summaryrefslogtreecommitdiff
path: root/thirdparty/astcenc/astcenc_find_best_partitioning.cpp
blob: ffde3c70605c61368fc980a57d2b12e6cb3c43de (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
// SPDX-License-Identifier: Apache-2.0
// ----------------------------------------------------------------------------
// Copyright 2011-2023 Arm Limited
//
// Licensed under the Apache License, Version 2.0 (the "License"); you may not
// use this file except in compliance with the License. You may obtain a copy
// of the License at:
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
// License for the specific language governing permissions and limitations
// under the License.
// ----------------------------------------------------------------------------

#if !defined(ASTCENC_DECOMPRESS_ONLY)

/**
 * @brief Functions for finding best partition for a block.
 *
 * The partition search operates in two stages. The first pass uses kmeans clustering to group
 * texels into an ideal partitioning for the requested partition count, and then compares that
 * against the 1024 partitionings generated by the ASTC partition hash function. The generated
 * partitions are then ranked by the number of texels in the wrong partition, compared to the ideal
 * clustering. All 1024 partitions are tested for similarity and ranked, apart from duplicates and
 * partitionings that actually generate fewer than the requested partition count, but only the top
 * N candidates are actually put through a more detailed search. N is determined by the compressor
 * quality preset.
 *
 * For the detailed search, each candidate is checked against two possible encoding methods:
 *
 *   - The best partitioning assuming different chroma colors (RGB + RGB or RGB + delta endpoints).
 *   - The best partitioning assuming same chroma colors (RGB + scale endpoints).
 *
 * This is implemented by computing the compute mean color and dominant direction for each
 * partition. This defines two lines, both of which go through the mean color value.
 *
 * - One line has a direction defined by the dominant direction; this is used to assess the error
 *   from using an uncorrelated color representation.
 * - The other line goes through (0,0,0,1) and is used to assess the error from using a same chroma
 *   (RGB + scale) color representation.
 *
 * The best candidate is selected by computing the squared-errors that result from using these
 * lines for endpoint selection.
 */

#include <limits>
#include "astcenc_internal.h"

/**
 * @brief Pick some initial kmeans cluster centers.
 *
 * @param      blk               The image block color data to compress.
 * @param      texel_count       The number of texels in the block.
 * @param      partition_count   The number of partitions in the block.
 * @param[out] cluster_centers   The initial partition cluster center colors.
 */
static void kmeans_init(
	const image_block& blk,
	unsigned int texel_count,
	unsigned int partition_count,
	vfloat4 cluster_centers[BLOCK_MAX_PARTITIONS]
) {
	promise(texel_count > 0);
	promise(partition_count > 0);

	unsigned int clusters_selected = 0;
	float distances[BLOCK_MAX_TEXELS];

	// Pick a random sample as first cluster center; 145897 from random.org
	unsigned int sample = 145897 % texel_count;
	vfloat4 center_color = blk.texel(sample);
	cluster_centers[clusters_selected] = center_color;
	clusters_selected++;

	// Compute the distance to the first cluster center
	float distance_sum = 0.0f;
	for (unsigned int i = 0; i < texel_count; i++)
	{
		vfloat4 color = blk.texel(i);
		vfloat4 diff = color - center_color;
		float distance = dot_s(diff * diff, blk.channel_weight);
		distance_sum += distance;
		distances[i] = distance;
	}

	// More numbers from random.org for weighted-random center selection
	const float cluster_cutoffs[9] {
		0.626220f, 0.932770f, 0.275454f,
		0.318558f, 0.240113f, 0.009190f,
		0.347661f, 0.731960f, 0.156391f
	};

	unsigned int cutoff = (clusters_selected - 1) + 3 * (partition_count - 2);

	// Pick the remaining samples as needed
	while (true)
	{
		// Pick the next center in a weighted-random fashion.
		float summa = 0.0f;
		float distance_cutoff = distance_sum * cluster_cutoffs[cutoff++];
		for (sample = 0; sample < texel_count; sample++)
		{
			summa += distances[sample];
			if (summa >= distance_cutoff)
			{
				break;
			}
		}

