(ERROR_CALC_DEFAULT);
	vint clear_quant(0);

	unsigned int packed_start_block_mode = round_down_to_simd_multiple_vla(start_block_mode);
	storea(clear_error, errors_of_best_combination + packed_start_block_mode);
	store_nbytes(clear_quant, best_quant_levels + packed_start_block_mode);
	store_nbytes(clear_quant, best_quant_levels_mod + packed_start_block_mode);

	// Ensure that last iteration overstep contains data that will never be picked
	unsigned int packed_end_block_mode = round_down_to_simd_multiple_vla(end_block_mode - 1);
	storea(clear_error, errors_of_best_combination + packed_end_block_mode);
	store_nbytes(clear_quant, best_quant_levels + packed_end_block_mode);
	store_nbytes(clear_quant, best_quant_levels_mod + packed_end_block_mode);

	// Track a scalar best to avoid expensive search at least once ...
	float error_of_best_combination = ERROR_CALC_DEFAULT;
	int index_of_best_combination = -1;

	// The block contains 1 partition
	if (partition_count == 1)
	{
		for (unsigned int i = start_block_mode; i < end_block_mode; i++)
		{
			if (qwt_errors[i] >= ERROR_CALC_DEFAULT)
			{
				errors_of_best_combination[i] = ERROR_CALC_DEFAULT;
				continue;
			}

			float error_of_best = one_partition_find_best_combination_for_bitcount(
			    best_error[0], format_of_choice[0], qwt_bitcounts[i],
			    best_quant_levels[i], best_ep_formats[i][0]);

			float total_error = error_of_best + qwt_errors[i];
			errors_of_best_combination[i] = total_error;
			best_quant_levels_mod[i] = best_quant_levels[i];

			if (total_error < error_of_best_combination)
			{
				error_of_best_combination = total_error;
				index_of_best_combination = i;
			}
		}
	}
	// The block contains 2 partitions
	else if (partition_count == 2)
	{
		float combined_best_error[21][7];
		uint8_t formats_of_choice[21][7][2];

		two_partitions_find_best_combination_for_every_quantization_and_integer_count(
		    best_error, format_of_choice, combined_best_error, formats_of_choice);

		assert(start_block_mode == 0);
		for (unsigned int i = 0; i < end_block_mode; i++)
		{
			if (qwt_errors[i] >= ERROR_CALC_DEFAULT)
			{
				errors_of_best_combination[i] = ERROR_CALC_DEFAULT;
				continue;
			}

			float error_of_best = two_partitions_find_best_combination_for_bitcount(
			    combined_best_error, formats_of_choice, qwt_bitcounts[i],
			    best_quant_levels[i], best_quant_levels_mod[i],
			    best_ep_formats[i]);

			float total_error = error_of_best + qwt_errors[i];
			errors_of_best_combination[i] = total_error;

			if (total_error < error_of_best_combination)
			{
				error_of_best_combination = total_error;
				index_of_best_combination = i;
			}
		}
	}
	// The block contains 3 partitions
	else if (partition_count == 3)
	{
		float combined_best_error[21][10];
		uint8_t formats_of_choice[21][10][3];

		three_partitions_find_best_combination_for_every_quantization_and_integer_count(
		    best_error, format_of_choice, combined_best_error, formats_of_choice);

		assert(start_block_mode == 0);
		for (unsigned int i = 0; i < end_block_mode; i++)
		{
			if (qwt_errors[i] >= ERROR_CALC_DEFAULT)
			{
				errors_of_best_combination[i] = ERROR_CALC_DEFAULT;
				continue;
			}

			float error_of_best = three_partitions_find_best_combination_for_bitcount(
			    combined_best_error, formats_of_choice, qwt_bitcounts[i],
			    best_quant_levels[i], best_quant_levels_mod[i],
			    best_ep_formats[i]);

			float total_error = error_of_best + qwt_errors[i];
			errors_of_best_combination[i] = total_error;

