1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
|
/*
---------------------------------------------------------------------------
Open Asset Import Library (assimp)
---------------------------------------------------------------------------
Copyright (c) 2006-2020, assimp team
All rights reserved.
Redistribution and use of this software in source and binary forms,
with or without modification, are permitted provided that the following
conditions are met:
* Redistributions of source code must retain the above
copyright notice, this list of conditions and the
following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other
materials provided with the distribution.
* Neither the name of the assimp team, nor the names of its
contributors may be used to endorse or promote products
derived from this software without specific prior
written permission of the assimp team.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
---------------------------------------------------------------------------
*/
/** @file OptimizeGraph.cpp
* @brief Implementation of the aiProcess_OptimizGraph step
*/
#ifndef ASSIMP_BUILD_NO_OPTIMIZEGRAPH_PROCESS
#include "OptimizeGraph.h"
#include "ProcessHelper.h"
#include "ConvertToLHProcess.h"
#include <assimp/Exceptional.h>
#include <assimp/SceneCombiner.h>
#include <stdio.h>
using namespace Assimp;
#define AI_RESERVED_NODE_NAME "$Reserved_And_Evil"
/* AI_OG_USE_HASHING enables the use of hashing to speed-up std::set lookups.
* The unhashed variant should be faster, except for *very* large data sets
*/
#ifdef AI_OG_USE_HASHING
// Use our standard hashing function to compute the hash
#define AI_OG_GETKEY(str) SuperFastHash(str.data, str.length)
#else
// Otherwise hope that std::string will utilize a static buffer
// for shorter node names. This would avoid endless heap copying.
#define AI_OG_GETKEY(str) std::string(str.data)
#endif
// ------------------------------------------------------------------------------------------------
// Constructor to be privately used by Importer
OptimizeGraphProcess::OptimizeGraphProcess() :
mScene(),
nodes_in(),
nodes_out(),
count_merged() {
// empty
}
// ------------------------------------------------------------------------------------------------
// Destructor, private as well
OptimizeGraphProcess::~OptimizeGraphProcess() {
// empty
}
// ------------------------------------------------------------------------------------------------
// Returns whether the processing step is present in the given flag field.
bool OptimizeGraphProcess::IsActive(unsigned int pFlags) const {
return (0 != (pFlags & aiProcess_OptimizeGraph));
}
// ------------------------------------------------------------------------------------------------
// Setup properties for the post-processing step
void OptimizeGraphProcess::SetupProperties(const Importer *pImp) {
// Get value of AI_CONFIG_PP_OG_EXCLUDE_LIST
std::string tmp = pImp->GetPropertyString(AI_CONFIG_PP_OG_EXCLUDE_LIST, "");
AddLockedNodeList(tmp);
}
// ------------------------------------------------------------------------------------------------
// Collect new children
void OptimizeGraphProcess::CollectNewChildren(aiNode *nd, std::list<aiNode *> &nodes) {
nodes_in += nd->mNumChildren;
// Process children
std::list<aiNode *> child_nodes;
for (unsigned int i = 0; i < nd->mNumChildren; ++i) {
CollectNewChildren(nd->mChildren[i], child_nodes);
nd->mChildren[i] = nullptr;
}
// Check whether we need this node; if not we can replace it by our own children (warn, danger of incest).
