summaryrefslogtreecommitdiff
path: root/thirdparty/astcenc/astcenc_decompress_symbolic.cpp
blob: 39e5525c3b5d4e7ce4078333e654a29a027159f8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
// SPDX-License-Identifier: Apache-2.0
// ----------------------------------------------------------------------------
// Copyright 2011-2023 Arm Limited
//
// Licensed under the Apache License, Version 2.0 (the "License"); you may not
// use this file except in compliance with the License. You may obtain a copy
// of the License at:
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
// License for the specific language governing permissions and limitations
// under the License.
// ----------------------------------------------------------------------------

/**
 * @brief Functions to decompress a symbolic block.
 */

#include "astcenc_internal.h"

#include <stdio.h>
#include <assert.h>

/**
 * @brief Compute the integer linear interpolation of two color endpoints.
 *
 * @param decode_mode   The ASTC profile (linear or sRGB)
 * @param color0        The endpoint0 color.
 * @param color1        The endpoint1 color.
 * @param weights        The interpolation weight (between 0 and 64).
 *
 * @return The interpolated color.
 */
static vint4 lerp_color_int(
	astcenc_profile decode_mode,
	vint4 color0,
	vint4 color1,
	vint4 weights
) {
	vint4 weight1 = weights;
	vint4 weight0 = vint4(64) - weight1;

	if (decode_mode == ASTCENC_PRF_LDR_SRGB)
	{
		color0 = asr<8>(color0);
		color1 = asr<8>(color1);
	}

	vint4 color = (color0 * weight0) + (color1 * weight1) + vint4(32);
	color = asr<6>(color);

	if (decode_mode == ASTCENC_PRF_LDR_SRGB)
	{
		color = color * vint4(257);
	}

	return color;
}


/**
 * @brief Convert integer color value into a float value for the decoder.
 *
 * @param data       The integer color value post-interpolation.
 * @param lns_mask   If set treat lane as HDR (LNS) else LDR (unorm16).
 *
 * @return The float color value.
 */
static inline vfloat4 decode_texel(
	vint4 data,
	vmask4 lns_mask
) {
	vint4 color_lns = vint4::zero();
	vint4 color_unorm = vint4::zero();

	if (any(lns_mask))
	{
		color_lns = lns_to_sf16(data);
	}

	if (!all(lns_mask))
	{
		color_unorm = unorm16_to_sf16(data);
	}

	// Pick components and then convert to FP16
	vint4 datai = select(color_unorm, color_lns, lns_mask);
	return float16_to_float(datai);
}

/* See header for documentation. */
void unpack_weights(
	const block_size_descriptor& bsd,
	const symbolic_compressed_block& scb,
	const decimation_info& di,
	bool is_dual_plane,
	int weights_plane1[BLOCK_MAX_TEXELS],
	int weights_plane2[BLOCK_MAX_TEXELS]
) {
	// Safe to overshoot as all arrays are allocated to full size
	if (!is_dual_plane)
	{
		// Build full 64-entry weight lookup table
		vint4 tab0(reinterpret_cast<const int*>(scb.weights +  0));
		vint4 tab1(reinterpret_cast<const int*>(scb.weights + 16));
		vint4 tab2(reinterpret_cast<const int*>(scb.weights + 32));
		vint4 tab3(reinterpret_cast<const int*>(scb.weights + 48));

		vint tab0p, tab1p, tab2p, tab3p;
		vtable_prepare(tab0, tab1, tab2, tab3, tab0p, tab1p, tab2p, tab3p);

		for (unsigned int i = 0; i < bsd.texel_count; i += ASTCENC_SIMD_WIDTH)
		{
			vint summed_value(8);
			vint weight_count(di.texel_weight_count + i);
			int max_weight_count = hmax(weight_count).lane<0>();

			promise(max_weight_count > 0);
			for (int j = 0; j < max_weight_count; j++)
			{
				vint texel_weights(di.texel_weights_tr[j] + i);
				vint texel_weights_int(di.texel_weight_contribs_int_tr[j] + i);

				summed_value += vtable_8bt_32bi(tab0p, tab1p, tab2p, tab3p, texel_weights) * texel_weights_int;
			}

			store(lsr<4>(summed_value), weights_plane1 + i);
		}
	}
	else
	{
		// Build a 32-entry weight lookup table per plane
		// Plane 1
		vint4 tab0_plane1(reinterpret_cast<const int*>(scb.weights +  0));
		vint4 tab1_plane1(reinterpret_cast<const int*>(scb.weights + 16));
		vint tab0_plane1p, tab1_plane1p;
		vtable_prepare(tab0_plane1, tab1_plane1, tab0_plane1p, tab1_plane1p);

