1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
|
/*
Open Asset Import Library (assimp)
----------------------------------------------------------------------
Copyright (c) 2006-2019, assimp team
All rights reserved.
Redistribution and use of this software in source and binary forms,
with or without modification, are permitted provided that the
following conditions are met:
* Redistributions of source code must retain the above
copyright notice, this list of conditions and the
following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other
materials provided with the distribution.
* Neither the name of the assimp team, nor the names of its
contributors may be used to endorse or promote products
derived from this software without specific prior
written permission of the assimp team.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
----------------------------------------------------------------------
*/
/** @file FBXDConverter.h
* @brief FBX DOM to aiScene conversion
*/
#ifndef INCLUDED_AI_FBX_CONVERTER_H
#define INCLUDED_AI_FBX_CONVERTER_H
#include "FBXParser.h"
#include "FBXMeshGeometry.h"
#include "FBXDocument.h"
#include "FBXUtil.h"
#include "FBXProperties.h"
#include "FBXImporter.h"
#include <assimp/anim.h>
#include <assimp/material.h>
#include <assimp/light.h>
#include <assimp/texture.h>
#include <assimp/camera.h>
#include <assimp/StringComparison.h>
#include <unordered_map>
#include <unordered_set>
struct aiScene;
struct aiNode;
struct aiMaterial;
struct morphKeyData {
std::vector<unsigned int> values;
std::vector<float> weights;
};
typedef std::map<int64_t, morphKeyData*> morphAnimData;
namespace Assimp {
namespace FBX {
class Document;
enum class FbxUnit {
cm = 0,
m,
km,
NumUnits,
Undefined
};
/**
* Convert a FBX #Document to #aiScene
* @param out Empty scene to be populated
* @param doc Parsed FBX document
* @param removeEmptyBones Will remove bones, which do not have any references to vertices.
*/
void ConvertToAssimpScene(aiScene* out, const Document& doc, bool removeEmptyBones);
/** Dummy class to encapsulate the conversion process */
class FBXConverter {
public:
/**
* The different parts that make up the final local transformation of a fbx-node
*/
enum TransformationComp {
TransformationComp_GeometricScalingInverse = 0,
TransformationComp_GeometricRotationInverse,
TransformationComp_GeometricTranslationInverse,
TransformationComp_Translation,
TransformationComp_RotationOffset,
TransformationComp_RotationPivot,
TransformationComp_PreRotation,
TransformationComp_Rotation,
TransformationComp_PostRotation,
TransformationComp_RotationPivotInverse,
TransformationComp_ScalingOffset,
TransformationComp_ScalingPivot,
TransformationComp_Scaling,
TransformationComp_ScalingPivotInverse,
TransformationComp_GeometricTranslation,
TransformationComp_GeometricRotation,
TransformationComp_GeometricScaling,
TransformationComp_MAXIMUM
};
public:
FBXConverter(aiScene* out, const Document& doc, bool removeEmptyBones);
~FBXConverter();
private:
// ------------------------------------------------------------------------------------------------
// find scene root and trigger recursive scene conversion
void ConvertRootNode();
// ------------------------------------------------------------------------------------------------
// collect and assign child nodes
void ConvertNodes(uint64_t id, aiNode& parent, const aiMatrix4x4& parent_transform = aiMatrix4x4());
// ------------------------------------------------------------------------------------------------
void ConvertLights(const Model& model, const std::string &orig_name );
// ------------------------------------------------------------------------------------------------
void ConvertCameras(const Model& model, const std::string &orig_name );
// ------------------------------------------------------------------------------------------------
void ConvertLight( const Light& light, const std::string &orig_name );
// ------------------------------------------------------------------------------------------------
void ConvertCamera( const Camera& cam, const std::string &orig_name );
// ------------------------------------------------------------------------------------------------
void GetUniqueName( const std::string &name, std::string& uniqueName );
// ------------------------------------------------------------------------------------------------
// this returns unified names usable within assimp identifiers (i.e. no space characters -
// while these would be allowed, they are a potential trouble spot so better not use them).
