summaryrefslogtreecommitdiff
path: root/thirdparty/assimp/code/FBX/FBXMeshGeometry.cpp
blob: 1386e2383c11ab4ca04c98305c26bcc371ed40c5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
/*
Open Asset Import Library (assimp)
----------------------------------------------------------------------

Copyright (c) 2006-2019, assimp team


All rights reserved.

Redistribution and use of this software in source and binary forms,
with or without modification, are permitted provided that the
following conditions are met:

* Redistributions of source code must retain the above
  copyright notice, this list of conditions and the
  following disclaimer.

* Redistributions in binary form must reproduce the above
  copyright notice, this list of conditions and the
  following disclaimer in the documentation and/or other
  materials provided with the distribution.

* Neither the name of the assimp team, nor the names of its
  contributors may be used to endorse or promote products
  derived from this software without specific prior
  written permission of the assimp team.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

----------------------------------------------------------------------
*/

/** @file  FBXMeshGeometry.cpp
 *  @brief Assimp::FBX::MeshGeometry implementation
 */

#ifndef ASSIMP_BUILD_NO_FBX_IMPORTER

#include <functional>

#include "FBXMeshGeometry.h"
#include "FBXDocument.h"
#include "FBXImporter.h"
#include "FBXImportSettings.h"
#include "FBXDocumentUtil.h"


namespace Assimp {
namespace FBX {

using namespace Util;

// ------------------------------------------------------------------------------------------------
Geometry::Geometry(uint64_t id, const Element& element, const std::string& name, const Document& doc)
    : Object(id, element, name)
    , skin()
{
    const std::vector<const Connection*>& conns = doc.GetConnectionsByDestinationSequenced(ID(),"Deformer");
    for(const Connection* con : conns) {
        const Skin* const sk = ProcessSimpleConnection<Skin>(*con, false, "Skin -> Geometry", element);
        if(sk) {
            skin = sk;
        }
        const BlendShape* const bsp = ProcessSimpleConnection<BlendShape>(*con, false, "BlendShape -> Geometry", element);
        if (bsp) {
            blendShapes.push_back(bsp);
        }
    }
}

// ------------------------------------------------------------------------------------------------
Geometry::~Geometry()
{
    // empty
}

// ------------------------------------------------------------------------------------------------
const std::vector<const BlendShape*>& Geometry::GetBlendShapes() const {
    return blendShapes;
}

// ------------------------------------------------------------------------------------------------
const Skin* Geometry::DeformerSkin() const {
    return skin;
}

// ------------------------------------------------------------------------------------------------
MeshGeometry::MeshGeometry(uint64_t id, const Element& element, const std::string& name, const Document& doc)
: Geometry(id, element,name, doc)
{
    const Scope* sc = element.Compound();
    if (!sc) {
        DOMError("failed to read Geometry object (class: Mesh), no data scope found");
    }

    // must have Mesh elements:
    const Element& Vertices = GetRequiredElement(*sc,"Vertices",&element);
    const Element& PolygonVertexIndex = GetRequiredElement(*sc,"PolygonVertexIndex",&element);

    // optional Mesh elements:
    const ElementCollection& Layer = sc->GetCollection("Layer");

    std::vector<aiVector3D> tempVerts;
    ParseVectorDataArray(tempVerts,Vertices);

    if(tempVerts.empty()) {
        FBXImporter::LogWarn("encountered mesh with no vertices");
    }

    std::vector<int> tempFaces;
    ParseVectorDataArray(tempFaces,PolygonVertexIndex);

    if(tempFaces.empty()) {
        FBXImporter::LogWarn("encountered mesh with no faces");
    }

    m_vertices.reserve(tempFaces.size());
    m_faces.reserve(tempFaces.size() / 3);

    m_mapping_offsets.resize(tempVerts.size());
    m_mapping_counts.resize(tempVerts.size(),0);
    m_mappings.resize(tempFaces.size());

    const size_t vertex_count = tempVerts.size();

    // generate output vertices, computing an adjacency table to
    // preserve the mapping from fbx indices to *this* indexing.
    unsigned int count = 0;
    for(int index : tempFaces) {
        const int absi = index < 0 ? (-index - 1) : index;
        if(static_cast<size_t>(absi) >= vertex_count) {
            DOMError("polygon vertex index out of range",&PolygonVertexIndex);
        }

        m_vertices.push_back(tempVerts[absi]);
        ++count;