		// Plane 2
		vint4 tab0_plane2(reinterpret_cast<const int*>(scb.weights + 32));
		vint4 tab1_plane2(reinterpret_cast<const int*>(scb.weights + 48));
		vint tab0_plane2p, tab1_plane2p;
		vtable_prepare(tab0_plane2, tab1_plane2, tab0_plane2p, tab1_plane2p);

		for (unsigned int i = 0; i < bsd.texel_count; i += ASTCENC_SIMD_WIDTH)
		{
			vint sum_plane1(8);
			vint sum_plane2(8);

			vint weight_count(di.texel_weight_count + i);
			int max_weight_count = hmax(weight_count).lane<0>();

			promise(max_weight_count > 0);
			for (int j = 0; j < max_weight_count; j++)
			{
				vint texel_weights(di.texel_weights_tr[j] + i);
				vint texel_weights_int(di.texel_weight_contribs_int_tr[j] + i);

				sum_plane1 += vtable_8bt_32bi(tab0_plane1p, tab1_plane1p, texel_weights) * texel_weights_int;
				sum_plane2 += vtable_8bt_32bi(tab0_plane2p, tab1_plane2p, texel_weights) * texel_weights_int;
			}

			store(lsr<4>(sum_plane1), weights_plane1 + i);
			store(lsr<4>(sum_plane2), weights_plane2 + i);
		}
	}
}

/**
 * @brief Return an FP32 NaN value for use in error colors.
 *
 * This NaN encoding will turn into 0xFFFF when converted to an FP16 NaN.
 *
 * @return The float color value.
 */
static float error_color_nan()
{
	if32 v;
	v.u = 0xFFFFE000U;
	return v.f;
}

/* See header for documentation. */
void decompress_symbolic_block(
	astcenc_profile decode_mode,
	const block_size_descriptor& bsd,
	int xpos,
	int ypos,
	int zpos,
	const symbolic_compressed_block& scb,
	image_block& blk
) {
	blk.xpos = xpos;
	blk.ypos = ypos;
	blk.zpos = zpos;

	blk.data_min = vfloat4::zero();
	blk.data_mean = vfloat4::zero();
	blk.data_max = vfloat4::zero();
	blk.grayscale = false;

	// If we detected an error-block, blow up immediately.
	if (scb.block_type == SYM_BTYPE_ERROR)
	{
		for (unsigned int i = 0; i < bsd.texel_count; i++)
		{
			blk.data_r[i] = error_color_nan();
			blk.data_g[i] = error_color_nan();
			blk.data_b[i] = error_color_nan();
			blk.data_a[i] = error_color_nan();
			blk.rgb_lns[i] = 0;
			blk.alpha_lns[i] = 0;
		}

		return;
	}

	if ((scb.block_type == SYM_BTYPE_CONST_F16) ||
	    (scb.block_type == SYM_BTYPE_CONST_U16))
	{
		vfloat4 color;
		uint8_t use_lns = 0;

		// UNORM16 constant color block
		if (scb.block_type == SYM_BTYPE_CONST_U16)
		{
			vint4 colori(scb.constant_color);

			// For sRGB decoding a real decoder would just use the top 8 bits for color conversion.
			// We don't color convert, so rescale the top 8 bits into the full 16 bit dynamic range.
			if (decode_mode == ASTCENC_PRF_LDR_SRGB)
			{
				colori = asr<8>(colori) * 257;
			}

			vint4 colorf16 = unorm16_to_sf16(colori);
			color = float16_to_float(colorf16);
		}
		// FLOAT16 constant color block
		else
		{
			switch (decode_mode)
			{
			case ASTCENC_PRF_LDR_SRGB:
			case ASTCENC_PRF_LDR:
				color = vfloat4(error_color_nan());
				break;
			case ASTCENC_PRF_HDR_RGB_LDR_A:
			case ASTCENC_PRF_HDR:
				// Constant-color block; unpack from FP16 to FP32.
				color = float16_to_float(vint4(scb.constant_color));
				use_lns = 1;
				break;
			}
		}

		for (unsigned int i = 0; i < bsd.texel_count; i++)
		{
			blk.data_r[i] = color.lane<0>();
			blk.data_g[i] = color.lane<1>();
			blk.data_b[i] = color.lane<2>();
			blk.data_a[i] = color.lane<3>();
			blk.rgb_lns[i] = use_lns;
			blk.alpha_lns[i] = use_lns;
		}

		return;
	}

	// Get the appropriate partition-table entry
	int partition_count = scb.partition_count;
	const auto& pi = bsd.get_partition_info(partition_count, scb.partition_index);