if (locked.find(AI_OG_GETKEY(nd->mName)) == locked.end()) {
for (std::list<aiNode *>::iterator it = child_nodes.begin(); it != child_nodes.end();) {
if (locked.find(AI_OG_GETKEY((*it)->mName)) == locked.end()) {
(*it)->mTransformation = nd->mTransformation * (*it)->mTransformation;
nodes.push_back(*it);
it = child_nodes.erase(it);
continue;
}
++it;
}
if (nd->mNumMeshes || !child_nodes.empty()) {
nodes.push_back(nd);
} else {
delete nd; /* bye, node */
return;
}
} else {
// Retain our current position in the hierarchy
nodes.push_back(nd);
// Now check for possible optimizations in our list of child nodes. join as many as possible
aiNode *join_master = nullptr;
aiMatrix4x4 inv;
const LockedSetType::const_iterator end = locked.end();
std::list<aiNode *> join;
for (std::list<aiNode *>::iterator it = child_nodes.begin(); it != child_nodes.end();) {
aiNode *child = *it;
if (child->mNumChildren == 0 && locked.find(AI_OG_GETKEY(child->mName)) == end) {
// There may be no instanced meshes
unsigned int n = 0;
for (; n < child->mNumMeshes; ++n) {
if (meshes[child->mMeshes[n]] > 1) {
break;
}
}
if (n == child->mNumMeshes) {
if (!join_master) {
join_master = child;
inv = join_master->mTransformation;
inv.Inverse();
} else {
child->mTransformation = inv * child->mTransformation;
join.push_back(child);
it = child_nodes.erase(it);
continue;
}
}
}
++it;
}
if (join_master && !join.empty()) {
join_master->mName.length = ::ai_snprintf(join_master->mName.data, MAXLEN, "$MergedNode_%i", count_merged++);
unsigned int out_meshes = 0;
for (std::list<aiNode *>::const_iterator it = join.cbegin(); it != join.cend(); ++it) {
out_meshes += (*it)->mNumMeshes;
}
// copy all mesh references in one array
if (out_meshes) {
unsigned int *meshes = new unsigned int[out_meshes + join_master->mNumMeshes], *tmp = meshes;
for (unsigned int n = 0; n < join_master->mNumMeshes; ++n) {
*tmp++ = join_master->mMeshes[n];
}
for (const aiNode *join_node : join) {
for (unsigned int n = 0; n < join_node->mNumMeshes; ++n) {
*tmp = join_node->mMeshes[n];
aiMesh *mesh = mScene->mMeshes[*tmp++];
// Assume the transformation is affine
// manually move the mesh into the right coordinate system
// Check for odd negative scale (mirror)
if (join_node->mTransformation.Determinant() < 0) {
// Reverse the mesh face winding order
FlipWindingOrderProcess::ProcessMesh(mesh);
}
// Update positions, normals and tangents
const aiMatrix3x3 IT = aiMatrix3x3(join_node->mTransformation).Inverse().Transpose();
for (unsigned int a = 0; a < mesh->mNumVertices; ++a) {
mesh->mVertices[a] *= join_node->mTransformation;
if (mesh->HasNormals())
mesh->mNormals[a] *= IT;
if (mesh->HasTangentsAndBitangents()) {
mesh->mTangents[a] *= IT;
mesh->mBitangents[a] *= IT;
}
}
}
delete join_node; // bye, node
}
delete[] join_master->mMeshes;
join_master->mMeshes = meshes;
join_master->mNumMeshes += out_meshes;
}
}
}
// reassign children if something changed
if (child_nodes.empty() || child_nodes.size() > nd->mNumChildren) {
delete[] nd->mChildren;
if (!child_nodes.empty()) {
nd->mChildren = new aiNode *[child_nodes.size()];
} else
nd->mChildren = nullptr;
}
nd->mNumChildren = static_cast<unsigned int>(child_nodes.size());
if (nd->mChildren) {
aiNode **tmp = nd->mChildren;
for (std::list<aiNode *>::iterator it = child_nodes.begin(); it != child_nodes.end(); ++it) {
aiNode *node = *tmp++ = *it;
node->mParent = nd;
}
}
nodes_out += static_cast<unsigned int>(child_nodes.size());
}
// ------------------------------------------------------------------------------------------------
// Execute the post-processing step on the given scene
void OptimizeGraphProcess::Execute(aiScene *pScene) {
ASSIMP_LOG_DEBUG("OptimizeGraphProcess begin");
nodes_in = nodes_out = count_merged = 0;
mScene = pScene;
meshes.resize(pScene->mNumMeshes, 0);
FindInstancedMeshes(pScene->mRootNode);
// build a blacklist of identifiers. If the name of a node matches one of these, we won't touch it
locked.clear();
for (std::list<std::string>::const_iterator it = locked_nodes.begin(); it != locked_nodes.end(); ++it) {
#ifdef AI_OG_USE_HASHING
locked.insert(SuperFastHash((*it).c_str()));
#else
locked.insert(*it);
#endif
}
for (unsigned int i = 0; i < pScene->mNumAnimations; ++i) {
for (unsigned int a = 0; a < pScene->mAnimations[i]->mNumChannels; ++a) {
aiNodeAnim *anim = pScene->mAnimations[i]->mChannels[a];
locked.insert(AI_OG_GETKEY(anim->mNodeName));
}
}
for (unsigned int i = 0; i < pScene->mNumMeshes; ++i) {
for (unsigned int a = 0; a < pScene->mMeshes[i]->mNumBones; ++a) {
aiBone *bone = pScene->mMeshes[i]->mBones[a];
locked.insert(AI_OG_GETKEY(bone->mName));
// HACK: Meshes referencing bones may not be transformed; we need to look them.