        ++m_mapping_counts[absi];

        if (index < 0) {
            m_faces.push_back(count);
            count = 0;
        }
    }

    unsigned int cursor = 0;
    for (size_t i = 0, e = tempVerts.size(); i < e; ++i) {
        m_mapping_offsets[i] = cursor;
        cursor += m_mapping_counts[i];

        m_mapping_counts[i] = 0;
    }

    cursor = 0;
    for(int index : tempFaces) {
        const int absi = index < 0 ? (-index - 1) : index;
        m_mappings[m_mapping_offsets[absi] + m_mapping_counts[absi]++] = cursor++;
    }

    // if settings.readAllLayers is true:
    //  * read all layers, try to load as many vertex channels as possible
    // if settings.readAllLayers is false:
    //  * read only the layer with index 0, but warn about any further layers
    for (ElementMap::const_iterator it = Layer.first; it != Layer.second; ++it) {
        const TokenList& tokens = (*it).second->Tokens();

        const char* err;
        const int index = ParseTokenAsInt(*tokens[0], err);
        if(err) {
            DOMError(err,&element);
        }

        if(doc.Settings().readAllLayers || index == 0) {
            const Scope& layer = GetRequiredScope(*(*it).second);
            ReadLayer(layer);
        }
        else {
            FBXImporter::LogWarn("ignoring additional geometry layers");
        }
    }
}

// ------------------------------------------------------------------------------------------------
MeshGeometry::~MeshGeometry() {
    // empty
}

// ------------------------------------------------------------------------------------------------
const std::vector<aiVector3D>& MeshGeometry::GetVertices() const {
    return m_vertices;
}

// ------------------------------------------------------------------------------------------------
const std::vector<aiVector3D>& MeshGeometry::GetNormals() const {
    return m_normals;
}

// ------------------------------------------------------------------------------------------------
const std::vector<aiVector3D>& MeshGeometry::GetTangents() const {
    return m_tangents;
}

// ------------------------------------------------------------------------------------------------
const std::vector<aiVector3D>& MeshGeometry::GetBinormals() const {
    return m_binormals;
}

// ------------------------------------------------------------------------------------------------
const std::vector<unsigned int>& MeshGeometry::GetFaceIndexCounts() const {
    return m_faces;
}

// ------------------------------------------------------------------------------------------------
const std::vector<aiVector2D>& MeshGeometry::GetTextureCoords( unsigned int index ) const {
    static const std::vector<aiVector2D> empty;
    return index >= AI_MAX_NUMBER_OF_TEXTURECOORDS ? empty : m_uvs[ index ];
}

std::string MeshGeometry::GetTextureCoordChannelName( unsigned int index ) const {
    return index >= AI_MAX_NUMBER_OF_TEXTURECOORDS ? "" : m_uvNames[ index ];
}

const std::vector<aiColor4D>& MeshGeometry::GetVertexColors( unsigned int index ) const {
    static const std::vector<aiColor4D> empty;
    return index >= AI_MAX_NUMBER_OF_COLOR_SETS ? empty : m_colors[ index ];
}

const MatIndexArray& MeshGeometry::GetMaterialIndices() const {
    return m_materials;
}
// ------------------------------------------------------------------------------------------------
const unsigned int* MeshGeometry::ToOutputVertexIndex( unsigned int in_index, unsigned int& count ) const {
    if ( in_index >= m_mapping_counts.size() ) {
        return NULL;
    }

    ai_assert( m_mapping_counts.size() == m_mapping_offsets.size() );
    count = m_mapping_counts[ in_index ];

    ai_assert( m_mapping_offsets[ in_index ] + count <= m_mappings.size() );

    return &m_mappings[ m_mapping_offsets[ in_index ] ];
}

// ------------------------------------------------------------------------------------------------
unsigned int MeshGeometry::FaceForVertexIndex( unsigned int in_index ) const {
    ai_assert( in_index < m_vertices.size() );