	// Get the appropriate block descriptors
	const auto& bm = bsd.get_block_mode(scb.block_mode);
	const auto& di = bsd.get_decimation_info(bm.decimation_mode);

	bool is_dual_plane = static_cast<bool>(bm.is_dual_plane);

	// Unquantize and undecimate the weights
	int plane1_weights[BLOCK_MAX_TEXELS];
	int plane2_weights[BLOCK_MAX_TEXELS];
	unpack_weights(bsd, scb, di, is_dual_plane, plane1_weights, plane2_weights);

	// Now that we have endpoint colors and weights, we can unpack texel colors
	int plane2_component = scb.plane2_component;
	vmask4 plane2_mask = vint4::lane_id() == vint4(plane2_component);

	for (int i = 0; i < partition_count; i++)
	{
		// Decode the color endpoints for this partition
		vint4 ep0;
		vint4 ep1;
		bool rgb_lns;
		bool a_lns;

		unpack_color_endpoints(decode_mode,
		                       scb.color_formats[i],
		                       scb.color_values[i],
		                       rgb_lns, a_lns,
		                       ep0, ep1);

		vmask4 lns_mask(rgb_lns, rgb_lns, rgb_lns, a_lns);

		int texel_count = pi.partition_texel_count[i];
		for (int j = 0; j < texel_count; j++)
		{
			int tix = pi.texels_of_partition[i][j];
			vint4 weight = select(vint4(plane1_weights[tix]), vint4(plane2_weights[tix]), plane2_mask);
			vint4 color = lerp_color_int(decode_mode, ep0, ep1, weight);
			vfloat4 colorf = decode_texel(color, lns_mask);

			blk.data_r[tix] = colorf.lane<0>();
			blk.data_g[tix] = colorf.lane<1>();
			blk.data_b[tix] = colorf.lane<2>();
			blk.data_a[tix] = colorf.lane<3>();
		}
	}
}

#if !defined(ASTCENC_DECOMPRESS_ONLY)

/* See header for documentation. */
float compute_symbolic_block_difference_2plane(
	const astcenc_config& config,
	const block_size_descriptor& bsd,
	const symbolic_compressed_block& scb,
	const image_block& blk
) {
	// If we detected an error-block, blow up immediately.
	if (scb.block_type == SYM_BTYPE_ERROR)
	{
		return ERROR_CALC_DEFAULT;
	}

	assert(scb.block_mode >= 0);
	assert(scb.partition_count == 1);
	assert(bsd.get_block_mode(scb.block_mode).is_dual_plane == 1);

	// Get the appropriate block descriptor
	const block_mode& bm = bsd.get_block_mode(scb.block_mode);
	const decimation_info& di = bsd.get_decimation_info(bm.decimation_mode);

	// Unquantize and undecimate the weights
	int plane1_weights[BLOCK_MAX_TEXELS];
	int plane2_weights[BLOCK_MAX_TEXELS];
	unpack_weights(bsd, scb, di, true, plane1_weights, plane2_weights);

	vmask4 plane2_mask = vint4::lane_id() == vint4(scb.plane2_component);

	vfloat4 summa = vfloat4::zero();

	// Decode the color endpoints for this partition
	vint4 ep0;
	vint4 ep1;
	bool rgb_lns;
	bool a_lns;

	unpack_color_endpoints(config.profile,
	                       scb.color_formats[0],
	                       scb.color_values[0],
	                       rgb_lns, a_lns,
	                       ep0, ep1);

	// Unpack and compute error for each texel in the partition
	unsigned int texel_count = bsd.texel_count;
	for (unsigned int i = 0; i < texel_count; i++)
	{
		vint4 weight = select(vint4(plane1_weights[i]), vint4(plane2_weights[i]), plane2_mask);
		vint4 colori = lerp_color_int(config.profile, ep0, ep1, weight);

		vfloat4 color = int_to_float(colori);
		vfloat4 oldColor = blk.texel(i);

		// Compare error using a perceptual decode metric for RGBM textures
		if (config.flags & ASTCENC_FLG_MAP_RGBM)
		{
			// Fail encodings that result in zero weight M pixels. Note that this can cause
			// "interesting" artifacts if we reject all useful encodings - we typically get max
			// brightness encodings instead which look just as bad. We recommend users apply a
			// bias to their stored M value, limiting the lower value to 16 or 32 to avoid
			// getting small M values post-quantization, but we can't prove it would never
			// happen, especially at low bit rates ...
			if (color.lane<3>() == 0.0f)
			{
				return -ERROR_CALC_DEFAULT;
			}

