summaryrefslogtreecommitdiff
path: root/thirdparty/assimp/code/PostProcessing/SplitLargeMeshes.cpp
blob: 1797b28d5ac4e8f2936f0bd80355922c3686aa17 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
/*
Open Asset Import Library (assimp)
----------------------------------------------------------------------

Copyright (c) 2006-2019, assimp team


All rights reserved.

Redistribution and use of this software in source and binary forms,
with or without modification, are permitted provided that the
following conditions are met:

* Redistributions of source code must retain the above
  copyright notice, this list of conditions and the
  following disclaimer.

* Redistributions in binary form must reproduce the above
  copyright notice, this list of conditions and the
  following disclaimer in the documentation and/or other
  materials provided with the distribution.

* Neither the name of the assimp team, nor the names of its
  contributors may be used to endorse or promote products
  derived from this software without specific prior
  written permission of the assimp team.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

----------------------------------------------------------------------
*/

/** 
 *  @file Implementation of the SplitLargeMeshes postprocessing step
 */

// internal headers of the post-processing framework
#include "SplitLargeMeshes.h"
#include "ProcessHelper.h"

using namespace Assimp;

// ------------------------------------------------------------------------------------------------
SplitLargeMeshesProcess_Triangle::SplitLargeMeshesProcess_Triangle() {
    LIMIT = AI_SLM_DEFAULT_MAX_TRIANGLES;
}

// ------------------------------------------------------------------------------------------------
SplitLargeMeshesProcess_Triangle::~SplitLargeMeshesProcess_Triangle() {
    // nothing to do here
}

// ------------------------------------------------------------------------------------------------
// Returns whether the processing step is present in the given flag field.
bool SplitLargeMeshesProcess_Triangle::IsActive( unsigned int pFlags) const {
    return (pFlags & aiProcess_SplitLargeMeshes) != 0;
}

// ------------------------------------------------------------------------------------------------
// Executes the post processing step on the given imported data.
void SplitLargeMeshesProcess_Triangle::Execute( aiScene* pScene) {
    if (0xffffffff == this->LIMIT || nullptr == pScene ) {
        return;
    }

    ASSIMP_LOG_DEBUG("SplitLargeMeshesProcess_Triangle begin");
    std::vector<std::pair<aiMesh*, unsigned int> > avList;

    for( unsigned int a = 0; a < pScene->mNumMeshes; ++a) {
        this->SplitMesh(a, pScene->mMeshes[a],avList);
    }

    if (avList.size() != pScene->mNumMeshes) {
        // it seems something has been split. rebuild the mesh list
        delete[] pScene->mMeshes;
        pScene->mNumMeshes = (unsigned int)avList.size();
        pScene->mMeshes = new aiMesh*[avList.size()];

        for (unsigned int i = 0; i < avList.size();++i) {
            pScene->mMeshes[i] = avList[i].first;
        }

        // now we need to update all nodes
        this->UpdateNode(pScene->mRootNode,avList);
        ASSIMP_LOG_INFO("SplitLargeMeshesProcess_Triangle finished. Meshes have been split");
    } else {
        ASSIMP_LOG_DEBUG("SplitLargeMeshesProcess_Triangle finished. There was nothing to do");
    }
}

// ------------------------------------------------------------------------------------------------
// Setup properties
void SplitLargeMeshesProcess_Triangle::SetupProperties( const Importer* pImp) {
    // get the current value of the split property
    this->LIMIT = pImp->GetPropertyInteger(AI_CONFIG_PP_SLM_TRIANGLE_LIMIT,AI_SLM_DEFAULT_MAX_TRIANGLES);
}

// ------------------------------------------------------------------------------------------------
// Update a node after some meshes have been split
void SplitLargeMeshesProcess_Triangle::UpdateNode(aiNode* pcNode,
        const std::vector<std::pair<aiMesh*, unsigned int> >& avList) {
    // for every index in out list build a new entry
    std::vector<unsigned int> aiEntries;
    aiEntries.reserve(pcNode->mNumMeshes + 1);
    for (unsigned int i = 0; i < pcNode->mNumMeshes;++i) {
        for (unsigned int a = 0; a < avList.size();++a) {
            if (avList[a].second == pcNode->mMeshes[i]) {
                aiEntries.push_back(a);
            }
        }
    }

