1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
|
/*
Open Asset Import Library (assimp)
----------------------------------------------------------------------
Copyright (c) 2006-2020, assimp team
All rights reserved.
Redistribution and use of this software in source and binary forms,
with or without modification, are permitted provided that the
following conditions are met:
* Redistributions of source code must retain the above
copyright notice, this list of conditions and the
following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other
materials provided with the distribution.
* Neither the name of the assimp team, nor the names of its
contributors may be used to endorse or promote products
derived from this software without specific prior
written permission of the assimp team.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
----------------------------------------------------------------------
*/
#ifndef AI_PROCESS_HELPER_H_INCLUDED
#define AI_PROCESS_HELPER_H_INCLUDED
#include <assimp/postprocess.h>
#include <assimp/anim.h>
#include <assimp/mesh.h>
#include <assimp/material.h>
#include <assimp/DefaultLogger.hpp>
#include <assimp/scene.h>
#include <assimp/SpatialSort.h>
#include "Common/BaseProcess.h"
#include <assimp/ParsingUtils.h>
#include <list>
// -------------------------------------------------------------------------------
// Some extensions to std namespace. Mainly std::min and std::max for all
// flat data types in the aiScene. They're used to quickly determine the
// min/max bounds of data arrays.
#ifdef __cplusplus
namespace std {
// std::min for aiVector3D
template <typename TReal>
inline ::aiVector3t<TReal> min (const ::aiVector3t<TReal>& a, const ::aiVector3t<TReal>& b) {
return ::aiVector3t<TReal> (min(a.x,b.x),min(a.y,b.y),min(a.z,b.z));
}
// std::max for aiVector3t<TReal>
template <typename TReal>
inline ::aiVector3t<TReal> max (const ::aiVector3t<TReal>& a, const ::aiVector3t<TReal>& b) {
return ::aiVector3t<TReal> (max(a.x,b.x),max(a.y,b.y),max(a.z,b.z));
}
// std::min for aiVector2t<TReal>
template <typename TReal>
inline ::aiVector2t<TReal> min (const ::aiVector2t<TReal>& a, const ::aiVector2t<TReal>& b) {
return ::aiVector2t<TReal> (min(a.x,b.x),min(a.y,b.y));
}
// std::max for aiVector2t<TReal>
template <typename TReal>
inline ::aiVector2t<TReal> max (const ::aiVector2t<TReal>& a, const ::aiVector2t<TReal>& b) {
return ::aiVector2t<TReal> (max(a.x,b.x),max(a.y,b.y));
}
// std::min for aiColor4D
template <typename TReal>
inline ::aiColor4t<TReal> min (const ::aiColor4t<TReal>& a, const ::aiColor4t<TReal>& b) {
return ::aiColor4t<TReal> (min(a.r,b.r),min(a.g,b.g),min(a.b,b.b),min(a.a,b.a));
}
// std::max for aiColor4D
template <typename TReal>
inline ::aiColor4t<TReal> max (const ::aiColor4t<TReal>& a, const ::aiColor4t<TReal>& b) {
return ::aiColor4t<TReal> (max(a.r,b.r),max(a.g,b.g),max(a.b,b.b),max(a.a,b.a));
}
// std::min for aiQuaterniont<TReal>
template <typename TReal>
inline ::aiQuaterniont<TReal> min (const ::aiQuaterniont<TReal>& a, const ::aiQuaterniont<TReal>& b) {
return ::aiQuaterniont<TReal> (min(a.w,b.w),min(a.x,b.x),min(a.y,b.y),min(a.z,b.z));
}
// std::max for aiQuaterniont<TReal>
template <typename TReal>
inline ::aiQuaterniont<TReal> max (const ::aiQuaterniont<TReal>& a, const ::aiQuaterniont<TReal>& b) {
return ::aiQuaterniont<TReal> (max(a.w,b.w),max(a.x,b.x),max(a.y,b.y),max(a.z,b.z));
}
// std::min for aiVectorKey
inline ::aiVectorKey min (const ::aiVectorKey& a, const ::aiVectorKey& b) {
return ::aiVectorKey (min(a.mTime,b.mTime),min(a.mValue,b.mValue));
}
// std::max for aiVectorKey
inline ::aiVectorKey max (const ::aiVectorKey& a, const ::aiVectorKey& b) {
return ::aiVectorKey (max(a.mTime,b.mTime),max(a.mValue,b.mValue));
}
// std::min for aiQuatKey
inline ::aiQuatKey min (const ::aiQuatKey& a, const ::aiQuatKey& b) {
return ::aiQuatKey (min(a.mTime,b.mTime),min(a.mValue,b.mValue));
}
// std::max for aiQuatKey
inline ::aiQuatKey max (const ::aiQuatKey& a, const ::aiQuatKey& b) {
return ::aiQuatKey (max(a.mTime,b.mTime),max(a.mValue,b.mValue));
}
// std::min for aiVertexWeight
inline ::aiVertexWeight min (const ::aiVertexWeight& a, const ::aiVertexWeight& b) {
return ::aiVertexWeight (min(a.mVertexId,b.mVertexId),min(a.mWeight,b.mWeight));
}
// std::max for aiVertexWeight