			// Compute error based on decoded RGBM color
			color = vfloat4(
				color.lane<0>() * color.lane<3>() * config.rgbm_m_scale,
				color.lane<1>() * color.lane<3>() * config.rgbm_m_scale,
				color.lane<2>() * color.lane<3>() * config.rgbm_m_scale,
				1.0f
			);

			oldColor = vfloat4(
				oldColor.lane<0>() * oldColor.lane<3>() * config.rgbm_m_scale,
				oldColor.lane<1>() * oldColor.lane<3>() * config.rgbm_m_scale,
				oldColor.lane<2>() * oldColor.lane<3>() * config.rgbm_m_scale,
				1.0f
			);
		}

		vfloat4 error = oldColor - color;
		error = min(abs(error), 1e15f);
		error = error * error;

		summa += min(dot(error, blk.channel_weight), ERROR_CALC_DEFAULT);
	}

	return summa.lane<0>();
}

/* See header for documentation. */
float compute_symbolic_block_difference_1plane(
	const astcenc_config& config,
	const block_size_descriptor& bsd,
	const symbolic_compressed_block& scb,
	const image_block& blk
) {
	assert(bsd.get_block_mode(scb.block_mode).is_dual_plane == 0);

	// If we detected an error-block, blow up immediately.
	if (scb.block_type == SYM_BTYPE_ERROR)
	{
		return ERROR_CALC_DEFAULT;
	}

	assert(scb.block_mode >= 0);

	// Get the appropriate partition-table entry
	unsigned int partition_count = scb.partition_count;
	const auto& pi = bsd.get_partition_info(partition_count, scb.partition_index);

	// Get the appropriate block descriptor
	const block_mode& bm = bsd.get_block_mode(scb.block_mode);
	const decimation_info& di = bsd.get_decimation_info(bm.decimation_mode);

	// Unquantize and undecimate the weights
	int plane1_weights[BLOCK_MAX_TEXELS];
	unpack_weights(bsd, scb, di, false, plane1_weights, nullptr);

	vfloat4 summa = vfloat4::zero();
	for (unsigned int i = 0; i < partition_count; i++)
	{
		// Decode the color endpoints for this partition
		vint4 ep0;
		vint4 ep1;
		bool rgb_lns;
		bool a_lns;

		unpack_color_endpoints(config.profile,
		                       scb.color_formats[i],
		                       scb.color_values[i],
		                       rgb_lns, a_lns,
		                       ep0, ep1);

		// Unpack and compute error for each texel in the partition
		unsigned int texel_count = pi.partition_texel_count[i];
		for (unsigned int j = 0; j < texel_count; j++)
		{
			unsigned int tix = pi.texels_of_partition[i][j];
			vint4 colori = lerp_color_int(config.profile, ep0, ep1,
			                              vint4(plane1_weights[tix]));

			vfloat4 color = int_to_float(colori);
			vfloat4 oldColor = blk.texel(tix);

			// Compare error using a perceptual decode metric for RGBM textures
			if (config.flags & ASTCENC_FLG_MAP_RGBM)
			{
				// Fail encodings that result in zero weight M pixels. Note that this can cause
				// "interesting" artifacts if we reject all useful encodings - we typically get max
				// brightness encodings instead which look just as bad. We recommend users apply a
				// bias to their stored M value, limiting the lower value to 16 or 32 to avoid
				// getting small M values post-quantization, but we can't prove it would never
				// happen, especially at low bit rates ...
				if (color.lane<3>() == 0.0f)
				{
					return -ERROR_CALC_DEFAULT;
				}

				// Compute error based on decoded RGBM color
				color = vfloat4(
					color.lane<0>() * color.lane<3>() * config.rgbm_m_scale,
					color.lane<1>() * color.lane<3>() * config.rgbm_m_scale,
					color.lane<2>() * color.lane<3>() * config.rgbm_m_scale,
					1.0f
				);

				oldColor = vfloat4(
					oldColor.lane<0>() * oldColor.lane<3>() * config.rgbm_m_scale,
					oldColor.lane<1>() * oldColor.lane<3>() * config.rgbm_m_scale,
					oldColor.lane<2>() * oldColor.lane<3>() * config.rgbm_m_scale,
					1.0f
				);
			}

			vfloat4 error = oldColor - color;
			error = min(abs(error), 1e15f);
			error = error * error;

			summa += min(dot(error, blk.channel_weight), ERROR_CALC_DEFAULT);
		}
	}

	return summa.lane<0>();
}

/* See header for documentation. */
float compute_symbolic_block_difference_1plane_1partition(
	const astcenc_config& config,
	const block_size_descriptor& bsd,
	const symbolic_compressed_block& scb,
	const image_block& blk
) {
	// If we detected an error-block, blow up immediately.
	if (scb.block_type == SYM_BTYPE_ERROR)
	{
		return ERROR_CALC_DEFAULT;
	}

	assert(scb.block_mode >= 0);
	assert(bsd.get_partition_info(scb.partition_count, scb.partition_index).partition_count == 1);

