summaryrefslogtreecommitdiff
path: root/thirdparty/astcenc/astcenc_partition_tables.cpp
blob: cad42384d78f065edcea5dc1c68574ee6a592732 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
// SPDX-License-Identifier: Apache-2.0
// ----------------------------------------------------------------------------
// Copyright 2011-2023 Arm Limited
//
// Licensed under the Apache License, Version 2.0 (the "License"); you may not
// use this file except in compliance with the License. You may obtain a copy
// of the License at:
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
// License for the specific language governing permissions and limitations
// under the License.
// ----------------------------------------------------------------------------

/**
 * @brief Functions for generating partition tables on demand.
 */

#include "astcenc_internal.h"

/** @brief The number of 64-bit words needed to represent a canonical partition bit pattern. */
#define BIT_PATTERN_WORDS (((ASTCENC_BLOCK_MAX_TEXELS * 2) + 63) / 64)

/**
 * @brief Generate a canonical representation of a partition pattern.
 *
 * The returned value stores two bits per texel, for up to 6x6x6 texels, where the two bits store
 * the remapped texel index. Remapping ensures that we only match on the partition pattern,
 * independent of the partition order generated by the hash.
 *
 * @param      texel_count          The number of texels in the block.
 * @param      partition_of_texel   The partition assignments, in hash order.
 * @param[out] bit_pattern          The output bit pattern representation.
 */
static void generate_canonical_partitioning(
	unsigned int texel_count,
	const uint8_t* partition_of_texel,
	uint64_t bit_pattern[BIT_PATTERN_WORDS]
) {
	// Clear the pattern
	for (unsigned int i = 0; i < BIT_PATTERN_WORDS; i++)
	{
		bit_pattern[i] = 0;
	}

	// Store a mapping to reorder the raw partitions so that the partitions are ordered such
	// that the lowest texel index in partition N is smaller than the lowest texel index in
	// partition N + 1.
	int mapped_index[BLOCK_MAX_PARTITIONS];
	int map_weight_count = 0;

	for (unsigned int i = 0; i < BLOCK_MAX_PARTITIONS; i++)
	{
		mapped_index[i] = -1;
	}

	for (unsigned int i = 0; i < texel_count; i++)
	{
		int index = partition_of_texel[i];
		if (mapped_index[index] < 0)
		{
			mapped_index[index] = map_weight_count++;
		}

		uint64_t xlat_index = mapped_index[index];
		bit_pattern[i >> 5] |= xlat_index << (2 * (i & 0x1F));
	}
}

/**
 * @brief Compare two canonical patterns to see if they are the same.
 *
 * @param part1   The first canonical bit pattern to check.
 * @param part2   The second canonical bit pattern to check.
 *
 * @return @c true if the patterns are the same, @c false otherwise.
 */
static bool compare_canonical_partitionings(
	const uint64_t part1[BIT_PATTERN_WORDS],
	const uint64_t part2[BIT_PATTERN_WORDS]
) {
	return (part1[0] == part2[0])
#if BIT_PATTERN_WORDS > 1
	    && (part1[1] == part2[1])
#endif
#if BIT_PATTERN_WORDS > 2
	    && (part1[2] == part2[2])
#endif
#if BIT_PATTERN_WORDS > 3
	    && (part1[3] == part2[3])
#endif
#if BIT_PATTERN_WORDS > 4
	    && (part1[4] == part2[4])
#endif
#if BIT_PATTERN_WORDS > 5
	    && (part1[5] == part2[5])
#endif
#if BIT_PATTERN_WORDS > 6
	    && (part1[6] == part2[6])
#endif
	    ;
}

/**
 * @brief Hash function used for procedural partition assignment.
 *
 * @param inp   The hash seed.
 *
 * @return The hashed value.
 */
static uint32_t hash52(
	uint32_t inp
) {
	inp ^= inp >> 15;

