summaryrefslogtreecommitdiff
path: root/thirdparty/assimp/code/PostProcessing/ComputeUVMappingProcess.cpp
blob: 1ebf798bd5fb58cc45c87b57bdd045f1066c29c5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
/*
Open Asset Import Library (assimp)
----------------------------------------------------------------------

Copyright (c) 2006-2020, assimp team


All rights reserved.

Redistribution and use of this software in source and binary forms,
with or without modification, are permitted provided that the
following conditions are met:

* Redistributions of source code must retain the above
  copyright notice, this list of conditions and the
  following disclaimer.

* Redistributions in binary form must reproduce the above
  copyright notice, this list of conditions and the
  following disclaimer in the documentation and/or other
  materials provided with the distribution.

* Neither the name of the assimp team, nor the names of its
  contributors may be used to endorse or promote products
  derived from this software without specific prior
  written permission of the assimp team.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

----------------------------------------------------------------------
*/

/** @file GenUVCoords step */


#include "ComputeUVMappingProcess.h"
#include "ProcessHelper.h"
#include <assimp/Exceptional.h>

using namespace Assimp;

namespace {

    const static aiVector3D base_axis_y(0.0,1.0,0.0);
    const static aiVector3D base_axis_x(1.0,0.0,0.0);
    const static aiVector3D base_axis_z(0.0,0.0,1.0);
    const static ai_real angle_epsilon = ai_real( 0.95 );
}

// ------------------------------------------------------------------------------------------------
// Constructor to be privately used by Importer
ComputeUVMappingProcess::ComputeUVMappingProcess()
{
    // nothing to do here
}

// ------------------------------------------------------------------------------------------------
// Destructor, private as well
ComputeUVMappingProcess::~ComputeUVMappingProcess()
{
    // nothing to do here
}

// ------------------------------------------------------------------------------------------------
// Returns whether the processing step is present in the given flag field.
bool ComputeUVMappingProcess::IsActive( unsigned int pFlags) const
{
    return  (pFlags & aiProcess_GenUVCoords) != 0;
}

// ------------------------------------------------------------------------------------------------
// Check whether a ray intersects a plane and find the intersection point
inline bool PlaneIntersect(const aiRay& ray, const aiVector3D& planePos,
    const aiVector3D& planeNormal, aiVector3D& pos)
{
    const ai_real b = planeNormal * (planePos - ray.pos);
    ai_real h = ray.dir * planeNormal;
    if ((h < 10e-5 && h > -10e-5) || (h = b/h) < 0)
        return false;

    pos = ray.pos + (ray.dir * h);
    return true;
}

// ------------------------------------------------------------------------------------------------
// Find the first empty UV channel in a mesh
inline unsigned int FindEmptyUVChannel (aiMesh* mesh)
{
    for (unsigned int m = 0; m < AI_MAX_NUMBER_OF_TEXTURECOORDS;++m)
        if (!mesh->mTextureCoords[m])return m;

    ASSIMP_LOG_ERROR("Unable to compute UV coordinates, no free UV slot found");
    return UINT_MAX;
}

// ------------------------------------------------------------------------------------------------
// Try to remove UV seams
void RemoveUVSeams (aiMesh* mesh, aiVector3D* out)
{
    // TODO: just a very rough algorithm. I think it could be done
    // much easier, but I don't know how and am currently too tired to
    // to think about a better solution.

    const static ai_real LOWER_LIMIT = ai_real( 0.1 );
    const static ai_real UPPER_LIMIT = ai_real( 0.9 );

    const static ai_real LOWER_EPSILON = ai_real( 10e-3 );
    const static ai_real UPPER_EPSILON = ai_real( 1.0-10e-3 );

    for (unsigned int fidx = 0; fidx < mesh->mNumFaces;++fidx)
    {
        const aiFace& face = mesh->mFaces[fidx];
        if (face.mNumIndices < 3) continue; // triangles and polygons only, please

        unsigned int small = face.mNumIndices, large = small;
        bool zero = false, one = false, round_to_zero = false;