	// Get the appropriate block descriptor
	const block_mode& bm = bsd.get_block_mode(scb.block_mode);
	const decimation_info& di = bsd.get_decimation_info(bm.decimation_mode);

	// Unquantize and undecimate the weights
	alignas(ASTCENC_VECALIGN) int plane1_weights[BLOCK_MAX_TEXELS];
	unpack_weights(bsd, scb, di, false, plane1_weights, nullptr);

	// Decode the color endpoints for this partition
	vint4 ep0;
	vint4 ep1;
	bool rgb_lns;
	bool a_lns;

	unpack_color_endpoints(config.profile,
	                       scb.color_formats[0],
	                       scb.color_values[0],
	                       rgb_lns, a_lns,
	                       ep0, ep1);


	// Pre-shift sRGB so things round correctly
	if (config.profile == ASTCENC_PRF_LDR_SRGB)
	{
		ep0 = asr<8>(ep0);
		ep1 = asr<8>(ep1);
	}

	// Unpack and compute error for each texel in the partition
	vfloatacc summav = vfloatacc::zero();

	vint lane_id = vint::lane_id();
	vint srgb_scale(config.profile == ASTCENC_PRF_LDR_SRGB ? 257 : 1);

	unsigned int texel_count = bsd.texel_count;
	for (unsigned int i = 0; i < texel_count; i += ASTCENC_SIMD_WIDTH)
	{
		// Compute EP1 contribution
		vint weight1 = vint::loada(plane1_weights + i);
		vint ep1_r = vint(ep1.lane<0>()) * weight1;
		vint ep1_g = vint(ep1.lane<1>()) * weight1;
		vint ep1_b = vint(ep1.lane<2>()) * weight1;
		vint ep1_a = vint(ep1.lane<3>()) * weight1;

		// Compute EP0 contribution
		vint weight0 = vint(64) - weight1;
		vint ep0_r = vint(ep0.lane<0>()) * weight0;
		vint ep0_g = vint(ep0.lane<1>()) * weight0;
		vint ep0_b = vint(ep0.lane<2>()) * weight0;
		vint ep0_a = vint(ep0.lane<3>()) * weight0;

		// Shift so things round correctly
		vint colori_r = asr<6>(ep0_r + ep1_r + vint(32)) * srgb_scale;
		vint colori_g = asr<6>(ep0_g + ep1_g + vint(32)) * srgb_scale;
		vint colori_b = asr<6>(ep0_b + ep1_b + vint(32)) * srgb_scale;
		vint colori_a = asr<6>(ep0_a + ep1_a + vint(32)) * srgb_scale;

		// Compute color diff
		vfloat color_r = int_to_float(colori_r);
		vfloat color_g = int_to_float(colori_g);
		vfloat color_b = int_to_float(colori_b);
		vfloat color_a = int_to_float(colori_a);

		vfloat color_orig_r = loada(blk.data_r + i);
		vfloat color_orig_g = loada(blk.data_g + i);
		vfloat color_orig_b = loada(blk.data_b + i);
		vfloat color_orig_a = loada(blk.data_a + i);

		vfloat color_error_r = min(abs(color_orig_r - color_r), vfloat(1e15f));
		vfloat color_error_g = min(abs(color_orig_g - color_g), vfloat(1e15f));
		vfloat color_error_b = min(abs(color_orig_b - color_b), vfloat(1e15f));
		vfloat color_error_a = min(abs(color_orig_a - color_a), vfloat(1e15f));

		// Compute squared error metric
		color_error_r = color_error_r * color_error_r;
		color_error_g = color_error_g * color_error_g;
		color_error_b = color_error_b * color_error_b;
		color_error_a = color_error_a * color_error_a;

		vfloat metric = color_error_r * blk.channel_weight.lane<0>()
		              + color_error_g * blk.channel_weight.lane<1>()
		              + color_error_b * blk.channel_weight.lane<2>()
		              + color_error_a * blk.channel_weight.lane<3>();

		// Mask off bad lanes
		vmask mask = lane_id < vint(texel_count);
		lane_id += vint(ASTCENC_SIMD_WIDTH);
		haccumulate(summav, metric, mask);
	}

	return hadd_s(summav);
}

#endif