const char* NameTransformationComp(TransformationComp comp);
// ------------------------------------------------------------------------------------------------
// Returns an unique name for a node or traverses up a hierarchy until a non-empty name is found and
// then makes this name unique
std::string MakeUniqueNodeName(const Model* const model, const aiNode& parent);
// ------------------------------------------------------------------------------------------------
// note: this returns the REAL fbx property names
const char* NameTransformationCompProperty(TransformationComp comp);
// ------------------------------------------------------------------------------------------------
aiVector3D TransformationCompDefaultValue(TransformationComp comp);
// ------------------------------------------------------------------------------------------------
void GetRotationMatrix(Model::RotOrder mode, const aiVector3D& rotation, aiMatrix4x4& out);
// ------------------------------------------------------------------------------------------------
/**
* checks if a node has more than just scaling, rotation and translation components
*/
bool NeedsComplexTransformationChain(const Model& model);
// ------------------------------------------------------------------------------------------------
// note: name must be a FixNodeName() result
std::string NameTransformationChainNode(const std::string& name, TransformationComp comp);
// ------------------------------------------------------------------------------------------------
/**
* note: memory for output_nodes will be managed by the caller
*/
bool GenerateTransformationNodeChain(const Model& model, const std::string& name, std::vector<aiNode*>& output_nodes, std::vector<aiNode*>& post_output_nodes);
// ------------------------------------------------------------------------------------------------
void SetupNodeMetadata(const Model& model, aiNode& nd);
// ------------------------------------------------------------------------------------------------
void ConvertModel(const Model& model, aiNode& nd, const aiMatrix4x4& node_global_transform);
// ------------------------------------------------------------------------------------------------
// MeshGeometry -> aiMesh, return mesh index + 1 or 0 if the conversion failed
std::vector<unsigned int> ConvertMesh(const MeshGeometry& mesh, const Model& model,
const aiMatrix4x4& node_global_transform, aiNode& nd);
// ------------------------------------------------------------------------------------------------
std::vector<unsigned int> ConvertLine(const LineGeometry& line, const Model& model,
const aiMatrix4x4& node_global_transform, aiNode& nd);
// ------------------------------------------------------------------------------------------------
aiMesh* SetupEmptyMesh(const Geometry& mesh, aiNode& nd);
// ------------------------------------------------------------------------------------------------
unsigned int ConvertMeshSingleMaterial(const MeshGeometry& mesh, const Model& model,
const aiMatrix4x4& node_global_transform, aiNode& nd);
// ------------------------------------------------------------------------------------------------
std::vector<unsigned int> ConvertMeshMultiMaterial(const MeshGeometry& mesh, const Model& model,
const aiMatrix4x4& node_global_transform, aiNode& nd);
// ------------------------------------------------------------------------------------------------
unsigned int ConvertMeshMultiMaterial(const MeshGeometry& mesh, const Model& model,
MatIndexArray::value_type index,
const aiMatrix4x4& node_global_transform, aiNode& nd);
// ------------------------------------------------------------------------------------------------
static const unsigned int NO_MATERIAL_SEPARATION = /* std::numeric_limits<unsigned int>::max() */
static_cast<unsigned int>(-1);
// ------------------------------------------------------------------------------------------------
/**
* - if materialIndex == NO_MATERIAL_SEPARATION, materials are not taken into
* account when determining which weights to include.
* - outputVertStartIndices is only used when a material index is specified, it gives for
* each output vertex the DOM index it maps to.