        // Check whether this face lies on a UV seam. We can just guess,
        // but the assumption that a face with at least one very small
        // on the one side and one very large U coord on the other side
        // lies on a UV seam should work for most cases.
        for (unsigned int n = 0; n < face.mNumIndices;++n)
        {
            if (out[face.mIndices[n]].x < LOWER_LIMIT)
            {
                small = n;

                // If we have a U value very close to 0 we can't
                // round the others to 0, too.
                if (out[face.mIndices[n]].x <= LOWER_EPSILON)
                    zero = true;
                else round_to_zero = true;
            }
            if (out[face.mIndices[n]].x > UPPER_LIMIT)
            {
                large = n;

                // If we have a U value very close to 1 we can't
                // round the others to 1, too.
                if (out[face.mIndices[n]].x >= UPPER_EPSILON)
                    one = true;
            }
        }
        if (small != face.mNumIndices && large != face.mNumIndices)
        {
            for (unsigned int n = 0; n < face.mNumIndices;++n)
            {
                // If the u value is over the upper limit and no other u
                // value of that face is 0, round it to 0
                if (out[face.mIndices[n]].x > UPPER_LIMIT && !zero)
                    out[face.mIndices[n]].x = 0.0;

                // If the u value is below the lower limit and no other u
                // value of that face is 1, round it to 1
                else if (out[face.mIndices[n]].x < LOWER_LIMIT && !one)
                    out[face.mIndices[n]].x = 1.0;

                // The face contains both 0 and 1 as UV coords. This can occur
                // for faces which have an edge that lies directly on the seam.
                // Due to numerical inaccuracies one U coord becomes 0, the
                // other 1. But we do still have a third UV coord to determine
                // to which side we must round to.
                else if (one && zero)
                {
                    if (round_to_zero && out[face.mIndices[n]].x >=  UPPER_EPSILON)
                        out[face.mIndices[n]].x = 0.0;
                    else if (!round_to_zero && out[face.mIndices[n]].x <= LOWER_EPSILON)
                        out[face.mIndices[n]].x = 1.0;
                }
            }
        }
    }
}

// ------------------------------------------------------------------------------------------------
void ComputeUVMappingProcess::ComputeSphereMapping(aiMesh* mesh,const aiVector3D& axis, aiVector3D* out)
{
    aiVector3D center, min, max;
    FindMeshCenter(mesh, center, min, max);

    // If the axis is one of x,y,z run a faster code path. It's worth the extra effort ...
    // currently the mapping axis will always be one of x,y,z, except if the
    // PretransformVertices step is used (it transforms the meshes into worldspace,
    // thus changing the mapping axis)
    if (axis * base_axis_x >= angle_epsilon)    {

        // For each point get a normalized projection vector in the sphere,
        // get its longitude and latitude and map them to their respective
        // UV axes. Problems occur around the poles ... unsolvable.
        //
        // The spherical coordinate system looks like this:
        // x = cos(lon)*cos(lat)
        // y = sin(lon)*cos(lat)
        // z = sin(lat)
        //
        // Thus we can derive:
        // lat  = arcsin (z)
        // lon  = arctan (y/x)
        for (unsigned int pnt = 0; pnt < mesh->mNumVertices;++pnt)  {
            const aiVector3D diff = (mesh->mVertices[pnt]-center).Normalize();
            out[pnt] = aiVector3D((std::atan2(diff.z, diff.y) + AI_MATH_PI_F ) / AI_MATH_TWO_PI_F,
                (std::asin  (diff.x) + AI_MATH_HALF_PI_F) / AI_MATH_PI_F, 0.0);
        }
    }
    else if (axis * base_axis_y >= angle_epsilon)   {
        // ... just the same again
        for (unsigned int pnt = 0; pnt < mesh->mNumVertices;++pnt)  {
            const aiVector3D diff = (mesh->mVertices[pnt]-center).Normalize();
            out[pnt] = aiVector3D((std::atan2(diff.x, diff.z) + AI_MATH_PI_F ) / AI_MATH_TWO_PI_F,
                (std::asin  (diff.y) + AI_MATH_HALF_PI_F) / AI_MATH_PI_F, 0.0);
        }
    }
    else if (axis * base_axis_z >= angle_epsilon)   {
        // ... just the same again
        for (unsigned int pnt = 0; pnt < mesh->mNumVertices;++pnt)  {
            const aiVector3D diff = (mesh->mVertices[pnt]-center).Normalize();
            out[pnt] = aiVector3D((std::atan2(diff.y, diff.x) + AI_MATH_PI_F ) / AI_MATH_TWO_PI_F,
                (std::asin  (diff.z) + AI_MATH_HALF_PI_F) / AI_MATH_PI_F, 0.0);
        }
    }
    // slower code path in case the mapping axis is not one of the coordinate system axes
    else    {
        aiMatrix4x4 mTrafo;
        aiMatrix4x4::FromToMatrix(axis,base_axis_y,mTrafo);