    // now build the new list
    delete[] pcNode->mMeshes;
    pcNode->mNumMeshes = (unsigned int)aiEntries.size();
    pcNode->mMeshes = new unsigned int[pcNode->mNumMeshes];

    for (unsigned int b = 0; b < pcNode->mNumMeshes;++b) {
        pcNode->mMeshes[b] = aiEntries[b];
    }

    // recusively update all other nodes
    for (unsigned int i = 0; i < pcNode->mNumChildren;++i) {
        UpdateNode ( pcNode->mChildren[i], avList );
    }
}

// ------------------------------------------------------------------------------------------------
// Executes the post processing step on the given imported data.
void SplitLargeMeshesProcess_Triangle::SplitMesh(
        unsigned int a,
        aiMesh* pMesh,
        std::vector<std::pair<aiMesh*, unsigned int> >& avList) {
    if (pMesh->mNumFaces > SplitLargeMeshesProcess_Triangle::LIMIT) {
        ASSIMP_LOG_INFO("Mesh exceeds the triangle limit. It will be split ...");

        // we need to split this mesh into sub meshes
        // determine the size of a submesh
        const unsigned int iSubMeshes = (pMesh->mNumFaces / LIMIT) + 1;

        const unsigned int iOutFaceNum = pMesh->mNumFaces / iSubMeshes;
        const unsigned int iOutVertexNum = iOutFaceNum * 3;

        // now generate all submeshes
        for (unsigned int i = 0; i < iSubMeshes;++i) {
            aiMesh* pcMesh          = new aiMesh;
            pcMesh->mNumFaces       = iOutFaceNum;
            pcMesh->mMaterialIndex  = pMesh->mMaterialIndex;

            // the name carries the adjacency information between the meshes
            pcMesh->mName = pMesh->mName;

            if (i == iSubMeshes-1) {
                pcMesh->mNumFaces = iOutFaceNum + (
                    pMesh->mNumFaces - iOutFaceNum * iSubMeshes);
            }
            // copy the list of faces
            pcMesh->mFaces = new aiFace[pcMesh->mNumFaces];

            const unsigned int iBase = iOutFaceNum * i;

            // get the total number of indices
            unsigned int iCnt = 0;
            for (unsigned int p = iBase; p < pcMesh->mNumFaces + iBase;++p) {
                iCnt += pMesh->mFaces[p].mNumIndices;
            }
            pcMesh->mNumVertices = iCnt;

            // allocate storage
            if (pMesh->mVertices != nullptr) {
                pcMesh->mVertices = new aiVector3D[iCnt];
            }

            if (pMesh->HasNormals()) {
                pcMesh->mNormals = new aiVector3D[iCnt];
            }

            if (pMesh->HasTangentsAndBitangents()) {
                pcMesh->mTangents = new aiVector3D[iCnt];
                pcMesh->mBitangents = new aiVector3D[iCnt];
            }

            // texture coordinates
            for (unsigned int c = 0;  c < AI_MAX_NUMBER_OF_TEXTURECOORDS;++c) {
                pcMesh->mNumUVComponents[c] = pMesh->mNumUVComponents[c];
                if (pMesh->HasTextureCoords( c)) {
                    pcMesh->mTextureCoords[c] = new aiVector3D[iCnt];
                }
            }

            // vertex colors
            for (unsigned int c = 0;  c < AI_MAX_NUMBER_OF_COLOR_SETS;++c) {
                if (pMesh->HasVertexColors( c)) {
                    pcMesh->mColors[c] = new aiColor4D[iCnt];
                }
            }

            if (pMesh->HasBones()) {
                // assume the number of bones won't change in most cases
                pcMesh->mBones = new aiBone*[pMesh->mNumBones];