	// (2^4 + 1) * (2^7 + 1) * (2^17 - 1)
	inp *= 0xEEDE0891;
	inp ^= inp >> 5;
	inp += inp << 16;
	inp ^= inp >> 7;
	inp ^= inp >> 3;
	inp ^= inp << 6;
	inp ^= inp >> 17;
	return inp;
}

/**
 * @brief Select texel assignment for a single coordinate.
 *
 * @param seed              The seed - the partition index from the block.
 * @param x                 The texel X coordinate in the block.
 * @param y                 The texel Y coordinate in the block.
 * @param z                 The texel Z coordinate in the block.
 * @param partition_count   The total partition count of this encoding.
 * @param small_block       @c true if the block has fewer than 32 texels.
 *
 * @return The assigned partition index for this texel.
 */
static uint8_t select_partition(
	int seed,
	int x,
	int y,
	int z,
	int partition_count,
	bool small_block
) {
	// For small blocks bias the coordinates to get better distribution
	if (small_block)
	{
		x <<= 1;
		y <<= 1;
		z <<= 1;
	}

	seed += (partition_count - 1) * 1024;

	uint32_t rnum = hash52(seed);

	uint8_t seed1 = rnum & 0xF;
	uint8_t seed2 = (rnum >> 4) & 0xF;
	uint8_t seed3 = (rnum >> 8) & 0xF;
	uint8_t seed4 = (rnum >> 12) & 0xF;
	uint8_t seed5 = (rnum >> 16) & 0xF;
	uint8_t seed6 = (rnum >> 20) & 0xF;
	uint8_t seed7 = (rnum >> 24) & 0xF;
	uint8_t seed8 = (rnum >> 28) & 0xF;
	uint8_t seed9 = (rnum >> 18) & 0xF;
	uint8_t seed10 = (rnum >> 22) & 0xF;
	uint8_t seed11 = (rnum >> 26) & 0xF;
	uint8_t seed12 = ((rnum >> 30) | (rnum << 2)) & 0xF;

	// Squaring all the seeds in order to bias their distribution towards lower values.
	seed1 *= seed1;
	seed2 *= seed2;
	seed3 *= seed3;
	seed4 *= seed4;
	seed5 *= seed5;
	seed6 *= seed6;
	seed7 *= seed7;
	seed8 *= seed8;
	seed9 *= seed9;
	seed10 *= seed10;
	seed11 *= seed11;
	seed12 *= seed12;

	int sh1, sh2;
	if (seed & 1)
	{
		sh1 = (seed & 2 ? 4 : 5);
		sh2 = (partition_count == 3 ? 6 : 5);
	}
	else
	{
		sh1 = (partition_count == 3 ? 6 : 5);
		sh2 = (seed & 2 ? 4 : 5);
	}

	int sh3 = (seed & 0x10) ? sh1 : sh2;

	seed1 >>= sh1;
	seed2 >>= sh2;
	seed3 >>= sh1;
	seed4 >>= sh2;
	seed5 >>= sh1;
	seed6 >>= sh2;
	seed7 >>= sh1;
	seed8 >>= sh2;

	seed9 >>= sh3;
	seed10 >>= sh3;
	seed11 >>= sh3;
	seed12 >>= sh3;

	int a = seed1 * x + seed2 * y + seed11 * z + (rnum >> 14);
	int b = seed3 * x + seed4 * y + seed12 * z + (rnum >> 10);
	int c = seed5 * x + seed6 * y + seed9 * z + (rnum >> 6);
	int d = seed7 * x + seed8 * y + seed10 * z + (rnum >> 2);

	// Apply the saw
	a &= 0x3F;
	b &= 0x3F;
	c &= 0x3F;
	d &= 0x3F;

