summaryrefslogtreecommitdiff
path: root/servers/rendering/renderer_rd/shaders/voxel_gi.glsl
blob: 49a493cdc71d6a64a0d5dc8385ff7a1d2eded77e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
#[compute]

#version 450

#VERSION_DEFINES

#ifdef MODE_DYNAMIC
layout(local_size_x = 8, local_size_y = 8, local_size_z = 1) in;
#else
layout(local_size_x = 64, local_size_y = 1, local_size_z = 1) in;
#endif

#ifndef MODE_DYNAMIC

#define NO_CHILDREN 0xFFFFFFFF
#define GREY_VEC vec3(0.33333, 0.33333, 0.33333)

struct CellChildren {
	uint children[8];
};

layout(set = 0, binding = 1, std430) buffer CellChildrenBuffer {
	CellChildren data[];
}
cell_children;

struct CellData {
	uint position; // xyz 10 bits
	uint albedo; //rgb albedo
	uint emission; //rgb normalized with e as multiplier
	uint normal; //RGB normal encoded
};

layout(set = 0, binding = 2, std430) buffer CellDataBuffer {
	CellData data[];
}
cell_data;

#endif // MODE DYNAMIC

#define LIGHT_TYPE_DIRECTIONAL 0
#define LIGHT_TYPE_OMNI 1
#define LIGHT_TYPE_SPOT 2

#if defined(MODE_COMPUTE_LIGHT) || defined(MODE_DYNAMIC_LIGHTING)

struct Light {
	uint type;
	float energy;
	float radius;
	float attenuation;

	vec3 color;
	float cos_spot_angle;

	vec3 position;
	float inv_spot_attenuation;

	vec3 direction;
	bool has_shadow;
};

layout(set = 0, binding = 3, std140) uniform Lights {
	Light data[MAX_LIGHTS];
}
lights;

#endif // MODE COMPUTE LIGHT

#ifdef MODE_SECOND_BOUNCE

layout(set = 0, binding = 5) uniform texture3D color_texture;

#ifdef MODE_ANISOTROPIC
layout(set = 0, binding = 7) uniform texture3D aniso_pos_texture;
layout(set = 0, binding = 8) uniform texture3D aniso_neg_texture;
#endif // MODE ANISOTROPIC

#endif // MODE_SECOND_BOUNCE

#ifndef MODE_DYNAMIC

layout(push_constant, binding = 0, std430) uniform Params {
	ivec3 limits;
	uint stack_size;

	float emission_scale;
	float propagation;
	float dynamic_range;

	uint light_count;
	uint cell_offset;
	uint cell_count;
	float aniso_strength;
	uint pad;
}
params;

layout(set = 0, binding = 4, std430) buffer Outputs {
	vec4 data[];
}
outputs;

#endif // MODE DYNAMIC

layout(set = 0, binding = 9) uniform texture3D texture_sdf;
layout(set = 0, binding = 10) uniform sampler texture_sampler;

#ifdef MODE_WRITE_TEXTURE

layout(rgba8, set = 0, binding = 5) uniform restrict writeonly image3D color_tex;

#ifdef MODE_ANISOTROPIC

layout(r16ui, set = 0, binding = 6) uniform restrict writeonly uimage3D aniso_pos_tex;
layout(r16ui, set = 0, binding = 7) uniform restrict writeonly uimage3D aniso_neg_tex;

#endif

#endif

#ifdef MODE_DYNAMIC

layout(push_constant, binding = 0, std430) uniform Params {
	ivec3 limits;
	uint light_count; //when not lighting
	ivec3 x_dir;
	float z_base;
	ivec3 y_dir;
	float z_sign;
	ivec3 z_dir;
	float pos_multiplier;
	ivec2 rect_pos;
	ivec2 rect_size;
	ivec2 prev_rect_ofs;
	ivec2 prev_rect_size;
	bool flip_x;
	bool flip_y;
	float dynamic_range;
	bool on_mipmap;
	float propagation;
	float pad[3];
}
params;