                // iterate through all bones of the mesh and find those which
                // need to be copied to the split mesh
                std::vector<aiVertexWeight> avTempWeights;
                for (unsigned int p = 0; p < pcMesh->mNumBones;++p) {
                    aiBone* const bone = pcMesh->mBones[p];
                    avTempWeights.clear();
                    avTempWeights.reserve(bone->mNumWeights / iSubMeshes);

                    for (unsigned int q = 0; q < bone->mNumWeights;++q) {
                        aiVertexWeight& weight = bone->mWeights[q];
                        if(weight.mVertexId >= iBase && weight.mVertexId < iBase + iOutVertexNum) {
                            avTempWeights.push_back(weight);
                            weight = avTempWeights.back();
                            weight.mVertexId -= iBase;
                        }
                    }

                    if (!avTempWeights.empty()) {
                        // we'll need this bone. Copy it ...
                        aiBone* pc = new aiBone();
                        pcMesh->mBones[pcMesh->mNumBones++] = pc;
                        pc->mName = aiString(bone->mName);
                        pc->mNumWeights = (unsigned int)avTempWeights.size();
                        pc->mOffsetMatrix = bone->mOffsetMatrix;

                        // no need to reallocate the array for the last submesh.
                        // Here we can reuse the (large) source array, although
                        // we'll waste some memory
                        if (iSubMeshes-1 == i) {
                            pc->mWeights = bone->mWeights;
                            bone->mWeights = nullptr;
                        } else {
                            pc->mWeights = new aiVertexWeight[pc->mNumWeights];
                        }

                        // copy the weights
                        ::memcpy(pc->mWeights,&avTempWeights[0],sizeof(aiVertexWeight)*pc->mNumWeights);
                    }
                }
            }

            // (we will also need to copy the array of indices)
            unsigned int iCurrent = 0;
            for (unsigned int p = 0; p < pcMesh->mNumFaces;++p) {
                pcMesh->mFaces[p].mNumIndices = 3;
                // allocate a new array
                const unsigned int iTemp = p + iBase;
                const unsigned int iNumIndices = pMesh->mFaces[iTemp].mNumIndices;

                // setup face type and number of indices
                pcMesh->mFaces[p].mNumIndices = iNumIndices;
                unsigned int* pi = pMesh->mFaces[iTemp].mIndices;
                unsigned int* piOut = pcMesh->mFaces[p].mIndices = new unsigned int[iNumIndices];

                // need to update the output primitive types
                switch (iNumIndices) {
                case 1:
                    pcMesh->mPrimitiveTypes |= aiPrimitiveType_POINT;
                    break;
                case 2:
                    pcMesh->mPrimitiveTypes |= aiPrimitiveType_LINE;
                    break;
                case 3:
                    pcMesh->mPrimitiveTypes |= aiPrimitiveType_TRIANGLE;
                    break;
                default:
                    pcMesh->mPrimitiveTypes |= aiPrimitiveType_POLYGON;
                }

                // and copy the contents of the old array, offset by current base
                for (unsigned int v = 0; v < iNumIndices;++v) {
                    unsigned int iIndex = pi[v];
                    unsigned int iIndexOut = iCurrent++;
                    piOut[v] = iIndexOut;

                    // copy positions
                    if (pMesh->mVertices != nullptr) {
                        pcMesh->mVertices[iIndexOut] = pMesh->mVertices[iIndex];
                    }

                    // copy normals
                    if (pMesh->HasNormals()) {
                        pcMesh->mNormals[iIndexOut] = pMesh->mNormals[iIndex];
                    }

                    // copy tangents/bitangents
                    if (pMesh->HasTangentsAndBitangents()) {
                        pcMesh->mTangents[iIndexOut] = pMesh->mTangents[iIndex];
                        pcMesh->mBitangents[iIndexOut] = pMesh->mBitangents[iIndex];
                    }

                    // texture coordinates
                    for (unsigned int c = 0;  c < AI_MAX_NUMBER_OF_TEXTURECOORDS;++c) {
                        if (pMesh->HasTextureCoords( c ) ) {
                            pcMesh->mTextureCoords[c][iIndexOut] = pMesh->mTextureCoords[c][iIndex];
                        }
                    }
                    // vertex colors
                    for (unsigned int c = 0;  c < AI_MAX_NUMBER_OF_COLOR_SETS;++c) {
                        if (pMesh->HasVertexColors( c)) {
                            pcMesh->mColors[c][iIndexOut] = pMesh->mColors[c][iIndex];
                        }
                    }
                }
            }

            // add the newly created mesh to the list
            avList.push_back(std::pair<aiMesh*, unsigned int>(pcMesh,a));
        }