		// Clamp to a valid range and store the selected cluster center
		sample = astc::min(sample, texel_count - 1);

		center_color = blk.texel(sample);
		cluster_centers[clusters_selected++] = center_color;
		if (clusters_selected >= partition_count)
		{
			break;
		}

		// Compute the distance to the new cluster center, keep the min dist
		distance_sum = 0.0f;
		for (unsigned int i = 0; i < texel_count; i++)
		{
			vfloat4 color = blk.texel(i);
			vfloat4 diff = color - center_color;
			float distance = dot_s(diff * diff, blk.channel_weight);
			distance = astc::min(distance, distances[i]);
			distance_sum += distance;
			distances[i] = distance;
		}
	}
}

/**
 * @brief Assign texels to clusters, based on a set of chosen center points.
 *
 * @param      blk                  The image block color data to compress.
 * @param      texel_count          The number of texels in the block.
 * @param      partition_count      The number of partitions in the block.
 * @param      cluster_centers      The partition cluster center colors.
 * @param[out] partition_of_texel   The partition assigned for each texel.
 */
static void kmeans_assign(
	const image_block& blk,
	unsigned int texel_count,
	unsigned int partition_count,
	const vfloat4 cluster_centers[BLOCK_MAX_PARTITIONS],
	uint8_t partition_of_texel[BLOCK_MAX_TEXELS]
) {
	promise(texel_count > 0);
	promise(partition_count > 0);

	uint8_t partition_texel_count[BLOCK_MAX_PARTITIONS] { 0 };

	// Find the best partition for every texel
	for (unsigned int i = 0; i < texel_count; i++)
	{
		float best_distance = std::numeric_limits<float>::max();
		unsigned int best_partition = 0;

		vfloat4 color = blk.texel(i);
		for (unsigned int j = 0; j < partition_count; j++)
		{
			vfloat4 diff = color - cluster_centers[j];
			float distance = dot_s(diff * diff, blk.channel_weight);
			if (distance < best_distance)
			{
				best_distance = distance;
				best_partition = j;
			}
		}

		partition_of_texel[i] = static_cast<uint8_t>(best_partition);
		partition_texel_count[best_partition]++;
	}

	// It is possible to get a situation where a partition ends up without any texels. In this case,
	// assign texel N to partition N. This is silly, but ensures that every partition retains at
	// least one texel. Reassigning a texel in this manner may cause another partition to go empty,
	// so if we actually did a reassignment, run the whole loop over again.
	bool problem_case;
	do
	{
		problem_case = false;
		for (unsigned int i = 0; i < partition_count; i++)
		{
			if (partition_texel_count[i] == 0)
			{
				partition_texel_count[partition_of_texel[i]]--;
				partition_texel_count[i]++;
				partition_of_texel[i] = static_cast<uint8_t>(i);
				problem_case = true;
			}
		}
	} while (problem_case);
}

/**
 * @brief Compute new cluster centers based on their center of gravity.
 *
 * @param       blk                  The image block color data to compress.
 * @param       texel_count          The number of texels in the block.
 * @param       partition_count      The number of partitions in the block.
 * @param[out]  cluster_centers      The new cluster center colors.
 * @param       partition_of_texel   The partition assigned for each texel.
 */
static void kmeans_update(
	const image_block& blk,
	unsigned int texel_count,
	unsigned int partition_count,
	vfloat4 cluster_centers[BLOCK_MAX_PARTITIONS],
	const uint8_t partition_of_texel[BLOCK_MAX_TEXELS]
) {
	promise(texel_count > 0);
	promise(partition_count > 0);

	vfloat4 color_sum[BLOCK_MAX_PARTITIONS] {
		vfloat4::zero(),
		vfloat4::zero(),
		vfloat4::zero(),
		vfloat4::zero()
	};

	uint8_t partition_texel_count[BLOCK_MAX_PARTITIONS] { 0 };

	// Find the center-of-gravity in each cluster
	for (unsigned int i = 0; i < texel_count; i++)
	{
		uint8_t partition = partition_of_texel[i];
		color_sum[partition] += blk.texel(i);
		partition_texel_count[partition]++;
	}