#ifdef MODE_DYNAMIC_LIGHTING

layout(rgba8, set = 0, binding = 5) uniform restrict readonly image2D source_albedo;
layout(rgba8, set = 0, binding = 6) uniform restrict readonly image2D source_normal;
layout(rgba8, set = 0, binding = 7) uniform restrict readonly image2D source_orm;
//layout (set=0,binding=8) uniform texture2D source_depth;
layout(rgba16f, set = 0, binding = 11) uniform restrict image2D emission;
layout(r32f, set = 0, binding = 12) uniform restrict image2D depth;

#endif

#ifdef MODE_DYNAMIC_SHRINK

layout(rgba16f, set = 0, binding = 5) uniform restrict readonly image2D source_light;
layout(r32f, set = 0, binding = 6) uniform restrict readonly image2D source_depth;

#ifdef MODE_DYNAMIC_SHRINK_WRITE

layout(rgba16f, set = 0, binding = 7) uniform restrict writeonly image2D light;
layout(r32f, set = 0, binding = 8) uniform restrict writeonly image2D depth;

#endif // MODE_DYNAMIC_SHRINK_WRITE

#ifdef MODE_DYNAMIC_SHRINK_PLOT

layout(rgba8, set = 0, binding = 11) uniform restrict image3D color_texture;

#ifdef MODE_ANISOTROPIC

layout(r16ui, set = 0, binding = 12) uniform restrict writeonly uimage3D aniso_pos_texture;
layout(r16ui, set = 0, binding = 13) uniform restrict writeonly uimage3D aniso_neg_texture;

#endif // MODE ANISOTROPIC

#endif //MODE_DYNAMIC_SHRINK_PLOT

#endif // MODE_DYNAMIC_SHRINK

//layout (rgba8,set=0,binding=5) uniform restrict writeonly image3D color_tex;

#endif // MODE DYNAMIC

#if defined(MODE_COMPUTE_LIGHT) || defined(MODE_DYNAMIC_LIGHTING)

float raymarch(float distance, float distance_adv, vec3 from, vec3 direction) {
	vec3 cell_size = 1.0 / vec3(params.limits);
	float occlusion = 1.0;
	while (distance > 0.5) { //use this to avoid precision errors
		float advance = texture(sampler3D(texture_sdf, texture_sampler), from * cell_size).r * 255.0 - 1.0;
		if (advance < 0.0) {
			occlusion = 0.0;
			break;
		}

		occlusion = min(advance, occlusion);

		advance = max(distance_adv, advance - mod(advance, distance_adv)); //should always advance in multiples of distance_adv

		from += direction * advance;
		distance -= advance;
	}

	return occlusion; //max(0.0,distance);
}

float get_omni_attenuation(float distance, float inv_range, float decay) {
	float nd = distance * inv_range;
	nd *= nd;
	nd *= nd; // nd^4
	nd = max(1.0 - nd, 0.0);
	nd *= nd; // nd^2
	return nd * pow(max(distance, 0.0001), -decay);
}

bool compute_light_vector(uint light, vec3 pos, out float attenuation, out vec3 light_pos) {
	if (lights.data[light].type == LIGHT_TYPE_DIRECTIONAL) {
		light_pos = pos - lights.data[light].direction * length(vec3(params.limits));
		attenuation = 1.0;

	} else {
		light_pos = lights.data[light].position;
		float distance = length(pos - light_pos);
		if (distance >= lights.data[light].radius) {
			return false;
		}

		attenuation = get_omni_attenuation(distance, 1.0 / lights.data[light].radius, lights.data[light].attenuation);

		if (lights.data[light].type == LIGHT_TYPE_SPOT) {
			vec3 rel = normalize(pos - light_pos);
			float cos_spot_angle = lights.data[light].cos_spot_angle;
			float cos_angle = dot(rel, lights.data[light].direction);
			if (cos_angle < cos_spot_angle) {
				return false;
			}

			float scos = max(cos_angle, cos_spot_angle);
			float spot_rim = max(0.0001, (1.0 - scos) / (1.0 - cos_spot_angle));
			attenuation *= 1.0 - pow(spot_rim, lights.data[light].inv_spot_attenuation);
		}
	}

	return true;
}

float get_normal_advance(vec3 p_normal) {
	vec3 normal = p_normal;
	vec3 unorm = abs(normal);