        // now delete the old mesh data
        delete pMesh;
    } else {
        avList.push_back(std::pair<aiMesh*, unsigned int>(pMesh,a));
    }
}

// ------------------------------------------------------------------------------------------------
SplitLargeMeshesProcess_Vertex::SplitLargeMeshesProcess_Vertex() {
    LIMIT = AI_SLM_DEFAULT_MAX_VERTICES;
}

// ------------------------------------------------------------------------------------------------
SplitLargeMeshesProcess_Vertex::~SplitLargeMeshesProcess_Vertex() {
    // nothing to do here
}

// ------------------------------------------------------------------------------------------------
// Returns whether the processing step is present in the given flag field.
bool SplitLargeMeshesProcess_Vertex::IsActive( unsigned int pFlags) const {
    return (pFlags & aiProcess_SplitLargeMeshes) != 0;
}

// ------------------------------------------------------------------------------------------------
// Executes the post processing step on the given imported data.
void SplitLargeMeshesProcess_Vertex::Execute( aiScene* pScene) {
    if (0xffffffff == this->LIMIT || nullptr == pScene ) {
        return;
    }

    ASSIMP_LOG_DEBUG("SplitLargeMeshesProcess_Vertex begin");

    std::vector<std::pair<aiMesh*, unsigned int> > avList;

    //Check for point cloud first, 
    //Do not process point cloud, splitMesh works only with faces data
    for (unsigned int a = 0; a < pScene->mNumMeshes; a++) {
        if ( pScene->mMeshes[a]->mPrimitiveTypes == aiPrimitiveType_POINT ) {
            return;
        }
    }

    for( unsigned int a = 0; a < pScene->mNumMeshes; ++a ) {
        this->SplitMesh(a, pScene->mMeshes[a], avList);
    }

    if (avList.size() != pScene->mNumMeshes) {
        // it seems something has been split. rebuild the mesh list
        delete[] pScene->mMeshes;
        pScene->mNumMeshes = (unsigned int)avList.size();
        pScene->mMeshes = new aiMesh*[avList.size()];

        for (unsigned int i = 0; i < avList.size();++i) {
            pScene->mMeshes[i] = avList[i].first;
        }

        // now we need to update all nodes
        SplitLargeMeshesProcess_Triangle::UpdateNode(pScene->mRootNode,avList);
        ASSIMP_LOG_INFO("SplitLargeMeshesProcess_Vertex finished. Meshes have been split");
    } else {
        ASSIMP_LOG_DEBUG("SplitLargeMeshesProcess_Vertex finished. There was nothing to do");
    }
}

// ------------------------------------------------------------------------------------------------
// Setup properties
void SplitLargeMeshesProcess_Vertex::SetupProperties( const Importer* pImp) {
    this->LIMIT = pImp->GetPropertyInteger(AI_CONFIG_PP_SLM_VERTEX_LIMIT,AI_SLM_DEFAULT_MAX_VERTICES);
}

// ------------------------------------------------------------------------------------------------
// Executes the post processing step on the given imported data.
void SplitLargeMeshesProcess_Vertex::SplitMesh(
        unsigned int a,
        aiMesh* pMesh,
        std::vector<std::pair<aiMesh*, unsigned int> >& avList) {
    if (pMesh->mNumVertices > SplitLargeMeshesProcess_Vertex::LIMIT) {
        typedef std::vector< std::pair<unsigned int,float> > VertexWeightTable;

        // build a per-vertex weight list if necessary
        VertexWeightTable* avPerVertexWeights = ComputeVertexBoneWeightTable(pMesh);

        // we need to split this mesh into sub meshes
        // determine the estimated size of a submesh
        // (this could be too large. Max waste is a single digit percentage)
        const unsigned int iSubMeshes = (pMesh->mNumVertices / SplitLargeMeshesProcess_Vertex::LIMIT) + 1;

        // create a std::vector<unsigned int> to indicate which vertices
        // have already been copied
        std::vector<unsigned int> avWasCopied;
        avWasCopied.resize(pMesh->mNumVertices,0xFFFFFFFF);

        // try to find a good estimate for the number of output faces
        // per mesh. Add 12.5% as buffer
        unsigned int iEstimatedSize = pMesh->mNumFaces / iSubMeshes;
        iEstimatedSize += iEstimatedSize >> 3;