        // again the same, except we're applying a transformation now
        for (unsigned int pnt = 0; pnt < mesh->mNumVertices;++pnt)  {
            const aiVector3D diff = ((mTrafo*mesh->mVertices[pnt])-center).Normalize();
            out[pnt] = aiVector3D((std::atan2(diff.y, diff.x) + AI_MATH_PI_F ) / AI_MATH_TWO_PI_F,
                (std::asin(diff.z) + AI_MATH_HALF_PI_F) / AI_MATH_PI_F, 0.0);
        }
    }


    // Now find and remove UV seams. A seam occurs if a face has a tcoord
    // close to zero on the one side, and a tcoord close to one on the
    // other side.
    RemoveUVSeams(mesh,out);
}

// ------------------------------------------------------------------------------------------------
void ComputeUVMappingProcess::ComputeCylinderMapping(aiMesh* mesh,const aiVector3D& axis, aiVector3D* out)
{
    aiVector3D center, min, max;

    // If the axis is one of x,y,z run a faster code path. It's worth the extra effort ...
    // currently the mapping axis will always be one of x,y,z, except if the
    // PretransformVertices step is used (it transforms the meshes into worldspace,
    // thus changing the mapping axis)
    if (axis * base_axis_x >= angle_epsilon)    {
        FindMeshCenter(mesh, center, min, max);
        const ai_real diff = max.x - min.x;

        // If the main axis is 'z', the z coordinate of a point 'p' is mapped
        // directly to the texture V axis. The other axis is derived from
        // the angle between ( p.x - c.x, p.y - c.y ) and (1,0), where
        // 'c' is the center point of the mesh.
        for (unsigned int pnt = 0; pnt < mesh->mNumVertices;++pnt)  {
            const aiVector3D& pos = mesh->mVertices[pnt];
            aiVector3D& uv  = out[pnt];

            uv.y = (pos.x - min.x) / diff;
            uv.x = (std::atan2( pos.z - center.z, pos.y - center.y) +(ai_real)AI_MATH_PI ) / (ai_real)AI_MATH_TWO_PI;
        }
    }
    else if (axis * base_axis_y >= angle_epsilon)   {
        FindMeshCenter(mesh, center, min, max);
        const ai_real diff = max.y - min.y;

        // just the same ...
        for (unsigned int pnt = 0; pnt < mesh->mNumVertices;++pnt)  {
            const aiVector3D& pos = mesh->mVertices[pnt];
            aiVector3D& uv  = out[pnt];

            uv.y = (pos.y - min.y) / diff;
            uv.x = (std::atan2( pos.x - center.x, pos.z - center.z) +(ai_real)AI_MATH_PI ) / (ai_real)AI_MATH_TWO_PI;
        }
    }
    else if (axis * base_axis_z >= angle_epsilon)   {
        FindMeshCenter(mesh, center, min, max);
        const ai_real diff = max.z - min.z;

        // just the same ...
        for (unsigned int pnt = 0; pnt < mesh->mNumVertices;++pnt)  {
            const aiVector3D& pos = mesh->mVertices[pnt];
            aiVector3D& uv  = out[pnt];

            uv.y = (pos.z - min.z) / diff;
            uv.x = (std::atan2( pos.y - center.y, pos.x - center.x) +(ai_real)AI_MATH_PI ) / (ai_real)AI_MATH_TWO_PI;
        }
    }
    // slower code path in case the mapping axis is not one of the coordinate system axes
    else {
        aiMatrix4x4 mTrafo;
        aiMatrix4x4::FromToMatrix(axis,base_axis_y,mTrafo);
        FindMeshCenterTransformed(mesh, center, min, max,mTrafo);
        const ai_real diff = max.y - min.y;