inline ::aiVertexWeight max (const ::aiVertexWeight& a, const ::aiVertexWeight& b) {
return ::aiVertexWeight (max(a.mVertexId,b.mVertexId),max(a.mWeight,b.mWeight));
}
} // end namespace std
#endif // !! C++
namespace Assimp {
// -------------------------------------------------------------------------------
// Start points for ArrayBounds<T> for all supported Ts
template <typename T>
struct MinMaxChooser;
template <> struct MinMaxChooser<float> {
void operator ()(float& min,float& max) {
max = -1e10f;
min = 1e10f;
}};
template <> struct MinMaxChooser<double> {
void operator ()(double& min,double& max) {
max = -1e10;
min = 1e10;
}};
template <> struct MinMaxChooser<unsigned int> {
void operator ()(unsigned int& min,unsigned int& max) {
max = 0;
min = (1u<<(sizeof(unsigned int)*8-1));
}};
template <typename T> struct MinMaxChooser< aiVector3t<T> > {
void operator ()(aiVector3t<T>& min,aiVector3t<T>& max) {
max = aiVector3t<T>(-1e10f,-1e10f,-1e10f);
min = aiVector3t<T>( 1e10f, 1e10f, 1e10f);
}};
template <typename T> struct MinMaxChooser< aiVector2t<T> > {
void operator ()(aiVector2t<T>& min,aiVector2t<T>& max) {
max = aiVector2t<T>(-1e10f,-1e10f);
min = aiVector2t<T>( 1e10f, 1e10f);
}};
template <typename T> struct MinMaxChooser< aiColor4t<T> > {
void operator ()(aiColor4t<T>& min,aiColor4t<T>& max) {
max = aiColor4t<T>(-1e10f,-1e10f,-1e10f,-1e10f);
min = aiColor4t<T>( 1e10f, 1e10f, 1e10f, 1e10f);
}};
template <typename T> struct MinMaxChooser< aiQuaterniont<T> > {
void operator ()(aiQuaterniont<T>& min,aiQuaterniont<T>& max) {
max = aiQuaterniont<T>(-1e10f,-1e10f,-1e10f,-1e10f);
min = aiQuaterniont<T>( 1e10f, 1e10f, 1e10f, 1e10f);
}};
template <> struct MinMaxChooser<aiVectorKey> {
void operator ()(aiVectorKey& min,aiVectorKey& max) {
MinMaxChooser<double>()(min.mTime,max.mTime);
MinMaxChooser<aiVector3D>()(min.mValue,max.mValue);
}};
template <> struct MinMaxChooser<aiQuatKey> {
void operator ()(aiQuatKey& min,aiQuatKey& max) {
MinMaxChooser<double>()(min.mTime,max.mTime);
MinMaxChooser<aiQuaternion>()(min.mValue,max.mValue);
}};
template <> struct MinMaxChooser<aiVertexWeight> {
void operator ()(aiVertexWeight& min,aiVertexWeight& max) {
MinMaxChooser<unsigned int>()(min.mVertexId,max.mVertexId);
MinMaxChooser<float>()(min.mWeight,max.mWeight);
}};
// -------------------------------------------------------------------------------
/** @brief Find the min/max values of an array of Ts
* @param in Input array
* @param size Number of elements to process
* @param[out] min minimum value
* @param[out] max maximum value
*/
template <typename T>
inline void ArrayBounds(const T* in, unsigned int size, T& min, T& max)
{
MinMaxChooser<T> ()(min,max);
for (unsigned int i = 0; i < size;++i) {
min = std::min(in[i],min);
max = std::max(in[i],max);
}
}
// -------------------------------------------------------------------------------
/** Little helper function to calculate the quadratic difference
* of two colours.
* @param pColor1 First color
* @param pColor2 second color
* @return Quadratic color difference */
inline ai_real GetColorDifference( const aiColor4D& pColor1, const aiColor4D& pColor2)
{
const aiColor4D c (pColor1.r - pColor2.r, pColor1.g - pColor2.g, pColor1.b - pColor2.b, pColor1.a - pColor2.a);
return c.r*c.r + c.g*c.g + c.b*c.b + c.a*c.a;
}
// -------------------------------------------------------------------------------
/** @brief Extract single strings from a list of identifiers
* @param in Input string list.
* @param out Receives a list of clean output strings
* @sdee #AI_CONFIG_PP_OG_EXCLUDE_LIST */
void ConvertListToStrings(const std::string& in, std::list<std::string>& out);
// -------------------------------------------------------------------------------
/** @brief Compute the AABB of a mesh after applying a given transform
* @param mesh Input mesh
* @param[out] min Receives minimum transformed vertex
* @param[out] max Receives maximum transformed vertex
* @param m Transformation matrix to be applied */
void FindAABBTransformed (const aiMesh* mesh, aiVector3D& min, aiVector3D& max, const aiMatrix4x4& m);
// -------------------------------------------------------------------------------
/** @brief Helper function to determine the 'real' center of a mesh
*
* That is the center of its axis-aligned bounding box.