        // now generate all submeshes
        unsigned int iBase( 0 );
        while (true) {
            const unsigned int iOutVertexNum = SplitLargeMeshesProcess_Vertex::LIMIT;
            aiMesh* pcMesh          = new aiMesh;
            pcMesh->mNumVertices    = 0;
            pcMesh->mMaterialIndex  = pMesh->mMaterialIndex;

            // the name carries the adjacency information between the meshes
            pcMesh->mName = pMesh->mName;

            typedef std::vector<aiVertexWeight> BoneWeightList;
            if (pMesh->HasBones()) {
                pcMesh->mBones = new aiBone*[pMesh->mNumBones];
                ::memset(pcMesh->mBones,0,sizeof(void*)*pMesh->mNumBones);
            }

            // clear the temporary helper array
            if (iBase) {
                // we can't use memset here we unsigned int needn' be 32 bits
                for (auto &elem : avWasCopied) {
                    elem = 0xffffffff;
                }
            }

            // output vectors
            std::vector<aiFace> vFaces;

            // reserve enough storage for most cases
            if (pMesh->HasPositions()) {
                pcMesh->mVertices = new aiVector3D[iOutVertexNum];
            }
            if (pMesh->HasNormals()) {
                pcMesh->mNormals = new aiVector3D[iOutVertexNum];
            }
            if (pMesh->HasTangentsAndBitangents()) {
                pcMesh->mTangents = new aiVector3D[iOutVertexNum];
                pcMesh->mBitangents = new aiVector3D[iOutVertexNum];
            }
            for (unsigned int c = 0; pMesh->HasVertexColors(c);++c) {
                pcMesh->mColors[c] = new aiColor4D[iOutVertexNum];
            }
            for (unsigned int c = 0; pMesh->HasTextureCoords(c);++c) {
                pcMesh->mNumUVComponents[c] = pMesh->mNumUVComponents[c];
                pcMesh->mTextureCoords[c] = new aiVector3D[iOutVertexNum];
            }
            vFaces.reserve(iEstimatedSize);

            // (we will also need to copy the array of indices)
            while (iBase < pMesh->mNumFaces) {
                // allocate a new array
                const unsigned int iNumIndices = pMesh->mFaces[iBase].mNumIndices;

                // doesn't catch degenerates but is quite fast
                unsigned int iNeed = 0;
                for (unsigned int v = 0; v < iNumIndices;++v) {
                    unsigned int iIndex = pMesh->mFaces[iBase].mIndices[v];

                    // check whether we do already have this vertex
                    if (0xFFFFFFFF == avWasCopied[iIndex]) {
                        iNeed++;
                    }
                }
                if (pcMesh->mNumVertices + iNeed > iOutVertexNum) {
                    // don't use this face
                    break;
                }

                vFaces.push_back(aiFace());
                aiFace& rFace = vFaces.back();

                // setup face type and number of indices
                rFace.mNumIndices = iNumIndices;
                rFace.mIndices = new unsigned int[iNumIndices];

                // need to update the output primitive types
                switch (rFace.mNumIndices) {
                case 1:
                    pcMesh->mPrimitiveTypes |= aiPrimitiveType_POINT;
                    break;
                case 2:
                    pcMesh->mPrimitiveTypes |= aiPrimitiveType_LINE;
                    break;
                case 3:
                    pcMesh->mPrimitiveTypes |= aiPrimitiveType_TRIANGLE;
                    break;
                default:
                    pcMesh->mPrimitiveTypes |= aiPrimitiveType_POLYGON;
                }

                // and copy the contents of the old array, offset by current base
                for (unsigned int v = 0; v < iNumIndices;++v) {
                    unsigned int iIndex = pMesh->mFaces[iBase].mIndices[v];

                    // check whether we do already have this vertex
                    if (0xFFFFFFFF != avWasCopied[iIndex]) {
                        rFace.mIndices[v] = avWasCopied[iIndex];
                        continue;
                    }

                    // copy positions
                    pcMesh->mVertices[pcMesh->mNumVertices] = (pMesh->mVertices[iIndex]);

                    // copy normals
                    if (pMesh->HasNormals()) {
                        pcMesh->mNormals[pcMesh->mNumVertices] = (pMesh->mNormals[iIndex]);
                    }