    // in the current conversion pattern this will only be needed if
    // weights are present, so no need to always pre-compute this table
    if ( m_facesVertexStartIndices.empty() ) {
        m_facesVertexStartIndices.resize( m_faces.size() + 1, 0 );

        std::partial_sum( m_faces.begin(), m_faces.end(), m_facesVertexStartIndices.begin() + 1 );
        m_facesVertexStartIndices.pop_back();
    }

    ai_assert( m_facesVertexStartIndices.size() == m_faces.size() );
    const std::vector<unsigned int>::iterator it = std::upper_bound(
        m_facesVertexStartIndices.begin(),
        m_facesVertexStartIndices.end(),
        in_index
        );

    return static_cast< unsigned int >( std::distance( m_facesVertexStartIndices.begin(), it - 1 ) );
}

// ------------------------------------------------------------------------------------------------
void MeshGeometry::ReadLayer(const Scope& layer)
{
    const ElementCollection& LayerElement = layer.GetCollection("LayerElement");
    for (ElementMap::const_iterator eit = LayerElement.first; eit != LayerElement.second; ++eit) {
        const Scope& elayer = GetRequiredScope(*(*eit).second);

        ReadLayerElement(elayer);
    }
}


// ------------------------------------------------------------------------------------------------
void MeshGeometry::ReadLayerElement(const Scope& layerElement)
{
    const Element& Type = GetRequiredElement(layerElement,"Type");
    const Element& TypedIndex = GetRequiredElement(layerElement,"TypedIndex");

    const std::string& type = ParseTokenAsString(GetRequiredToken(Type,0));
    const int typedIndex = ParseTokenAsInt(GetRequiredToken(TypedIndex,0));

    const Scope& top = GetRequiredScope(element);
    const ElementCollection candidates = top.GetCollection(type);

    for (ElementMap::const_iterator it = candidates.first; it != candidates.second; ++it) {
        const int index = ParseTokenAsInt(GetRequiredToken(*(*it).second,0));
        if(index == typedIndex) {
            ReadVertexData(type,typedIndex,GetRequiredScope(*(*it).second));
            return;
        }
    }

    FBXImporter::LogError(Formatter::format("failed to resolve vertex layer element: ")
        << type << ", index: " << typedIndex);
}

// ------------------------------------------------------------------------------------------------
void MeshGeometry::ReadVertexData(const std::string& type, int index, const Scope& source)
{
    const std::string& MappingInformationType = ParseTokenAsString(GetRequiredToken(
        GetRequiredElement(source,"MappingInformationType"),0)
    );

    const std::string& ReferenceInformationType = ParseTokenAsString(GetRequiredToken(
        GetRequiredElement(source,"ReferenceInformationType"),0)
    );

    if (type == "LayerElementUV") {
        if(index >= AI_MAX_NUMBER_OF_TEXTURECOORDS) {
            FBXImporter::LogError(Formatter::format("ignoring UV layer, maximum number of UV channels exceeded: ")
                << index << " (limit is " << AI_MAX_NUMBER_OF_TEXTURECOORDS << ")" );
            return;
        }

        const Element* Name = source["Name"];
        m_uvNames[index] = "";
        if(Name) {
            m_uvNames[index] = ParseTokenAsString(GetRequiredToken(*Name,0));
        }

        ReadVertexDataUV(m_uvs[index],source,
            MappingInformationType,
            ReferenceInformationType
        );
    }
    else if (type == "LayerElementMaterial") {
        if (m_materials.size() > 0) {
            FBXImporter::LogError("ignoring additional material layer");
            return;
        }

        std::vector<int> temp_materials;

        ReadVertexDataMaterials(temp_materials,source,
            MappingInformationType,
            ReferenceInformationType
        );

        // sometimes, there will be only negative entries. Drop the material
        // layer in such a case (I guess it means a default material should
        // be used). This is what the converter would do anyway, and it
        // avoids losing the material if there are more material layers
        // coming of which at least one contains actual data (did observe
        // that with one test file).
        const size_t count_neg = std::count_if(temp_materials.begin(),temp_materials.end(),[](int n) { return n < 0; });
        if(count_neg == temp_materials.size()) {
            FBXImporter::LogWarn("ignoring dummy material layer (all entries -1)");
            return;
        }

        std::swap(temp_materials, m_materials);
    }
    else if (type == "LayerElementNormal") {
        if (m_normals.size() > 0) {
            FBXImporter::LogError("ignoring additional normal layer");
            return;
        }