*/
void ConvertWeights(aiMesh* out, const Model& model, const MeshGeometry& geo,
const aiMatrix4x4& node_global_transform = aiMatrix4x4(),
unsigned int materialIndex = NO_MATERIAL_SEPARATION,
std::vector<unsigned int>* outputVertStartIndices = NULL);
// ------------------------------------------------------------------------------------------------
void ConvertCluster(std::vector<aiBone*>& bones, const Model& /*model*/, const Cluster& cl,
std::vector<size_t>& out_indices,
std::vector<size_t>& index_out_indices,
std::vector<size_t>& count_out_indices,
const aiMatrix4x4& node_global_transform);
// ------------------------------------------------------------------------------------------------
void ConvertMaterialForMesh(aiMesh* out, const Model& model, const MeshGeometry& geo,
MatIndexArray::value_type materialIndex);
// ------------------------------------------------------------------------------------------------
unsigned int GetDefaultMaterial();
// ------------------------------------------------------------------------------------------------
// Material -> aiMaterial
unsigned int ConvertMaterial(const Material& material, const MeshGeometry* const mesh);
// ------------------------------------------------------------------------------------------------
// Video -> aiTexture
unsigned int ConvertVideo(const Video& video);
// ------------------------------------------------------------------------------------------------
// convert embedded texture if necessary and return actual texture path
aiString GetTexturePath(const Texture* tex);
// ------------------------------------------------------------------------------------------------
void TrySetTextureProperties(aiMaterial* out_mat, const TextureMap& textures,
const std::string& propName,
aiTextureType target, const MeshGeometry* const mesh);
// ------------------------------------------------------------------------------------------------
void TrySetTextureProperties(aiMaterial* out_mat, const LayeredTextureMap& layeredTextures,
const std::string& propName,
aiTextureType target, const MeshGeometry* const mesh);
// ------------------------------------------------------------------------------------------------
void SetTextureProperties(aiMaterial* out_mat, const TextureMap& textures, const MeshGeometry* const mesh);
// ------------------------------------------------------------------------------------------------
void SetTextureProperties(aiMaterial* out_mat, const LayeredTextureMap& layeredTextures, const MeshGeometry* const mesh);
// ------------------------------------------------------------------------------------------------
aiColor3D GetColorPropertyFromMaterial(const PropertyTable& props, const std::string& baseName,
bool& result);
aiColor3D GetColorPropertyFactored(const PropertyTable& props, const std::string& colorName,
const std::string& factorName, bool& result, bool useTemplate = true);
aiColor3D GetColorProperty(const PropertyTable& props, const std::string& colorName,
bool& result, bool useTemplate = true);
// ------------------------------------------------------------------------------------------------
void SetShadingPropertiesCommon(aiMaterial* out_mat, const PropertyTable& props);
void SetShadingPropertiesRaw(aiMaterial* out_mat, const PropertyTable& props, const TextureMap& textures, const MeshGeometry* const mesh);
// ------------------------------------------------------------------------------------------------
// get the number of fps for a FrameRate enumerated value
static double FrameRateToDouble(FileGlobalSettings::FrameRate fp, double customFPSVal = -1.0);
// ------------------------------------------------------------------------------------------------
// convert animation data to aiAnimation et al
void ConvertAnimations();
// ------------------------------------------------------------------------------------------------
// takes a fbx node name and returns the identifier to be used in the assimp output scene.
// the function is guaranteed to provide consistent results over multiple invocations
// UNLESS RenameNode() is called for a particular node name.
std::string FixNodeName(const std::string& name);
std::string FixAnimMeshName(const std::string& name);
typedef std::map<const AnimationCurveNode*, const AnimationLayer*> LayerMap;
// XXX: better use multi_map ..
typedef std::map<std::string, std::vector<const AnimationCurveNode*> > NodeMap;
// ------------------------------------------------------------------------------------------------
void ConvertAnimationStack(const AnimationStack& st);
// ------------------------------------------------------------------------------------------------
void ProcessMorphAnimDatas(std::map<std::string, morphAnimData*>* morphAnimDatas, const BlendShapeChannel* bsc, const AnimationCurveNode* node);
// ------------------------------------------------------------------------------------------------
void GenerateNodeAnimations(std::vector<aiNodeAnim*>& node_anims,
const std::string& fixed_name,
const std::vector<const AnimationCurveNode*>& curves,
const LayerMap& layer_map,
int64_t start, int64_t stop,
double& max_time,
double& min_time);
// ------------------------------------------------------------------------------------------------
bool IsRedundantAnimationData(const Model& target,
TransformationComp comp,
const std::vector<const AnimationCurveNode*>& curves);
