1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
|
#[compute]
#version 450
#VERSION_DEFINES
layout(local_size_x = 4, local_size_y = 4, local_size_z = 4) in;
#define MAX_DISTANCE 100000
#define NO_CHILDREN 0xFFFFFFFF
#define GREY_VEC vec3(0.33333, 0.33333, 0.33333)
struct CellChildren {
uint children[8];
};
layout(set = 0, binding = 1, std430) buffer CellChildrenBuffer {
CellChildren data[];
}
cell_children;
struct CellData {
uint position; // xyz 10 bits
uint albedo; //rgb albedo
uint emission; //rgb normalized with e as multiplier
uint normal; //RGB normal encoded
};
layout(set = 0, binding = 2, std430) buffer CellDataBuffer {
CellData data[];
}
cell_data;
layout(r8ui, set = 0, binding = 3) uniform restrict writeonly uimage3D sdf_tex;
layout(push_constant, binding = 0, std430) uniform Params {
uint offset;
uint end;
uint pad0;
uint pad1;
}
params;
void main() {
vec3 pos = vec3(gl_GlobalInvocationID);
float closest_dist = 100000.0;
for (uint i = params.offset; i < params.end; i++) {
vec3 posu = vec3(uvec3(cell_data.data[i].position & 0x7FF, (cell_data.data[i].position >> 11) & 0x3FF, cell_data.data[i].position >> 21));
float dist = length(pos - posu);
if (dist < closest_dist) {
closest_dist = dist;
}
}
uint dist_8;
if (closest_dist < 0.0001) { // same cell
dist_8 = 0; //equals to -1
} else {
dist_8 = clamp(uint(closest_dist), 0, 254) + 1; //conservative, 0 is 1, so <1 is considered solid
}
imageStore(sdf_tex, ivec3(gl_GlobalInvocationID), uvec4(dist_8));
//imageStore(sdf_tex,pos,uvec4(pos*2,0));
}
#if 0
layout(push_constant, binding = 0, std430) uniform Params {
ivec3 limits;
uint stack_size;
}
params;
float distance_to_aabb(ivec3 pos, ivec3 aabb_pos, ivec3 aabb_size) {
vec3 delta = vec3(max(ivec3(0), max(aabb_pos - pos, pos - (aabb_pos + aabb_size - ivec3(1)))));
return length(delta);
}
void main() {
ivec3 pos = ivec3(gl_GlobalInvocationID);
uint stack[10] = uint[](0, 0, 0, 0, 0, 0, 0, 0, 0, 0);
uint stack_indices[10] = uint[](0, 0, 0, 0, 0, 0, 0, 0, 0, 0);
ivec3 stack_positions[10] = ivec3[](ivec3(0), ivec3(0), ivec3(0), ivec3(0), ivec3(0), ivec3(0), ivec3(0), ivec3(0), ivec3(0), ivec3(0));
const uint cell_orders[8] = uint[](
0x11f58d1,
0xe2e70a,
0xd47463,
0xbb829c,
0x8d11f5,
0x70ae2e,
0x463d47,
0x29cbb8);
bool cell_found = false;
bool cell_found_exact = false;
ivec3 closest_cell_pos;
float closest_distance = MAX_DISTANCE;
int stack_pos = 0;
while (true) {
uint index = stack_indices[stack_pos] >> 24;
if (index == 8) {
//go up
if (stack_pos == 0) {
break; //done going through octree
}
stack_pos--;
continue;
}
stack_indices[stack_pos] = (stack_indices[stack_pos] & ((1 << 24) - 1)) | ((index + 1) << 24);
uint cell_index = (stack_indices[stack_pos] >> (index * 3)) & 0x7;
uint child_cell = cell_children.data[stack[stack_pos]].children[cell_index];
if (child_cell == NO_CHILDREN) {
continue;
}
ivec3 child_cell_size = params.limits >> (stack_pos + 1);
ivec3 child_cell_pos = stack_positions[stack_pos];
child_cell_pos += mix(ivec3(0), child_cell_size, bvec3(uvec3(index & 1, index & 2, index & 4) != uvec3(0)));
bool is_leaf = stack_pos == (params.stack_size - 2);
if (child_cell_pos == pos && is_leaf) {
//we may actually end up in the exact cell.
//if this happens, just abort
cell_found_exact = true;
break;
}
if (cell_found) {
//discard by distance
float distance = distance_to_aabb(pos, child_cell_pos, child_cell_size);
if (distance >= closest_distance) {
continue; //pointless, just test next child
} else if (is_leaf) {
//closer than what we have AND end of stack, save and continue
closest_cell_pos = child_cell_pos;
closest_distance = distance;
continue;
}
} else if (is_leaf) {
//first solid cell we find, save and continue
closest_distance = distance_to_aabb(pos, child_cell_pos, child_cell_size);
closest_cell_pos = child_cell_pos;
cell_found = true;
continue;
}
bvec3 direction = greaterThan((pos - (child_cell_pos + (child_cell_size >> 1))), ivec3(0));
uint cell_order = 0;
cell_order |= mix(0, 1, direction.x);
cell_order |= mix(0, 2, direction.y);
cell_order |= mix(0, 4, direction.z);
stack[stack_pos + 1] = child_cell;
stack_indices[stack_pos + 1] = cell_orders[cell_order]; //start counting
stack_positions[stack_pos + 1] = child_cell_pos;
stack_pos++; //go up stack
}
uint dist_8;
if (cell_found_exact) {
dist_8 = 0; //equals to -1
} else {
float closest_distance = length(vec3(pos - closest_cell_pos));
dist_8 = clamp(uint(closest_distance), 0, 254) + 1; //conservative, 0 is 1, so <1 is considered solid
}
imageStore(sdf_tex, pos, uvec4(dist_8));
}
#endif
|