	// Remove some of the components if we are to output < 4 partitions.
	if (partition_count <= 3)
	{
		d = 0;
	}

	if (partition_count <= 2)
	{
		c = 0;
	}

	if (partition_count <= 1)
	{
		b = 0;
	}

	uint8_t partition;
	if (a >= b && a >= c && a >= d)
	{
		partition = 0;
	}
	else if (b >= c && b >= d)
	{
		partition = 1;
	}
	else if (c >= d)
	{
		partition = 2;
	}
	else
	{
		partition = 3;
	}

	return partition;
}

/**
 * @brief Generate a single partition info structure.
 *
 * @param[out] bsd                     The block size information.
 * @param      partition_count         The partition count of this partitioning.
 * @param      partition_index         The partition index / seed of this partitioning.
 * @param      partition_remap_index   The remapped partition index of this partitioning.
 * @param[out] pi                      The partition info structure to populate.
 *
 * @return True if this is a useful partition index, False if we can skip it.
 */
static bool generate_one_partition_info_entry(
	block_size_descriptor& bsd,
	unsigned int partition_count,
	unsigned int partition_index,
	unsigned int partition_remap_index,
	partition_info& pi
) {
	int texels_per_block = bsd.texel_count;
	bool small_block = texels_per_block < 32;

	uint8_t *partition_of_texel = pi.partition_of_texel;

	// Assign texels to partitions
	int texel_idx = 0;
	int counts[BLOCK_MAX_PARTITIONS] { 0 };
	for (unsigned int z = 0; z < bsd.zdim; z++)
	{
		for (unsigned int y = 0; y <  bsd.ydim; y++)
		{
			for (unsigned int x = 0; x <  bsd.xdim; x++)
			{
				uint8_t part = select_partition(partition_index, x, y, z, partition_count, small_block);
				pi.texels_of_partition[part][counts[part]++] = static_cast<uint8_t>(texel_idx++);
				*partition_of_texel++ = part;
			}
		}
	}

	// Fill loop tail so we can overfetch later
	for (unsigned int i = 0; i < partition_count; i++)
	{
		int ptex_count = counts[i];
		int ptex_count_simd = round_up_to_simd_multiple_vla(ptex_count);
		for (int j = ptex_count; j < ptex_count_simd; j++)
		{
			pi.texels_of_partition[i][j] = pi.texels_of_partition[i][ptex_count - 1];
		}
	}

	// Populate the actual procedural partition count
	if (counts[0] == 0)
	{
		pi.partition_count = 0;
	}
	else if (counts[1] == 0)
	{
		pi.partition_count = 1;
	}
	else if (counts[2] == 0)
	{
		pi.partition_count = 2;
	}
	else if (counts[3] == 0)
	{
		pi.partition_count = 3;
	}
	else
	{
		pi.partition_count = 4;
	}

	// Populate the partition index
	pi.partition_index = static_cast<uint16_t>(partition_index);

	// Populate the coverage bitmaps for 2/3/4 partitions
	uint64_t* bitmaps { nullptr };
	if (partition_count == 2)
	{
		bitmaps = bsd.coverage_bitmaps_2[partition_remap_index];
	}
	else if (partition_count == 3)
	{
		bitmaps = bsd.coverage_bitmaps_3[partition_remap_index];
	}
	else if (partition_count == 4)
	{
		bitmaps = bsd.coverage_bitmaps_4[partition_remap_index];
	}

	for (unsigned int i = 0; i < BLOCK_MAX_PARTITIONS; i++)
	{
		pi.partition_texel_count[i] = static_cast<uint8_t>(counts[i]);
	}

	// Valid partitionings have texels in all of the requested partitions
	bool valid = pi.partition_count == partition_count;

	if (bitmaps)
	{
		// Populate the partition coverage bitmap
		for (unsigned int i = 0; i < partition_count; i++)
		{
			bitmaps[i] = 0ULL;
		}

		unsigned int texels_to_process = astc::min(bsd.texel_count, BLOCK_MAX_KMEANS_TEXELS);
		for (unsigned int i = 0; i < texels_to_process; i++)
		{
			unsigned int idx = bsd.kmeans_texels[i];
			bitmaps[pi.partition_of_texel[idx]] |= 1ULL << i;
		}
	}

	return valid;
}

static void build_partition_table_for_one_partition_count(
	block_size_descriptor& bsd,
	bool can_omit_partitionings,
	unsigned int partition_count_cutoff,
	unsigned int partition_count,
	partition_info* ptab,
	uint64_t* canonical_patterns
) {
	unsigned int next_index = 0;
	bsd.partitioning_count_selected[partition_count - 1] = 0;
	bsd.partitioning_count_all[partition_count - 1] = 0;