	if ((unorm.x >= unorm.y) && (unorm.x >= unorm.z)) {
		// x code
		unorm = normal.x > 0.0 ? vec3(1.0, 0.0, 0.0) : vec3(-1.0, 0.0, 0.0);
	} else if ((unorm.y > unorm.x) && (unorm.y >= unorm.z)) {
		// y code
		unorm = normal.y > 0.0 ? vec3(0.0, 1.0, 0.0) : vec3(0.0, -1.0, 0.0);
	} else if ((unorm.z > unorm.x) && (unorm.z > unorm.y)) {
		// z code
		unorm = normal.z > 0.0 ? vec3(0.0, 0.0, 1.0) : vec3(0.0, 0.0, -1.0);
	} else {
		// oh-no we messed up code
		// has to be
		unorm = vec3(1.0, 0.0, 0.0);
	}

	return 1.0 / dot(normal, unorm);
}

void clip_segment(vec4 plane, vec3 begin, inout vec3 end) {
	vec3 segment = begin - end;
	float den = dot(plane.xyz, segment);

	//printf("den is %i\n",den);
	if (den < 0.0001) {
		return;
	}

	float dist = (dot(plane.xyz, begin) - plane.w) / den;

	if (dist < 0.0001 || dist > 1.0001) {
		return;
	}

	end = begin + segment * -dist;
}

bool compute_light_at_pos(uint index, vec3 pos, vec3 normal, inout vec3 light, inout vec3 light_dir) {
	float attenuation;
	vec3 light_pos;

	if (!compute_light_vector(index, pos, attenuation, light_pos)) {
		return false;
	}

	light_dir = normalize(pos - light_pos);

	if (attenuation < 0.01 || (length(normal) > 0.2 && dot(normal, light_dir) >= 0)) {
		return false; //not facing the light, or attenuation is near zero
	}

	if (lights.data[index].has_shadow) {
		float distance_adv = get_normal_advance(light_dir);

		vec3 to = pos;
		if (length(normal) > 0.2) {
			to += normal * distance_adv * 0.51;
		} else {
			to -= sign(light_dir) * 0.45; //go near the edge towards the light direction to avoid self occlusion
		}

		//clip
		clip_segment(mix(vec4(-1.0, 0.0, 0.0, 0.0), vec4(1.0, 0.0, 0.0, float(params.limits.x - 1)), bvec4(light_dir.x < 0.0)), to, light_pos);
		clip_segment(mix(vec4(0.0, -1.0, 0.0, 0.0), vec4(0.0, 1.0, 0.0, float(params.limits.y - 1)), bvec4(light_dir.y < 0.0)), to, light_pos);
		clip_segment(mix(vec4(0.0, 0.0, -1.0, 0.0), vec4(0.0, 0.0, 1.0, float(params.limits.z - 1)), bvec4(light_dir.z < 0.0)), to, light_pos);

		float distance = length(to - light_pos);
		if (distance < 0.1) {
			return false; // hit
		}

		distance += distance_adv - mod(distance, distance_adv); //make it reach the center of the box always
		light_pos = to - light_dir * distance;

		//from -= sign(light_dir)*0.45; //go near the edge towards the light direction to avoid self occlusion

		/*float dist = raymarch(distance,distance_adv,light_pos,light_dir);

		if (dist > distance_adv) {
			return false;
		}

		attenuation *= 1.0 - smoothstep(0.1*distance_adv,distance_adv,dist);
		*/

		float occlusion = raymarch(distance, distance_adv, light_pos, light_dir);

		if (occlusion == 0.0) {
			return false;
		}

		attenuation *= occlusion; //1.0 - smoothstep(0.1*distance_adv,distance_adv,dist);
	}

	light = lights.data[index].color * attenuation * lights.data[index].energy;
	return true;
}

#endif // MODE COMPUTE LIGHT

void main() {
#ifndef MODE_DYNAMIC

	uint cell_index = gl_GlobalInvocationID.x;
	if (cell_index >= params.cell_count) {
		return;
	}
	cell_index += params.cell_offset;

	uvec3 posu = uvec3(cell_data.data[cell_index].position & 0x7FF, (cell_data.data[cell_index].position >> 11) & 0x3FF, cell_data.data[cell_index].position >> 21);
	vec4 albedo = unpackUnorm4x8(cell_data.data[cell_index].albedo);