	// Set the center of gravity to be the new cluster center
	for (unsigned int i = 0; i < partition_count; i++)
	{
		float scale = 1.0f / static_cast<float>(partition_texel_count[i]);
		cluster_centers[i] = color_sum[i] * scale;
	}
}

/**
 * @brief Compute bit-mismatch for partitioning in 2-partition mode.
 *
 * @param a   The texel assignment bitvector for the block.
 * @param b   The texel assignment bitvector for the partition table.
 *
 * @return    The number of bit mismatches.
 */
static inline unsigned int partition_mismatch2(
	const uint64_t a[2],
	const uint64_t b[2]
) {
	int v1 = popcount(a[0] ^ b[0]) + popcount(a[1] ^ b[1]);
	int v2 = popcount(a[0] ^ b[1]) + popcount(a[1] ^ b[0]);
	return astc::min(v1, v2);
}

/**
 * @brief Compute bit-mismatch for partitioning in 3-partition mode.
 *
 * @param a   The texel assignment bitvector for the block.
 * @param b   The texel assignment bitvector for the partition table.
 *
 * @return    The number of bit mismatches.
 */
static inline unsigned int partition_mismatch3(
	const uint64_t a[3],
	const uint64_t b[3]
) {
	int p00 = popcount(a[0] ^ b[0]);
	int p01 = popcount(a[0] ^ b[1]);
	int p02 = popcount(a[0] ^ b[2]);

	int p10 = popcount(a[1] ^ b[0]);
	int p11 = popcount(a[1] ^ b[1]);
	int p12 = popcount(a[1] ^ b[2]);

	int p20 = popcount(a[2] ^ b[0]);
	int p21 = popcount(a[2] ^ b[1]);
	int p22 = popcount(a[2] ^ b[2]);

	int s0 = p11 + p22;
	int s1 = p12 + p21;
	int v0 = astc::min(s0, s1) + p00;

	int s2 = p10 + p22;
	int s3 = p12 + p20;
	int v1 = astc::min(s2, s3) + p01;

	int s4 = p10 + p21;
	int s5 = p11 + p20;
	int v2 = astc::min(s4, s5) + p02;

	return astc::min(v0, v1, v2);
}

/**
 * @brief Compute bit-mismatch for partitioning in 4-partition mode.
 *
 * @param a   The texel assignment bitvector for the block.
 * @param b   The texel assignment bitvector for the partition table.
 *
 * @return    The number of bit mismatches.
 */
static inline unsigned int partition_mismatch4(
	const uint64_t a[4],
	const uint64_t b[4]
) {
	int p00 = popcount(a[0] ^ b[0]);
	int p01 = popcount(a[0] ^ b[1]);
	int p02 = popcount(a[0] ^ b[2]);
	int p03 = popcount(a[0] ^ b[3]);

	int p10 = popcount(a[1] ^ b[0]);
	int p11 = popcount(a[1] ^ b[1]);
	int p12 = popcount(a[1] ^ b[2]);
	int p13 = popcount(a[1] ^ b[3]);

	int p20 = popcount(a[2] ^ b[0]);
	int p21 = popcount(a[2] ^ b[1]);
	int p22 = popcount(a[2] ^ b[2]);
	int p23 = popcount(a[2] ^ b[3]);

	int p30 = popcount(a[3] ^ b[0]);
	int p31 = popcount(a[3] ^ b[1]);
	int p32 = popcount(a[3] ^ b[2]);
	int p33 = popcount(a[3] ^ b[3]);

	int mx23 = astc::min(p22 + p33, p23 + p32);
	int mx13 = astc::min(p21 + p33, p23 + p31);
	int mx12 = astc::min(p21 + p32, p22 + p31);
	int mx03 = astc::min(p20 + p33, p23 + p30);
	int mx02 = astc::min(p20 + p32, p22 + p30);
	int mx01 = astc::min(p21 + p30, p20 + p31);

	int v0 = p00 + astc::min(p11 + mx23, p12 + mx13, p13 + mx12);
	int v1 = p01 + astc::min(p10 + mx23, p12 + mx03, p13 + mx02);
	int v2 = p02 + astc::min(p11 + mx03, p10 + mx13, p13 + mx01);
	int v3 = p03 + astc::min(p11 + mx02, p12 + mx01, p10 + mx12);

	return astc::min(v0, v1, v2, v3);
}

using mismatch_dispatch = unsigned int (*)(const uint64_t*, const uint64_t*);