// The easiest way to do this is to increase their reference counters ...
meshes[i] += 2;
}
}
for (unsigned int i = 0; i < pScene->mNumCameras; ++i) {
aiCamera *cam = pScene->mCameras[i];
locked.insert(AI_OG_GETKEY(cam->mName));
}
for (unsigned int i = 0; i < pScene->mNumLights; ++i) {
aiLight *lgh = pScene->mLights[i];
locked.insert(AI_OG_GETKEY(lgh->mName));
}
// Insert a dummy master node and make it read-only
aiNode *dummy_root = new aiNode(AI_RESERVED_NODE_NAME);
locked.insert(AI_OG_GETKEY(dummy_root->mName));
const aiString prev = pScene->mRootNode->mName;
pScene->mRootNode->mParent = dummy_root;
dummy_root->mChildren = new aiNode *[dummy_root->mNumChildren = 1];
dummy_root->mChildren[0] = pScene->mRootNode;
// Do our recursive processing of scenegraph nodes. For each node collect
// a fully new list of children and allow their children to place themselves
// on the same hierarchy layer as their parents.
std::list<aiNode *> nodes;
CollectNewChildren(dummy_root, nodes);
ai_assert(nodes.size() == 1);
if (dummy_root->mNumChildren == 0) {
pScene->mRootNode = nullptr;
throw DeadlyImportError("After optimizing the scene graph, no data remains");
}
if (dummy_root->mNumChildren > 1) {
pScene->mRootNode = dummy_root;
// Keep the dummy node but assign the name of the old root node to it
pScene->mRootNode->mName = prev;
} else {
// Remove the dummy root node again.
pScene->mRootNode = dummy_root->mChildren[0];
dummy_root->mChildren[0] = nullptr;
delete dummy_root;
}
pScene->mRootNode->mParent = nullptr;
if (!DefaultLogger::isNullLogger()) {
if (nodes_in != nodes_out) {
ASSIMP_LOG_INFO_F("OptimizeGraphProcess finished; Input nodes: ", nodes_in, ", Output nodes: ", nodes_out);
} else {
ASSIMP_LOG_DEBUG("OptimizeGraphProcess finished");
}
}
meshes.clear();
locked.clear();
}
// ------------------------------------------------------------------------------------------------
// Build a LUT of all instanced meshes
void OptimizeGraphProcess::FindInstancedMeshes(aiNode *pNode) {
for (unsigned int i = 0; i < pNode->mNumMeshes; ++i) {
++meshes[pNode->mMeshes[i]];
}
for (unsigned int i = 0; i < pNode->mNumChildren; ++i)
FindInstancedMeshes(pNode->mChildren[i]);
}
#endif // !! ASSIMP_BUILD_NO_OPTIMIZEGRAPH_PROCESS
|