#endif

	/////////////////COMPUTE LIGHT///////////////////////////////

#ifdef MODE_COMPUTE_LIGHT

	vec3 pos = vec3(posu) + vec3(0.5);

	vec3 emission = vec3(uvec3(cell_data.data[cell_index].emission & 0x1ff, (cell_data.data[cell_index].emission >> 9) & 0x1ff, (cell_data.data[cell_index].emission >> 18) & 0x1ff)) * pow(2.0, float(cell_data.data[cell_index].emission >> 27) - 15.0 - 9.0);
	vec3 normal = unpackSnorm4x8(cell_data.data[cell_index].normal).xyz;

#ifdef MODE_ANISOTROPIC
	vec3 accum[6] = vec3[](vec3(0.0), vec3(0.0), vec3(0.0), vec3(0.0), vec3(0.0), vec3(0.0));
	const vec3 accum_dirs[6] = vec3[](vec3(1.0, 0.0, 0.0), vec3(-1.0, 0.0, 0.0), vec3(0.0, 1.0, 0.0), vec3(0.0, -1.0, 0.0), vec3(0.0, 0.0, 1.0), vec3(0.0, 0.0, -1.0));
#else
	vec3 accum = vec3(0.0);
#endif

	for (uint i = 0; i < params.light_count; i++) {
		vec3 light;
		vec3 light_dir;
		if (!compute_light_at_pos(i, pos, normal.xyz, light, light_dir)) {
			continue;
		}

		light *= albedo.rgb;

#ifdef MODE_ANISOTROPIC
		for (uint j = 0; j < 6; j++) {
			accum[j] += max(0.0, dot(accum_dirs[j], -light_dir)) * light;
		}
#else
		if (length(normal) > 0.2) {
			accum += max(0.0, dot(normal, -light_dir)) * light;
		} else {
			//all directions
			accum += light;
		}
#endif
	}

#ifdef MODE_ANISOTROPIC

	for (uint i = 0; i < 6; i++) {
		vec3 light = accum[i];
		if (length(normal) > 0.2) {
			light += max(0.0, dot(accum_dirs[i], -normal)) * emission;
		} else {
			light += emission;
		}

		outputs.data[cell_index * 6 + i] = vec4(light, 0.0);
	}

#else
	outputs.data[cell_index] = vec4(accum + emission, 0.0);

#endif

#endif //MODE_COMPUTE_LIGHT

	/////////////////SECOND BOUNCE///////////////////////////////

#ifdef MODE_SECOND_BOUNCE
	vec3 pos = vec3(posu) + vec3(0.5);
	ivec3 ipos = ivec3(posu);
	vec4 normal = unpackSnorm4x8(cell_data.data[cell_index].normal);

#ifdef MODE_ANISOTROPIC
	vec3 accum[6];
	const vec3 accum_dirs[6] = vec3[](vec3(1.0, 0.0, 0.0), vec3(-1.0, 0.0, 0.0), vec3(0.0, 1.0, 0.0), vec3(0.0, -1.0, 0.0), vec3(0.0, 0.0, 1.0), vec3(0.0, 0.0, -1.0));

	/*vec3 src_color = texelFetch(sampler3D(color_texture,texture_sampler),ipos,0).rgb * params.dynamic_range;
	vec3 src_aniso_pos = texelFetch(sampler3D(aniso_pos_texture,texture_sampler),ipos,0).rgb;
	vec3 src_anisp_neg = texelFetch(sampler3D(anisp_neg_texture,texture_sampler),ipos,0).rgb;
	accum[0]=src_col * src_aniso_pos.x;
	accum[1]=src_col * src_aniso_neg.x;
	accum[2]=src_col * src_aniso_pos.y;
	accum[3]=src_col * src_aniso_neg.y;
	accum[4]=src_col * src_aniso_pos.z;
	accum[5]=src_col * src_aniso_neg.z;*/

	accum[0] = outputs.data[cell_index * 6 + 0].rgb;
	accum[1] = outputs.data[cell_index * 6 + 1].rgb;
	accum[2] = outputs.data[cell_index * 6 + 2].rgb;
	accum[3] = outputs.data[cell_index * 6 + 3].rgb;
	accum[4] = outputs.data[cell_index * 6 + 4].rgb;
	accum[5] = outputs.data[cell_index * 6 + 5].rgb;