/**
 * @brief Count the partition table mismatches vs the data clustering.
 *
 * @param      bsd               The block size information.
 * @param      partition_count   The number of partitions in the block.
 * @param      bitmaps           The block texel partition assignment patterns.
 * @param[out] mismatch_counts   The array storing per partitioning mismatch counts.
 */
static void count_partition_mismatch_bits(
	const block_size_descriptor& bsd,
	unsigned int partition_count,
	const uint64_t bitmaps[BLOCK_MAX_PARTITIONS],
	unsigned int mismatch_counts[BLOCK_MAX_PARTITIONINGS]
) {
	unsigned int active_count = bsd.partitioning_count_selected[partition_count - 1];
	promise(active_count > 0);

	if (partition_count == 2)
	{
		for (unsigned int i = 0; i < active_count; i++)
		{
			mismatch_counts[i] = partition_mismatch2(bitmaps, bsd.coverage_bitmaps_2[i]);
		}
	}
	else if (partition_count == 3)
	{
		for (unsigned int i = 0; i < active_count; i++)
		{
			mismatch_counts[i] = partition_mismatch3(bitmaps, bsd.coverage_bitmaps_3[i]);
		}
	}
	else
	{
		for (unsigned int i = 0; i < active_count; i++)
		{
			mismatch_counts[i] = partition_mismatch4(bitmaps, bsd.coverage_bitmaps_4[i]);
		}
	}
}

/**
 * @brief Use counting sort on the mismatch array to sort partition candidates.
 *
 * @param      partitioning_count   The number of packed partitionings.
 * @param      mismatch_count       Partitioning mismatch counts, in index order.
 * @param[out] partition_ordering   Partition index values, in mismatch order.
 *
 * @return The number of active partitions in this selection.
 */
static unsigned int get_partition_ordering_by_mismatch_bits(
	unsigned int partitioning_count,
	const unsigned int mismatch_count[BLOCK_MAX_PARTITIONINGS],
	unsigned int partition_ordering[BLOCK_MAX_PARTITIONINGS]
) {
	promise(partitioning_count > 0);
	unsigned int mscount[256] { 0 };

	// Create the histogram of mismatch counts
	for (unsigned int i = 0; i < partitioning_count; i++)
	{
		mscount[mismatch_count[i]]++;
	}

	unsigned int active_count = partitioning_count - mscount[255];

	// Create a running sum from the histogram array
	// Cells store previous values only; i.e. exclude self after sum
	unsigned int summa = 0;
	for (unsigned int i = 0; i < 256; i++)
	{
		unsigned int cnt = mscount[i];
		mscount[i] = summa;
		summa += cnt;
	}

	// Use the running sum as the index, incrementing after read to allow
	// sequential entries with the same count
	for (unsigned int i = 0; i < partitioning_count; i++)
	{
		unsigned int idx = mscount[mismatch_count[i]]++;
		partition_ordering[idx] = i;
	}

	return active_count;
}

/**
 * @brief Use k-means clustering to compute a partition ordering for a block..
 *
 * @param      bsd                  The block size information.
 * @param      blk                  The image block color data to compress.
 * @param      partition_count      The desired number of partitions in the block.
 * @param[out] partition_ordering   The list of recommended partition indices, in priority order.
 *
 * @return The number of active partitionings in this selection.
 */
static unsigned int compute_kmeans_partition_ordering(
	const block_size_descriptor& bsd,
	const image_block& blk,
	unsigned int partition_count,
	unsigned int partition_ordering[BLOCK_MAX_PARTITIONINGS]
) {
	vfloat4 cluster_centers[BLOCK_MAX_PARTITIONS];
	uint8_t texel_partitions[BLOCK_MAX_TEXELS];