			if (total_error < error_of_best_combination)
			{
				error_of_best_combination = total_error;
				index_of_best_combination = i;
			}
		}
	}
	// The block contains 4 partitions
	else // if (partition_count == 4)
	{
		assert(partition_count == 4);
		float combined_best_error[21][13];
		uint8_t formats_of_choice[21][13][4];

		four_partitions_find_best_combination_for_every_quantization_and_integer_count(
		    best_error, format_of_choice, combined_best_error, formats_of_choice);

		assert(start_block_mode == 0);
		for (unsigned int i = 0; i < end_block_mode; i++)
		{
			if (qwt_errors[i] >= ERROR_CALC_DEFAULT)
			{
				errors_of_best_combination[i] = ERROR_CALC_DEFAULT;
				continue;
			}

			float error_of_best = four_partitions_find_best_combination_for_bitcount(
			    combined_best_error, formats_of_choice, qwt_bitcounts[i],
			    best_quant_levels[i], best_quant_levels_mod[i],
			    best_ep_formats[i]);

			float total_error = error_of_best + qwt_errors[i];
			errors_of_best_combination[i] = total_error;

			if (total_error < error_of_best_combination)
			{
				error_of_best_combination = total_error;
				index_of_best_combination = i;
			}
		}
	}

	int best_error_weights[TUNE_MAX_TRIAL_CANDIDATES];

	// Fast path the first result and avoid the list search for trial 0
	best_error_weights[0] = index_of_best_combination;
	if (index_of_best_combination >= 0)
	{
		errors_of_best_combination[index_of_best_combination] = ERROR_CALC_DEFAULT;
	}

	// Search the remaining results and pick the best candidate modes for trial 1+
	for (unsigned int i = 1; i < tune_candidate_limit; i++)
	{
		vint vbest_error_index(-1);
		vfloat vbest_ep_error(ERROR_CALC_DEFAULT);

		start_block_mode = round_down_to_simd_multiple_vla(start_block_mode);
		vint lane_ids = vint::lane_id() + vint(start_block_mode);
		for (unsigned int j = start_block_mode; j < end_block_mode; j += ASTCENC_SIMD_WIDTH)
		{
			vfloat err = vfloat(errors_of_best_combination + j);
			vmask mask = err < vbest_ep_error;
			vbest_ep_error = select(vbest_ep_error, err, mask);
			vbest_error_index = select(vbest_error_index, lane_ids, mask);
			lane_ids += vint(ASTCENC_SIMD_WIDTH);
		}

		// Pick best mode from the SIMD result, using lowest matching index to ensure invariance
		vmask lanes_min_error = vbest_ep_error == hmin(vbest_ep_error);
		vbest_error_index = select(vint(0x7FFFFFFF), vbest_error_index, lanes_min_error);
		vbest_error_index = hmin(vbest_error_index);
		int best_error_index = vbest_error_index.lane<0>();

		best_error_weights[i] = best_error_index;

		// Max the error for this candidate so we don't pick it again
		if (best_error_index >= 0)
		{
			errors_of_best_combination[best_error_index] = ERROR_CALC_DEFAULT;
		}
		// Early-out if no more candidates are valid
		else
		{
			break;
		}
	}

	for (unsigned int i = 0; i < tune_candidate_limit; i++)
	{
		if (best_error_weights[i] < 0)
		{
			return i;
		}

		block_mode[i] = best_error_weights[i];

		quant_level[i] = static_cast<quant_method>(best_quant_levels[best_error_weights[i]]);
		quant_level_mod[i] = static_cast<quant_method>(best_quant_levels_mod[best_error_weights[i]]);

		assert(quant_level[i] >= QUANT_6 && quant_level[i] <= QUANT_256);
		assert(quant_level_mod[i] >= QUANT_6 && quant_level_mod[i] <= QUANT_256);

		for (int j = 0; j < partition_count; j++)
		{
			partition_format_specifiers[i][j] = best_ep_formats[best_error_weights[i]][j];
		}
	}

	return tune_candidate_limit;
}

#endif