        // again the same, except we're applying a transformation now
        for (unsigned int pnt = 0; pnt < mesh->mNumVertices;++pnt){
            const aiVector3D pos = mTrafo* mesh->mVertices[pnt];
            aiVector3D& uv  = out[pnt];

            uv.y = (pos.y - min.y) / diff;
            uv.x = (std::atan2( pos.x - center.x, pos.z - center.z) +(ai_real)AI_MATH_PI ) / (ai_real)AI_MATH_TWO_PI;
        }
    }

    // Now find and remove UV seams. A seam occurs if a face has a tcoord
    // close to zero on the one side, and a tcoord close to one on the
    // other side.
    RemoveUVSeams(mesh,out);
}

// ------------------------------------------------------------------------------------------------
void ComputeUVMappingProcess::ComputePlaneMapping(aiMesh* mesh,const aiVector3D& axis, aiVector3D* out)
{
    ai_real diffu,diffv;
    aiVector3D center, min, max;

    // If the axis is one of x,y,z run a faster code path. It's worth the extra effort ...
    // currently the mapping axis will always be one of x,y,z, except if the
    // PretransformVertices step is used (it transforms the meshes into worldspace,
    // thus changing the mapping axis)
    if (axis * base_axis_x >= angle_epsilon)    {
        FindMeshCenter(mesh, center, min, max);
        diffu = max.z - min.z;
        diffv = max.y - min.y;

        for (unsigned int pnt = 0; pnt < mesh->mNumVertices;++pnt)  {
            const aiVector3D& pos = mesh->mVertices[pnt];
            out[pnt].Set((pos.z - min.z) / diffu,(pos.y - min.y) / diffv,0.0);
        }
    }
    else if (axis * base_axis_y >= angle_epsilon)   {
        FindMeshCenter(mesh, center, min, max);
        diffu = max.x - min.x;
        diffv = max.z - min.z;

        for (unsigned int pnt = 0; pnt < mesh->mNumVertices;++pnt)  {
            const aiVector3D& pos = mesh->mVertices[pnt];
            out[pnt].Set((pos.x - min.x) / diffu,(pos.z - min.z) / diffv,0.0);
        }
    }
    else if (axis * base_axis_z >= angle_epsilon)   {
        FindMeshCenter(mesh, center, min, max);
        diffu = max.x - min.x;
        diffv = max.y - min.y;

        for (unsigned int pnt = 0; pnt < mesh->mNumVertices;++pnt)  {
            const aiVector3D& pos = mesh->mVertices[pnt];
            out[pnt].Set((pos.x - min.x) / diffu,(pos.y - min.y) / diffv,0.0);
        }
    }
    // slower code path in case the mapping axis is not one of the coordinate system axes
    else
    {
        aiMatrix4x4 mTrafo;
        aiMatrix4x4::FromToMatrix(axis,base_axis_y,mTrafo);
        FindMeshCenterTransformed(mesh, center, min, max,mTrafo);
        diffu = max.x - min.x;
        diffv = max.z - min.z;

        // again the same, except we're applying a transformation now
        for (unsigned int pnt = 0; pnt < mesh->mNumVertices;++pnt)  {
            const aiVector3D pos = mTrafo * mesh->mVertices[pnt];
            out[pnt].Set((pos.x - min.x) / diffu,(pos.z - min.z) / diffv,0.0);
        }
    }

    // shouldn't be necessary to remove UV seams ...
}

// ------------------------------------------------------------------------------------------------
void ComputeUVMappingProcess::ComputeBoxMapping( aiMesh*, aiVector3D* )
{
    ASSIMP_LOG_ERROR("Mapping type currently not implemented");
}

// ------------------------------------------------------------------------------------------------
void ComputeUVMappingProcess::Execute( aiScene* pScene)
{
    ASSIMP_LOG_DEBUG("GenUVCoordsProcess begin");
    char buffer[1024];

    if (pScene->mFlags & AI_SCENE_FLAGS_NON_VERBOSE_FORMAT)
        throw DeadlyImportError("Post-processing order mismatch: expecting pseudo-indexed (\"verbose\") vertices here");

    std::list<MappingInfo> mappingStack;