        ReadVertexDataNormals(m_normals,source,
            MappingInformationType,
            ReferenceInformationType
        );
    }
    else if (type == "LayerElementTangent") {
        if (m_tangents.size() > 0) {
            FBXImporter::LogError("ignoring additional tangent layer");
            return;
        }

        ReadVertexDataTangents(m_tangents,source,
            MappingInformationType,
            ReferenceInformationType
        );
    }
    else if (type == "LayerElementBinormal") {
        if (m_binormals.size() > 0) {
            FBXImporter::LogError("ignoring additional binormal layer");
            return;
        }

        ReadVertexDataBinormals(m_binormals,source,
            MappingInformationType,
            ReferenceInformationType
        );
    }
    else if (type == "LayerElementColor") {
        if(index >= AI_MAX_NUMBER_OF_COLOR_SETS) {
            FBXImporter::LogError(Formatter::format("ignoring vertex color layer, maximum number of color sets exceeded: ")
                << index << " (limit is " << AI_MAX_NUMBER_OF_COLOR_SETS << ")" );
            return;
        }

        ReadVertexDataColors(m_colors[index],source,
            MappingInformationType,
            ReferenceInformationType
        );
    }
}

// ------------------------------------------------------------------------------------------------
// Lengthy utility function to read and resolve a FBX vertex data array - that is, the
// output is in polygon vertex order. This logic is used for reading normals, UVs, colors,
// tangents ..
template <typename T>
void ResolveVertexDataArray(std::vector<T>& data_out, const Scope& source,
    const std::string& MappingInformationType,
    const std::string& ReferenceInformationType,
    const char* dataElementName,
    const char* indexDataElementName,
    size_t vertex_count,
    const std::vector<unsigned int>& mapping_counts,
    const std::vector<unsigned int>& mapping_offsets,
    const std::vector<unsigned int>& mappings)
{
    bool isDirect = ReferenceInformationType == "Direct";
    bool isIndexToDirect = ReferenceInformationType == "IndexToDirect";

    // fall-back to direct data if there is no index data element
    if ( isIndexToDirect && !HasElement( source, indexDataElementName ) ) {
        isDirect = true;
        isIndexToDirect = false;
    }

    // handle permutations of Mapping and Reference type - it would be nice to
    // deal with this more elegantly and with less redundancy, but right
    // now it seems unavoidable.
    if (MappingInformationType == "ByVertice" && isDirect) {
        if (!HasElement(source, dataElementName)) {
            return;
        }
        std::vector<T> tempData;
		ParseVectorDataArray(tempData, GetRequiredElement(source, dataElementName));

        data_out.resize(vertex_count);
		for (size_t i = 0, e = tempData.size(); i < e; ++i) {

            const unsigned int istart = mapping_offsets[i], iend = istart + mapping_counts[i];
            for (unsigned int j = istart; j < iend; ++j) {
				data_out[mappings[j]] = tempData[i];
            }
        }
    }
    else if (MappingInformationType == "ByVertice" && isIndexToDirect) {
		std::vector<T> tempData;
		ParseVectorDataArray(tempData, GetRequiredElement(source, dataElementName));

        data_out.resize(vertex_count);

        std::vector<int> uvIndices;
        ParseVectorDataArray(uvIndices,GetRequiredElement(source,indexDataElementName));
        for (size_t i = 0, e = uvIndices.size(); i < e; ++i) {

            const unsigned int istart = mapping_offsets[i], iend = istart + mapping_counts[i];
            for (unsigned int j = istart; j < iend; ++j) {
				if (static_cast<size_t>(uvIndices[i]) >= tempData.size()) {
                    DOMError("index out of range",&GetRequiredElement(source,indexDataElementName));
                }
				data_out[mappings[j]] = tempData[uvIndices[i]];
            }
        }
    }
    else if (MappingInformationType == "ByPolygonVertex" && isDirect) {
		std::vector<T> tempData;
		ParseVectorDataArray(tempData, GetRequiredElement(source, dataElementName));

		if (tempData.size() != vertex_count) {
            FBXImporter::LogError(Formatter::format("length of input data unexpected for ByPolygon mapping: ")
				<< tempData.size() << ", expected " << vertex_count
            );
            return;
        }