	// Use three passes of k-means clustering to partition the block data
	for (unsigned int i = 0; i < 3; i++)
	{
		if (i == 0)
		{
			kmeans_init(blk, bsd.texel_count, partition_count, cluster_centers);
		}
		else
		{
			kmeans_update(blk, bsd.texel_count, partition_count, cluster_centers, texel_partitions);
		}

		kmeans_assign(blk, bsd.texel_count, partition_count, cluster_centers, texel_partitions);
	}

	// Construct the block bitmaps of texel assignments to each partition
	uint64_t bitmaps[BLOCK_MAX_PARTITIONS] { 0 };
	unsigned int texels_to_process = astc::min(bsd.texel_count, BLOCK_MAX_KMEANS_TEXELS);
	promise(texels_to_process > 0);
	for (unsigned int i = 0; i < texels_to_process; i++)
	{
		unsigned int idx = bsd.kmeans_texels[i];
		bitmaps[texel_partitions[idx]] |= 1ULL << i;
	}

	// Count the mismatch between the block and the format's partition tables
	unsigned int mismatch_counts[BLOCK_MAX_PARTITIONINGS];
	count_partition_mismatch_bits(bsd, partition_count, bitmaps, mismatch_counts);

	// Sort the partitions based on the number of mismatched bits
	return get_partition_ordering_by_mismatch_bits(
	    bsd.partitioning_count_selected[partition_count - 1],
	    mismatch_counts, partition_ordering);
}

/**
 * @brief Insert a partitioning into an order list of results, sorted by error.
 *
 * @param      max_values      The max number of entries in the best result arrays.
 * @param      this_error      The error of the new entry.
 * @param      this_partition  The partition ID of the new entry.
 * @param[out] best_errors     The array of best error values.
 * @param[out] best_partitions The array of best partition values.
 */
static void insert_result(
	unsigned int max_values,
	float this_error,
	unsigned int this_partition,
	float* best_errors,
	unsigned int* best_partitions)
{
	promise(max_values > 0);

	// Don't bother searching if the current worst error beats the new error
	if (this_error >= best_errors[max_values - 1])
	{
		return;
	}

	// Else insert into the list in error-order
	for (unsigned int i = 0; i < max_values; i++)
	{
		// Existing result is better - move on ...
		if (this_error > best_errors[i])
		{
			continue;
		}

		// Move existing results down one
		for (unsigned int j = max_values - 1; j > i; j--)
		{
			best_errors[j] = best_errors[j - 1];
			best_partitions[j] = best_partitions[j - 1];
		}

		// Insert new result
		best_errors[i] = this_error;
		best_partitions[i] = this_partition;
		break;
	}
}

/* See header for documentation. */
unsigned int find_best_partition_candidates(
	const block_size_descriptor& bsd,
	const image_block& blk,
	unsigned int partition_count,
	unsigned int partition_search_limit,
	unsigned int best_partitions[TUNE_MAX_PARTITIONING_CANDIDATES],
	unsigned int requested_candidates
) {
	// Constant used to estimate quantization error for a given partitioning; the optimal value for
	// this depends on bitrate. These values have been determined empirically.
	unsigned int texels_per_block = bsd.texel_count;
	float weight_imprecision_estim = 0.055f;
	if (texels_per_block <= 20)
	{
		weight_imprecision_estim = 0.03f;
	}
	else if (texels_per_block <= 31)
	{
		weight_imprecision_estim = 0.04f;
	}
	else if (texels_per_block <= 41)
	{
		weight_imprecision_estim = 0.05f;
	}

	promise(partition_count > 0);
	promise(partition_search_limit > 0);

	weight_imprecision_estim = weight_imprecision_estim * weight_imprecision_estim;

	unsigned int partition_sequence[BLOCK_MAX_PARTITIONINGS];
	unsigned int sequence_len = compute_kmeans_partition_ordering(bsd, blk, partition_count, partition_sequence);
	partition_search_limit = astc::min(partition_search_limit, sequence_len);
	requested_candidates = astc::min(partition_search_limit, requested_candidates);

	bool uses_alpha = !blk.is_constant_channel(3);