                    // copy tangents/bitangents
                    if (pMesh->HasTangentsAndBitangents()) {
                        pcMesh->mTangents[pcMesh->mNumVertices] = (pMesh->mTangents[iIndex]);
                        pcMesh->mBitangents[pcMesh->mNumVertices] = (pMesh->mBitangents[iIndex]);
                    }

                    // texture coordinates
                    for (unsigned int c = 0;  c < AI_MAX_NUMBER_OF_TEXTURECOORDS;++c) {
                        if (pMesh->HasTextureCoords( c)) {
                            pcMesh->mTextureCoords[c][pcMesh->mNumVertices] = pMesh->mTextureCoords[c][iIndex];
                        }
                    }
                    // vertex colors
                    for (unsigned int c = 0;  c < AI_MAX_NUMBER_OF_COLOR_SETS;++c) {
                        if (pMesh->HasVertexColors( c)) {
                            pcMesh->mColors[c][pcMesh->mNumVertices] = pMesh->mColors[c][iIndex];
                        }
                    }
                    // check whether we have bone weights assigned to this vertex
                    rFace.mIndices[v] = pcMesh->mNumVertices;
                    if (avPerVertexWeights) {
                        VertexWeightTable& table = avPerVertexWeights[ pcMesh->mNumVertices ];
                        if( !table.empty() ) {
                            for (VertexWeightTable::const_iterator iter =  table.begin();
                                    iter != table.end();++iter) {
                                // allocate the bone weight array if necessary
                                BoneWeightList* pcWeightList = (BoneWeightList*)pcMesh->mBones[(*iter).first];
                                if (nullptr == pcWeightList) {
                                    pcMesh->mBones[(*iter).first] = (aiBone*)(pcWeightList = new BoneWeightList());
                                }
                                pcWeightList->push_back(aiVertexWeight(pcMesh->mNumVertices,(*iter).second));
                            }
                        }
                    }

                    avWasCopied[iIndex] = pcMesh->mNumVertices;
                    pcMesh->mNumVertices++;
                }
                ++iBase;
                if(pcMesh->mNumVertices == iOutVertexNum) {
                    // break here. The face is only added if it was complete
                    break;
                }
            }

            // check which bones we'll need to create for this submesh
            if (pMesh->HasBones()) {
                aiBone** ppCurrent = pcMesh->mBones;
                for (unsigned int k = 0; k < pMesh->mNumBones;++k) {
                    // check whether the bone is existing
                    BoneWeightList* pcWeightList;
                    if ((pcWeightList = (BoneWeightList*)pcMesh->mBones[k])) {
                        aiBone* pcOldBone = pMesh->mBones[k];
                        aiBone* pcOut( nullptr );
                        *ppCurrent++ = pcOut = new aiBone();
                        pcOut->mName = aiString(pcOldBone->mName);
                        pcOut->mOffsetMatrix = pcOldBone->mOffsetMatrix;
                        pcOut->mNumWeights = (unsigned int)pcWeightList->size();
                        pcOut->mWeights = new aiVertexWeight[pcOut->mNumWeights];

                        // copy the vertex weights
                        ::memcpy(pcOut->mWeights,&pcWeightList->operator[](0),
                            pcOut->mNumWeights * sizeof(aiVertexWeight));

                        // delete the temporary bone weight list
                        delete pcWeightList;
                        pcMesh->mNumBones++;
                    }
                }
            }

            // copy the face list to the mesh
            pcMesh->mFaces = new aiFace[vFaces.size()];
            pcMesh->mNumFaces = (unsigned int)vFaces.size();

            for (unsigned int p = 0; p < pcMesh->mNumFaces;++p) {
                pcMesh->mFaces[p] = vFaces[p];
            }

            // add the newly created mesh to the list
            avList.push_back(std::pair<aiMesh*, unsigned int>(pcMesh,a));

            if (iBase == pMesh->mNumFaces) {
                // have all faces ... finish the outer loop, too
                break;
            }
        }

        // delete the per-vertex weight list again
        delete[] avPerVertexWeights;

        // now delete the old mesh data
        delete pMesh;
        return;
    }
    avList.push_back(std::pair<aiMesh*, unsigned int>(pMesh,a));
}