		data_out.swap(tempData);
    }
    else if (MappingInformationType == "ByPolygonVertex" && isIndexToDirect) {
		std::vector<T> tempData;
		ParseVectorDataArray(tempData, GetRequiredElement(source, dataElementName));

        data_out.resize(vertex_count);

        std::vector<int> uvIndices;
        ParseVectorDataArray(uvIndices,GetRequiredElement(source,indexDataElementName));

        if (uvIndices.size() != vertex_count) {
            FBXImporter::LogError("length of input data unexpected for ByPolygonVertex mapping");
            return;
        }

        const T empty;
        unsigned int next = 0;
        for(int i : uvIndices) {
            if ( -1 == i ) {
                data_out[ next++ ] = empty;
                continue;
            }
            if (static_cast<size_t>(i) >= tempData.size()) {
                DOMError("index out of range",&GetRequiredElement(source,indexDataElementName));
            }

			data_out[next++] = tempData[i];
        }
    }
    else {
        FBXImporter::LogError(Formatter::format("ignoring vertex data channel, access type not implemented: ")
            << MappingInformationType << "," << ReferenceInformationType);
    }
}

// ------------------------------------------------------------------------------------------------
void MeshGeometry::ReadVertexDataNormals(std::vector<aiVector3D>& normals_out, const Scope& source,
    const std::string& MappingInformationType,
    const std::string& ReferenceInformationType)
{
    ResolveVertexDataArray(normals_out,source,MappingInformationType,ReferenceInformationType,
        "Normals",
        "NormalsIndex",
        m_vertices.size(),
        m_mapping_counts,
        m_mapping_offsets,
        m_mappings);
}

// ------------------------------------------------------------------------------------------------
void MeshGeometry::ReadVertexDataUV(std::vector<aiVector2D>& uv_out, const Scope& source,
    const std::string& MappingInformationType,
    const std::string& ReferenceInformationType)
{
    ResolveVertexDataArray(uv_out,source,MappingInformationType,ReferenceInformationType,
        "UV",
        "UVIndex",
        m_vertices.size(),
        m_mapping_counts,
        m_mapping_offsets,
        m_mappings);
}

// ------------------------------------------------------------------------------------------------
void MeshGeometry::ReadVertexDataColors(std::vector<aiColor4D>& colors_out, const Scope& source,
    const std::string& MappingInformationType,
    const std::string& ReferenceInformationType)
{
    ResolveVertexDataArray(colors_out,source,MappingInformationType,ReferenceInformationType,
        "Colors",
        "ColorIndex",
        m_vertices.size(),
        m_mapping_counts,
        m_mapping_offsets,
        m_mappings);
}

// ------------------------------------------------------------------------------------------------
static const char *TangentIndexToken = "TangentIndex";
static const char *TangentsIndexToken = "TangentsIndex";

void MeshGeometry::ReadVertexDataTangents(std::vector<aiVector3D>& tangents_out, const Scope& source,
    const std::string& MappingInformationType,
    const std::string& ReferenceInformationType)
{
    const char * str = source.Elements().count( "Tangents" ) > 0 ? "Tangents" : "Tangent";
    const char * strIdx = source.Elements().count( "Tangents" ) > 0 ? TangentsIndexToken : TangentIndexToken;
    ResolveVertexDataArray(tangents_out,source,MappingInformationType,ReferenceInformationType,
        str,
        strIdx,
        m_vertices.size(),
        m_mapping_counts,
        m_mapping_offsets,
        m_mappings);
}

// ------------------------------------------------------------------------------------------------
static const std::string BinormalIndexToken = "BinormalIndex";
static const std::string BinormalsIndexToken = "BinormalsIndex";

void MeshGeometry::ReadVertexDataBinormals(std::vector<aiVector3D>& binormals_out, const Scope& source,
    const std::string& MappingInformationType,
    const std::string& ReferenceInformationType)
{
    const char * str = source.Elements().count( "Binormals" ) > 0 ? "Binormals" : "Binormal";
    const char * strIdx = source.Elements().count( "Binormals" ) > 0 ? BinormalsIndexToken.c_str() : BinormalIndexToken.c_str();
    ResolveVertexDataArray(binormals_out,source,MappingInformationType,ReferenceInformationType,
        str,
        strIdx,
        m_vertices.size(),
        m_mapping_counts,
        m_mapping_offsets,
        m_mappings);
}