	// Partitioning errors assuming uncorrelated-chrominance endpoints
	float uncor_best_errors[TUNE_MAX_PARTITIONING_CANDIDATES];
	unsigned int uncor_best_partitions[TUNE_MAX_PARTITIONING_CANDIDATES];

	// Partitioning errors assuming same-chrominance endpoints
	float samec_best_errors[TUNE_MAX_PARTITIONING_CANDIDATES];
	unsigned int samec_best_partitions[TUNE_MAX_PARTITIONING_CANDIDATES];

	for (unsigned int i = 0; i < requested_candidates; i++)
	{
		uncor_best_errors[i] = ERROR_CALC_DEFAULT;
		samec_best_errors[i] = ERROR_CALC_DEFAULT;
	}

	if (uses_alpha)
	{
		for (unsigned int i = 0; i < partition_search_limit; i++)
		{
			unsigned int partition = partition_sequence[i];
			const auto& pi = bsd.get_raw_partition_info(partition_count, partition);

			// Compute weighting to give to each component in each partition
			partition_metrics pms[BLOCK_MAX_PARTITIONS];

			compute_avgs_and_dirs_4_comp(pi, blk, pms);

			line4 uncor_lines[BLOCK_MAX_PARTITIONS];
			line4 samec_lines[BLOCK_MAX_PARTITIONS];

			processed_line4 uncor_plines[BLOCK_MAX_PARTITIONS];
			processed_line4 samec_plines[BLOCK_MAX_PARTITIONS];

			float uncor_line_lens[BLOCK_MAX_PARTITIONS];
			float samec_line_lens[BLOCK_MAX_PARTITIONS];

			for (unsigned int j = 0; j < partition_count; j++)
			{
				partition_metrics& pm = pms[j];

				uncor_lines[j].a = pm.avg;
				uncor_lines[j].b = normalize_safe(pm.dir, unit4());

				uncor_plines[j].amod = uncor_lines[j].a - uncor_lines[j].b * dot(uncor_lines[j].a, uncor_lines[j].b);
				uncor_plines[j].bs = uncor_lines[j].b;

				samec_lines[j].a = vfloat4::zero();
				samec_lines[j].b = normalize_safe(pm.avg, unit4());

				samec_plines[j].amod = vfloat4::zero();
				samec_plines[j].bs = samec_lines[j].b;
			}

			float uncor_error = 0.0f;
			float samec_error = 0.0f;

			compute_error_squared_rgba(pi,
			                           blk,
			                           uncor_plines,
			                           samec_plines,
			                           uncor_line_lens,
			                           samec_line_lens,
			                           uncor_error,
			                           samec_error);

			// Compute an estimate of error introduced by weight quantization imprecision.
			// This error is computed as follows, for each partition
			//     1: compute the principal-axis vector (full length) in error-space
			//     2: convert the principal-axis vector to regular RGB-space
			//     3: scale the vector by a constant that estimates average quantization error
			//     4: for each texel, square the vector, then do a dot-product with the texel's
			//        error weight; sum up the results across all texels.
			//     4(optimized): square the vector once, then do a dot-product with the average
			//        texel error, then multiply by the number of texels.

			for (unsigned int j = 0; j < partition_count; j++)
			{
				float tpp = static_cast<float>(pi.partition_texel_count[j]);
				vfloat4 error_weights(tpp * weight_imprecision_estim);

				vfloat4 uncor_vector = uncor_lines[j].b * uncor_line_lens[j];
				vfloat4 samec_vector = samec_lines[j].b * samec_line_lens[j];

				uncor_error += dot_s(uncor_vector * uncor_vector, error_weights);
				samec_error += dot_s(samec_vector * samec_vector, error_weights);
			}

			insert_result(requested_candidates, uncor_error, partition, uncor_best_errors, uncor_best_partitions);
			insert_result(requested_candidates, samec_error, partition, samec_best_errors, samec_best_partitions);
		}
	}
	else
	{
		for (unsigned int i = 0; i < partition_search_limit; i++)
		{
			unsigned int partition = partition_sequence[i];
			const auto& pi = bsd.get_raw_partition_info(partition_count, partition);