* @param mesh Input mesh
* @param[out] min Minimum vertex of the mesh
* @param[out] max maximum vertex of the mesh
* @param[out] out Center point */
void FindMeshCenter (aiMesh* mesh, aiVector3D& out, aiVector3D& min, aiVector3D& max);
// -------------------------------------------------------------------------------
/** @brief Helper function to determine the 'real' center of a scene
*
* That is the center of its axis-aligned bounding box.
* @param scene Input scene
* @param[out] min Minimum vertex of the scene
* @param[out] max maximum vertex of the scene
* @param[out] out Center point */
void FindSceneCenter (aiScene* scene, aiVector3D& out, aiVector3D& min, aiVector3D& max);
// -------------------------------------------------------------------------------
// Helper function to determine the 'real' center of a mesh after applying a given transform
void FindMeshCenterTransformed (aiMesh* mesh, aiVector3D& out, aiVector3D& min,aiVector3D& max, const aiMatrix4x4& m);
// -------------------------------------------------------------------------------
// Helper function to determine the 'real' center of a mesh
void FindMeshCenter (aiMesh* mesh, aiVector3D& out);
// -------------------------------------------------------------------------------
// Helper function to determine the 'real' center of a mesh after applying a given transform
void FindMeshCenterTransformed (aiMesh* mesh, aiVector3D& out,const aiMatrix4x4& m);
// -------------------------------------------------------------------------------
// Compute a good epsilon value for position comparisons on a mesh
ai_real ComputePositionEpsilon(const aiMesh* pMesh);
// -------------------------------------------------------------------------------
// Compute a good epsilon value for position comparisons on a array of meshes
ai_real ComputePositionEpsilon(const aiMesh* const* pMeshes, size_t num);
// -------------------------------------------------------------------------------
// Compute an unique value for the vertex format of a mesh
unsigned int GetMeshVFormatUnique(const aiMesh* pcMesh);
// defs for ComputeVertexBoneWeightTable()
typedef std::pair <unsigned int,float> PerVertexWeight;
typedef std::vector <PerVertexWeight> VertexWeightTable;
// -------------------------------------------------------------------------------
// Compute a per-vertex bone weight table
VertexWeightTable* ComputeVertexBoneWeightTable(const aiMesh* pMesh);
// -------------------------------------------------------------------------------
// Get a string for a given aiTextureMapping
const char* MappingTypeToString(aiTextureMapping in);
// flags for MakeSubmesh()
#define AI_SUBMESH_FLAGS_SANS_BONES 0x1
// -------------------------------------------------------------------------------
// Split a mesh given a list of faces to be contained in the sub mesh
aiMesh* MakeSubmesh(const aiMesh *superMesh, const std::vector<unsigned int> &subMeshFaces, unsigned int subFlags);
// -------------------------------------------------------------------------------
// Utility postprocess step to share the spatial sort tree between
// all steps which use it to speedup its computations.
class ComputeSpatialSortProcess : public BaseProcess
{
bool IsActive( unsigned int pFlags) const
{
return NULL != shared && 0 != (pFlags & (aiProcess_CalcTangentSpace |
aiProcess_GenNormals | aiProcess_JoinIdenticalVertices));
}
void Execute( aiScene* pScene)
{
typedef std::pair<SpatialSort, ai_real> _Type;
ASSIMP_LOG_DEBUG("Generate spatially-sorted vertex cache");
std::vector<_Type>* p = new std::vector<_Type>(pScene->mNumMeshes);
std::vector<_Type>::iterator it = p->begin();
for (unsigned int i = 0; i < pScene->mNumMeshes; ++i, ++it) {
aiMesh* mesh = pScene->mMeshes[i];
_Type& blubb = *it;
blubb.first.Fill(mesh->mVertices,mesh->mNumVertices,sizeof(aiVector3D));
blubb.second = ComputePositionEpsilon(mesh);
}
shared->AddProperty(AI_SPP_SPATIAL_SORT,p);
}
};
// -------------------------------------------------------------------------------
// ... and the same again to cleanup the whole stuff
class DestroySpatialSortProcess : public BaseProcess
{
bool IsActive( unsigned int pFlags) const
{
return NULL != shared && 0 != (pFlags & (aiProcess_CalcTangentSpace |
aiProcess_GenNormals | aiProcess_JoinIdenticalVertices));
}
void Execute( aiScene* /*pScene*/)
{
shared->RemoveProperty(AI_SPP_SPATIAL_SORT);
}
};
} // ! namespace Assimp
#endif // !! AI_PROCESS_HELPER_H_INCLUDED
|