	// Skip tables larger than config max partition count if we can omit modes
	if (can_omit_partitionings && (partition_count > partition_count_cutoff))
	{
		return;
	}

	// Iterate through twice
	//   - Pass 0: Keep selected partitionings
	//   - Pass 1: Keep non-selected partitionings (skip if in omit mode)
	unsigned int max_iter = can_omit_partitionings ? 1 : 2;

	// Tracker for things we built in the first iteration
	uint8_t build[BLOCK_MAX_PARTITIONINGS] { 0 };
	for (unsigned int x = 0; x < max_iter; x++)
	{
		for (unsigned int i = 0; i < BLOCK_MAX_PARTITIONINGS; i++)
		{
			// Don't include things we built in the first pass
			if ((x == 1) && build[i])
			{
				continue;
			}

			bool keep_useful = generate_one_partition_info_entry(bsd, partition_count, i, next_index, ptab[next_index]);
			if ((x == 0) && !keep_useful)
			{
				continue;
			}

			generate_canonical_partitioning(bsd.texel_count, ptab[next_index].partition_of_texel, canonical_patterns + next_index * BIT_PATTERN_WORDS);
			bool keep_canonical = true;
			for (unsigned int j = 0; j < next_index; j++)
			{
				bool match = compare_canonical_partitionings(canonical_patterns + next_index * BIT_PATTERN_WORDS, canonical_patterns +  j * BIT_PATTERN_WORDS);
				if (match)
				{
					keep_canonical = false;
					break;
				}
			}

			if (keep_useful && keep_canonical)
			{
				if (x == 0)
				{
					bsd.partitioning_packed_index[partition_count - 2][i] = static_cast<uint16_t>(next_index);
					bsd.partitioning_count_selected[partition_count - 1]++;
					bsd.partitioning_count_all[partition_count - 1]++;
					build[i] = 1;
					next_index++;
				}
			}
			else
			{
				if (x == 1)
				{
					bsd.partitioning_packed_index[partition_count - 2][i] = static_cast<uint16_t>(next_index);
					bsd.partitioning_count_all[partition_count - 1]++;
					next_index++;
				}
			}
		}
	}
}

/* See header for documentation. */
void init_partition_tables(
	block_size_descriptor& bsd,
	bool can_omit_partitionings,
	unsigned int partition_count_cutoff
) {
	partition_info* par_tab2 = bsd.partitionings;
	partition_info* par_tab3 = par_tab2 + BLOCK_MAX_PARTITIONINGS;
	partition_info* par_tab4 = par_tab3 + BLOCK_MAX_PARTITIONINGS;
	partition_info* par_tab1 = par_tab4 + BLOCK_MAX_PARTITIONINGS;

	generate_one_partition_info_entry(bsd, 1, 0, 0, *par_tab1);
	bsd.partitioning_count_selected[0] = 1;
	bsd.partitioning_count_all[0] = 1;

	uint64_t* canonical_patterns = new uint64_t[BLOCK_MAX_PARTITIONINGS * BIT_PATTERN_WORDS];

	build_partition_table_for_one_partition_count(bsd, can_omit_partitionings, partition_count_cutoff, 2, par_tab2, canonical_patterns);
	build_partition_table_for_one_partition_count(bsd, can_omit_partitionings, partition_count_cutoff, 3, par_tab3, canonical_patterns);
	build_partition_table_for_one_partition_count(bsd, can_omit_partitionings, partition_count_cutoff, 4, par_tab4, canonical_patterns);

	delete[] canonical_patterns;
}