			// Compute weighting to give to each component in each partition
			partition_metrics pms[BLOCK_MAX_PARTITIONS];
			compute_avgs_and_dirs_3_comp_rgb(pi, blk, pms);

			partition_lines3 plines[BLOCK_MAX_PARTITIONS];

			for (unsigned int j = 0; j < partition_count; j++)
			{
				partition_metrics& pm = pms[j];
				partition_lines3& pl = plines[j];

				pl.uncor_line.a = pm.avg;
				pl.uncor_line.b = normalize_safe(pm.dir, unit3());

				pl.samec_line.a = vfloat4::zero();
				pl.samec_line.b = normalize_safe(pm.avg, unit3());

				pl.uncor_pline.amod = pl.uncor_line.a - pl.uncor_line.b * dot3(pl.uncor_line.a, pl.uncor_line.b);
				pl.uncor_pline.bs   = pl.uncor_line.b;

				pl.samec_pline.amod = vfloat4::zero();
				pl.samec_pline.bs   = pl.samec_line.b;
			}

			float uncor_error = 0.0f;
			float samec_error = 0.0f;

			compute_error_squared_rgb(pi,
			                          blk,
			                          plines,
			                          uncor_error,
			                          samec_error);

			// Compute an estimate of error introduced by weight quantization imprecision.
			// This error is computed as follows, for each partition
			//     1: compute the principal-axis vector (full length) in error-space
			//     2: convert the principal-axis vector to regular RGB-space
			//     3: scale the vector by a constant that estimates average quantization error
			//     4: for each texel, square the vector, then do a dot-product with the texel's
			//        error weight; sum up the results across all texels.
			//     4(optimized): square the vector once, then do a dot-product with the average
			//        texel error, then multiply by the number of texels.

			for (unsigned int j = 0; j < partition_count; j++)
			{
				partition_lines3& pl = plines[j];

				float tpp = static_cast<float>(pi.partition_texel_count[j]);
				vfloat4 error_weights(tpp * weight_imprecision_estim);

				vfloat4 uncor_vector = pl.uncor_line.b * pl.uncor_line_len;
				vfloat4 samec_vector = pl.samec_line.b * pl.samec_line_len;

				uncor_error += dot3_s(uncor_vector * uncor_vector, error_weights);
				samec_error += dot3_s(samec_vector * samec_vector, error_weights);
			}

			insert_result(requested_candidates, uncor_error, partition, uncor_best_errors, uncor_best_partitions);
			insert_result(requested_candidates, samec_error, partition, samec_best_errors, samec_best_partitions);
		}
	}

	bool best_is_uncor = uncor_best_partitions[0] > samec_best_partitions[0];

	unsigned int interleave[2 * TUNE_MAX_PARTITIONING_CANDIDATES];
	for (unsigned int i = 0; i < requested_candidates; i++)
	{
		if (best_is_uncor)
		{
			interleave[2 * i] = bsd.get_raw_partition_info(partition_count, uncor_best_partitions[i]).partition_index;
			interleave[2 * i + 1] = bsd.get_raw_partition_info(partition_count, samec_best_partitions[i]).partition_index;
		}
		else
		{
			interleave[2 * i] = bsd.get_raw_partition_info(partition_count, samec_best_partitions[i]).partition_index;
			interleave[2 * i + 1] = bsd.get_raw_partition_info(partition_count, uncor_best_partitions[i]).partition_index;
		}
	}

	uint64_t bitmasks[1024/64] { 0 };
	unsigned int emitted = 0;

	// Deduplicate the first "requested" entries
	for (unsigned int i = 0; i < requested_candidates * 2;  i++)
	{
		unsigned int partition = interleave[i];

		unsigned int word = partition / 64;
		unsigned int bit = partition % 64;

		bool written = bitmasks[word] & (1ull << bit);

		if (!written)
		{
			best_partitions[emitted] = partition;
			bitmasks[word] |= 1ull << bit;
			emitted++;

			if (emitted == requested_candidates)
			{
				break;
			}
		}
	}

	return emitted;
}

#endif