// ------------------------------------------------------------------------------------------------
aiNodeAnim* GenerateRotationNodeAnim(const std::string& name,
const Model& target,
const std::vector<const AnimationCurveNode*>& curves,
const LayerMap& layer_map,
int64_t start, int64_t stop,
double& max_time,
double& min_time);
// ------------------------------------------------------------------------------------------------
aiNodeAnim* GenerateScalingNodeAnim(const std::string& name,
const Model& /*target*/,
const std::vector<const AnimationCurveNode*>& curves,
const LayerMap& layer_map,
int64_t start, int64_t stop,
double& max_time,
double& min_time);
// ------------------------------------------------------------------------------------------------
aiNodeAnim* GenerateTranslationNodeAnim(const std::string& name,
const Model& /*target*/,
const std::vector<const AnimationCurveNode*>& curves,
const LayerMap& layer_map,
int64_t start, int64_t stop,
double& max_time,
double& min_time,
bool inverse = false);
// ------------------------------------------------------------------------------------------------
// generate node anim, extracting only Rotation, Scaling and Translation from the given chain
aiNodeAnim* GenerateSimpleNodeAnim(const std::string& name,
const Model& target,
NodeMap::const_iterator chain[TransformationComp_MAXIMUM],
NodeMap::const_iterator iter_end,
const LayerMap& layer_map,
int64_t start, int64_t stop,
double& max_time,
double& min_time,
bool reverse_order = false);
// key (time), value, mapto (component index)
typedef std::tuple<std::shared_ptr<KeyTimeList>, std::shared_ptr<KeyValueList>, unsigned int > KeyFrameList;
typedef std::vector<KeyFrameList> KeyFrameListList;
// ------------------------------------------------------------------------------------------------
KeyFrameListList GetKeyframeList(const std::vector<const AnimationCurveNode*>& nodes, int64_t start, int64_t stop);
// ------------------------------------------------------------------------------------------------
KeyTimeList GetKeyTimeList(const KeyFrameListList& inputs);
// ------------------------------------------------------------------------------------------------
void InterpolateKeys(aiVectorKey* valOut, const KeyTimeList& keys, const KeyFrameListList& inputs,
const aiVector3D& def_value,
double& max_time,
double& min_time);
// ------------------------------------------------------------------------------------------------
void InterpolateKeys(aiQuatKey* valOut, const KeyTimeList& keys, const KeyFrameListList& inputs,
const aiVector3D& def_value,
double& maxTime,
double& minTime,
Model::RotOrder order);
// ------------------------------------------------------------------------------------------------
void ConvertTransformOrder_TRStoSRT(aiQuatKey* out_quat, aiVectorKey* out_scale,
aiVectorKey* out_translation,
const KeyFrameListList& scaling,
const KeyFrameListList& translation,
const KeyFrameListList& rotation,
const KeyTimeList& times,
double& maxTime,
double& minTime,
Model::RotOrder order,
const aiVector3D& def_scale,
const aiVector3D& def_translate,
const aiVector3D& def_rotation);
// ------------------------------------------------------------------------------------------------
// euler xyz -> quat
aiQuaternion EulerToQuaternion(const aiVector3D& rot, Model::RotOrder order);
// ------------------------------------------------------------------------------------------------
void ConvertScaleKeys(aiNodeAnim* na, const std::vector<const AnimationCurveNode*>& nodes, const LayerMap& /*layers*/,
int64_t start, int64_t stop,
double& maxTime,
double& minTime);
// ------------------------------------------------------------------------------------------------
void ConvertTranslationKeys(aiNodeAnim* na, const std::vector<const AnimationCurveNode*>& nodes,
const LayerMap& /*layers*/,
int64_t start, int64_t stop,
double& maxTime,
double& minTime);
// ------------------------------------------------------------------------------------------------
void ConvertRotationKeys(aiNodeAnim* na, const std::vector<const AnimationCurveNode*>& nodes,
const LayerMap& /*layers*/,
int64_t start, int64_t stop,
double& maxTime,
double& minTime,
Model::RotOrder order);
void ConvertGlobalSettings();
// ------------------------------------------------------------------------------------------------
// copy generated meshes, animations, lights, cameras and textures to the output scene
void TransferDataToScene();
private:
// 0: not assigned yet, others: index is value - 1
unsigned int defaultMaterialIndex;
std::vector<aiMesh*> meshes;
std::vector<aiMaterial*> materials;
std::vector<aiAnimation*> animations;
std::vector<aiLight*> lights;
std::vector<aiCamera*> cameras;
std::vector<aiTexture*> textures;
using MaterialMap = std::map<const Material*, unsigned int>;
MaterialMap materials_converted;
using VideoMap = std::map<const Video*, unsigned int>;
VideoMap textures_converted;
using MeshMap = std::map<const Geometry*, std::vector<unsigned int> >;
MeshMap meshes_converted;
// fixed node name -> which trafo chain components have animations?
using NodeAnimBitMap = std::map<std::string, unsigned int> ;
NodeAnimBitMap node_anim_chain_bits;
// number of nodes with the same name
using NodeNameCache = std::unordered_map<std::string, unsigned int>;
NodeNameCache mNodeNames;
double anim_fps;
aiScene* const out;
const FBX::Document& doc;
FbxUnit mCurrentUnit;
};
}
}
#endif // INCLUDED_AI_FBX_CONVERTER_H
|