    /*  Iterate through all materials and search for non-UV mapped textures
     */
    for (unsigned int i = 0; i < pScene->mNumMaterials;++i)
    {
        mappingStack.clear();
        aiMaterial* mat = pScene->mMaterials[i];
        for (unsigned int a = 0; a < mat->mNumProperties;++a)
        {
            aiMaterialProperty* prop = mat->mProperties[a];
            if (!::strcmp( prop->mKey.data, "$tex.mapping"))
            {
                aiTextureMapping& mapping = *((aiTextureMapping*)prop->mData);
                if (aiTextureMapping_UV != mapping)
                {
                    if (!DefaultLogger::isNullLogger())
                    {
                        ai_snprintf(buffer, 1024, "Found non-UV mapped texture (%s,%u). Mapping type: %s",
                            TextureTypeToString((aiTextureType)prop->mSemantic),prop->mIndex,
                            MappingTypeToString(mapping));

                        ASSIMP_LOG_INFO(buffer);
                    }

                    if (aiTextureMapping_OTHER == mapping)
                        continue;

                    MappingInfo info (mapping);

                    // Get further properties - currently only the major axis
                    for (unsigned int a2 = 0; a2 < mat->mNumProperties;++a2)
                    {
                        aiMaterialProperty* prop2 = mat->mProperties[a2];
                        if (prop2->mSemantic != prop->mSemantic || prop2->mIndex != prop->mIndex)
                            continue;

                        if ( !::strcmp( prop2->mKey.data, "$tex.mapaxis"))  {
                            info.axis = *((aiVector3D*)prop2->mData);
                            break;
                        }
                    }

                    unsigned int idx( 99999999 );

                    // Check whether we have this mapping mode already
                    std::list<MappingInfo>::iterator it = std::find (mappingStack.begin(),mappingStack.end(), info);
                    if (mappingStack.end() != it)
                    {
                        idx = (*it).uv;
                    }
                    else
                    {
                        /*  We have found a non-UV mapped texture. Now
                        *   we need to find all meshes using this material
                        *   that we can compute UV channels for them.
                        */
                        for (unsigned int m = 0; m < pScene->mNumMeshes;++m)
                        {
                            aiMesh* mesh = pScene->mMeshes[m];
                            unsigned int outIdx = 0;
                            if ( mesh->mMaterialIndex != i || ( outIdx = FindEmptyUVChannel(mesh) ) == UINT_MAX ||
                                !mesh->mNumVertices)
                            {
                                continue;
                            }

                            // Allocate output storage
                            aiVector3D* p = mesh->mTextureCoords[outIdx] = new aiVector3D[mesh->mNumVertices];

                            switch (mapping)
                            {
                            case aiTextureMapping_SPHERE:
                                ComputeSphereMapping(mesh,info.axis,p);
                                break;
                            case aiTextureMapping_CYLINDER:
                                ComputeCylinderMapping(mesh,info.axis,p);
                                break;
                            case aiTextureMapping_PLANE:
                                ComputePlaneMapping(mesh,info.axis,p);
                                break;
                            case aiTextureMapping_BOX:
                                ComputeBoxMapping(mesh,p);
                                break;
                            default:
                                ai_assert(false);
                            }
                            if (m && idx != outIdx)
                            {
                                ASSIMP_LOG_WARN("UV index mismatch. Not all meshes assigned to "
                                    "this material have equal numbers of UV channels. The UV index stored in  "
                                    "the material structure does therefore not apply for all meshes. ");
                            }
                            idx = outIdx;
                        }
                        info.uv = idx;
                        mappingStack.push_back(info);
                    }

                    // Update the material property list
                    mapping = aiTextureMapping_UV;
                    ((aiMaterial*)mat)->AddProperty(&idx,1,AI_MATKEY_UVWSRC(prop->mSemantic,prop->mIndex));
                }
            }
        }
    }
    ASSIMP_LOG_DEBUG("GenUVCoordsProcess finished");
}