summaryrefslogtreecommitdiff
path: root/servers/visual/rasterizer_rd/shaders/cubemap_roughness.glsl
blob: 3dba143e56d2500a4083fbcbf2811c60a86971e2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
/* clang-format off */
[compute]

#version 450

VERSION_DEFINES

#define GROUP_SIZE 8

layout(local_size_x = GROUP_SIZE, local_size_y = GROUP_SIZE, local_size_z = 1) in;
/* clang-format on */

#ifdef MODE_SOURCE_PANORAMA
layout(set = 0, binding = 0) uniform sampler2D source_panorama;
#endif

#ifdef MODE_SOURCE_CUBEMAP
layout(set = 0, binding = 0) uniform samplerCube source_cube;
#endif

layout(rgba16f, set = 1, binding = 0) uniform restrict writeonly imageCube dest_cubemap;

layout(push_constant, binding = 1, std430) uniform Params {
	uint face_id;
	uint sample_count;
	float roughness;
	bool use_direct_write;
	float face_size;
}
params;

#define M_PI 3.14159265359

vec3 texelCoordToVec(vec2 uv, uint faceID) {
	mat3 faceUvVectors[6];

	// -x
	faceUvVectors[1][0] = vec3(0.0, 0.0, 1.0); // u -> +z
	faceUvVectors[1][1] = vec3(0.0, -1.0, 0.0); // v -> -y
	faceUvVectors[1][2] = vec3(-1.0, 0.0, 0.0); // -x face

	// +x
	faceUvVectors[0][0] = vec3(0.0, 0.0, -1.0); // u -> -z
	faceUvVectors[0][1] = vec3(0.0, -1.0, 0.0); // v -> -y
	faceUvVectors[0][2] = vec3(1.0, 0.0, 0.0); // +x face

	// -y
	faceUvVectors[3][0] = vec3(1.0, 0.0, 0.0); // u -> +x
	faceUvVectors[3][1] = vec3(0.0, 0.0, -1.0); // v -> -z
	faceUvVectors[3][2] = vec3(0.0, -1.0, 0.0); // -y face

	// +y
	faceUvVectors[2][0] = vec3(1.0, 0.0, 0.0); // u -> +x
	faceUvVectors[2][1] = vec3(0.0, 0.0, 1.0); // v -> +z
	faceUvVectors[2][2] = vec3(0.0, 1.0, 0.0); // +y face

	// -z
	faceUvVectors[5][0] = vec3(-1.0, 0.0, 0.0); // u -> -x
	faceUvVectors[5][1] = vec3(0.0, -1.0, 0.0); // v -> -y
	faceUvVectors[5][2] = vec3(0.0, 0.0, -1.0); // -z face

	// +z
	faceUvVectors[4][0] = vec3(1.0, 0.0, 0.0); // u -> +x
	faceUvVectors[4][1] = vec3(0.0, -1.0, 0.0); // v -> -y
	faceUvVectors[4][2] = vec3(0.0, 0.0, 1.0); // +z face

	// out = u * s_faceUv[0] + v * s_faceUv[1] + s_faceUv[2].
	vec3 result = (faceUvVectors[faceID][0] * uv.x) + (faceUvVectors[faceID][1] * uv.y) + faceUvVectors[faceID][2];
	return normalize(result);
}

vec3 ImportanceSampleGGX(vec2 Xi, float Roughness, vec3 N) {
	float a = Roughness * Roughness; // DISNEY'S ROUGHNESS [see Burley'12 siggraph]

	// Compute distribution direction
	float Phi = 2.0 * M_PI * Xi.x;
	float CosTheta = sqrt((1.0 - Xi.y) / (1.0 + (a * a - 1.0) * Xi.y));
	float SinTheta = sqrt(1.0 - CosTheta * CosTheta);