// ------------------------------------------------------------------------------------------------
void MeshGeometry::ReadVertexDataMaterials(std::vector<int>& materials_out, const Scope& source,
    const std::string& MappingInformationType,
    const std::string& ReferenceInformationType)
{
    const size_t face_count = m_faces.size();
    if( 0 == face_count )
    {
        return;
    }
    
    // materials are handled separately. First of all, they are assigned per-face
    // and not per polyvert. Secondly, ReferenceInformationType=IndexToDirect
    // has a slightly different meaning for materials.
    ParseVectorDataArray(materials_out,GetRequiredElement(source,"Materials"));

    if (MappingInformationType == "AllSame") {
        // easy - same material for all faces
        if (materials_out.empty()) {
            FBXImporter::LogError(Formatter::format("expected material index, ignoring"));
            return;
        } else if (materials_out.size() > 1) {
            FBXImporter::LogWarn(Formatter::format("expected only a single material index, ignoring all except the first one"));
            materials_out.clear();
        }

        materials_out.resize(m_vertices.size());
        std::fill(materials_out.begin(), materials_out.end(), materials_out.at(0));
    } else if (MappingInformationType == "ByPolygon" && ReferenceInformationType == "IndexToDirect") {
        materials_out.resize(face_count);

        if(materials_out.size() != face_count) {
            FBXImporter::LogError(Formatter::format("length of input data unexpected for ByPolygon mapping: ")
                << materials_out.size() << ", expected " << face_count
            );
            return;
        }
    } else {
        FBXImporter::LogError(Formatter::format("ignoring material assignments, access type not implemented: ")
            << MappingInformationType << "," << ReferenceInformationType);
    }
}
// ------------------------------------------------------------------------------------------------
ShapeGeometry::ShapeGeometry(uint64_t id, const Element& element, const std::string& name, const Document& doc)
: Geometry(id, element, name, doc) {
    const Scope *sc = element.Compound();
    if (nullptr == sc) {
        DOMError("failed to read Geometry object (class: Shape), no data scope found");
    }
    const Element& Indexes = GetRequiredElement(*sc, "Indexes", &element);
    const Element& Normals = GetRequiredElement(*sc, "Normals", &element);
    const Element& Vertices = GetRequiredElement(*sc, "Vertices", &element);
    ParseVectorDataArray(m_indices, Indexes);
    ParseVectorDataArray(m_vertices, Vertices);
    ParseVectorDataArray(m_normals, Normals);
}

// ------------------------------------------------------------------------------------------------
ShapeGeometry::~ShapeGeometry() {
    // empty
}
// ------------------------------------------------------------------------------------------------
const std::vector<aiVector3D>& ShapeGeometry::GetVertices() const {
    return m_vertices;
}
// ------------------------------------------------------------------------------------------------
const std::vector<aiVector3D>& ShapeGeometry::GetNormals() const {
    return m_normals;
}
// ------------------------------------------------------------------------------------------------
const std::vector<unsigned int>& ShapeGeometry::GetIndices() const {
    return m_indices;
}
// ------------------------------------------------------------------------------------------------
LineGeometry::LineGeometry(uint64_t id, const Element& element, const std::string& name, const Document& doc)
    : Geometry(id, element, name, doc)
{
    const Scope* sc = element.Compound();
    if (!sc) {
        DOMError("failed to read Geometry object (class: Line), no data scope found");
    }
    const Element& Points = GetRequiredElement(*sc, "Points", &element);
    const Element& PointsIndex = GetRequiredElement(*sc, "PointsIndex", &element);
    ParseVectorDataArray(m_vertices, Points);
    ParseVectorDataArray(m_indices, PointsIndex);
}

// ------------------------------------------------------------------------------------------------
LineGeometry::~LineGeometry() {
    // empty
}
// ------------------------------------------------------------------------------------------------
const std::vector<aiVector3D>& LineGeometry::GetVertices() const {
    return m_vertices;
}
// ------------------------------------------------------------------------------------------------
const std::vector<int>& LineGeometry::GetIndices() const {
    return m_indices;
}
} // !FBX
} // !Assimp
#endif