	// Convert to spherical direction
	vec3 H;
	H.x = SinTheta * cos(Phi);
	H.y = SinTheta * sin(Phi);
	H.z = CosTheta;

	vec3 UpVector = abs(N.z) < 0.999 ? vec3(0.0, 0.0, 1.0) : vec3(1.0, 0.0, 0.0);
	vec3 TangentX = normalize(cross(UpVector, N));
	vec3 TangentY = cross(N, TangentX);

	// Tangent to world space
	return TangentX * H.x + TangentY * H.y + N * H.z;
}

// http://graphicrants.blogspot.com.au/2013/08/specular-brdf-reference.html
float GGX(float NdotV, float a) {
	float k = a / 2.0;
	return NdotV / (NdotV * (1.0 - k) + k);
}

// http://graphicrants.blogspot.com.au/2013/08/specular-brdf-reference.html
float G_Smith(float a, float nDotV, float nDotL) {
	return GGX(nDotL, a * a) * GGX(nDotV, a * a);
}

float radicalInverse_VdC(uint bits) {
	bits = (bits << 16u) | (bits >> 16u);
	bits = ((bits & 0x55555555u) << 1u) | ((bits & 0xAAAAAAAAu) >> 1u);
	bits = ((bits & 0x33333333u) << 2u) | ((bits & 0xCCCCCCCCu) >> 2u);
	bits = ((bits & 0x0F0F0F0Fu) << 4u) | ((bits & 0xF0F0F0F0u) >> 4u);
	bits = ((bits & 0x00FF00FFu) << 8u) | ((bits & 0xFF00FF00u) >> 8u);
	return float(bits) * 2.3283064365386963e-10; // / 0x100000000
}

vec2 Hammersley(uint i, uint N) {
	return vec2(float(i) / float(N), radicalInverse_VdC(i));
}

#ifdef MODE_SOURCE_PANORAMA

vec4 texturePanorama(vec3 normal, sampler2D pano) {

	vec2 st = vec2(
			atan(normal.x, -normal.z),
			acos(normal.y));

	if (st.x < 0.0)
		st.x += M_PI * 2.0;

	st /= vec2(M_PI * 2.0, M_PI);

	return textureLod(pano, st, 0.0);
}

#endif

void main() {
	uvec3 id = gl_GlobalInvocationID;
	id.z += params.face_id;

	vec2 uv = ((vec2(id.xy) * 2.0 + 1.0) / (params.face_size) - 1.0);
	vec3 N = texelCoordToVec(uv, id.z);

	//vec4 color = color_interp;

	if (params.use_direct_write) {

#ifdef MODE_SOURCE_PANORAMA
		imageStore(dest_cubemap, ivec3(id), vec4(texturePanorama(N, source_panorama).rgb, 1.0));
#endif

#ifdef MODE_SOURCE_CUBEMAP
		imageStore(dest_cubemap, ivec3(id), vec4(texture(source_cube, N).rgb, 1.0));

#endif

	} else {

		vec4 sum = vec4(0.0, 0.0, 0.0, 0.0);

		for (uint sampleNum = 0u; sampleNum < params.sample_count; sampleNum++) {
			vec2 xi = Hammersley(sampleNum, params.sample_count);

			vec3 H = ImportanceSampleGGX(xi, params.roughness, N);
			vec3 V = N;
			vec3 L = (2.0 * dot(V, H) * H - V);

			float ndotl = clamp(dot(N, L), 0.0, 1.0);

			if (ndotl > 0.0) {
#ifdef MODE_SOURCE_PANORAMA
				sum.rgb += texturePanorama(L, source_panorama).rgb * ndotl;
#endif

#ifdef MODE_SOURCE_CUBEMAP
				sum.rgb += textureLod(source_cube, L, 0.0).rgb * ndotl;
#endif
				sum.a += ndotl;
			}
		}
		sum /= sum.a;

		imageStore(dest_cubemap, ivec3(id), vec4(sum.rgb, 1.0));
	}
}