#else
	vec3 accum = outputs.data[cell_index].rgb;

#endif

	if (length(normal.xyz) > 0.2) {
		vec3 v0 = abs(normal.z) < 0.999 ? vec3(0.0, 0.0, 1.0) : vec3(0.0, 1.0, 0.0);
		vec3 tangent = normalize(cross(v0, normal.xyz));
		vec3 bitangent = normalize(cross(tangent, normal.xyz));
		mat3 normal_mat = mat3(tangent, bitangent, normal.xyz);

#define MAX_CONE_DIRS 6

		vec3 cone_dirs[MAX_CONE_DIRS] = vec3[](
				vec3(0.0, 0.0, 1.0),
				vec3(0.866025, 0.0, 0.5),
				vec3(0.267617, 0.823639, 0.5),
				vec3(-0.700629, 0.509037, 0.5),
				vec3(-0.700629, -0.509037, 0.5),
				vec3(0.267617, -0.823639, 0.5));

		float cone_weights[MAX_CONE_DIRS] = float[](0.25, 0.15, 0.15, 0.15, 0.15, 0.15);
		float tan_half_angle = 0.577;

		for (int i = 0; i < MAX_CONE_DIRS; i++) {
			vec3 direction = normal_mat * cone_dirs[i];
			vec4 color = vec4(0.0);
			{
				float dist = 1.5;
				float max_distance = length(vec3(params.limits));
				vec3 cell_size = 1.0 / vec3(params.limits);

#ifdef MODE_ANISOTROPIC
				vec3 aniso_normal = mix(direction, normal.xyz, params.aniso_strength);
#endif
				while (dist < max_distance && color.a < 0.95) {
					float diameter = max(1.0, 2.0 * tan_half_angle * dist);
					vec3 uvw_pos = (pos + dist * direction) * cell_size;
					float half_diameter = diameter * 0.5;
					//check if outside, then break
					//if ( any(greaterThan(abs(uvw_pos - 0.5),vec3(0.5f + half_diameter * cell_size)) ) ) {
					//	break;
					//}

					float log2_diameter = log2(diameter);
					vec4 scolor = textureLod(sampler3D(color_texture, texture_sampler), uvw_pos, log2_diameter);
#ifdef MODE_ANISOTROPIC

					vec3 aniso_neg = textureLod(sampler3D(aniso_neg_texture, texture_sampler), uvw_pos, log2_diameter).rgb;
					vec3 aniso_pos = textureLod(sampler3D(aniso_pos_texture, texture_sampler), uvw_pos, log2_diameter).rgb;

					scolor.rgb *= dot(max(vec3(0.0), (aniso_normal * aniso_pos)), vec3(1.0)) + dot(max(vec3(0.0), (-aniso_normal * aniso_neg)), vec3(1.0));
#endif
					float a = (1.0 - color.a);
					color += a * scolor;
					dist += half_diameter;
				}
			}
			color *= cone_weights[i] * vec4(albedo.rgb, 1.0) * params.dynamic_range; //restore range
#ifdef MODE_ANISOTROPIC
			for (uint j = 0; j < 6; j++) {
				accum[j] += max(0.0, dot(accum_dirs[j], direction)) * color.rgb;
			}
#else
			accum += color.rgb;
#endif
		}
	}

#ifdef MODE_ANISOTROPIC

	outputs.data[cell_index * 6 + 0] = vec4(accum[0], 0.0);
	outputs.data[cell_index * 6 + 1] = vec4(accum[1], 0.0);
	outputs.data[cell_index * 6 + 2] = vec4(accum[2], 0.0);
	outputs.data[cell_index * 6 + 3] = vec4(accum[3], 0.0);
	outputs.data[cell_index * 6 + 4] = vec4(accum[4], 0.0);
	outputs.data[cell_index * 6 + 5] = vec4(accum[5], 0.0);
#else
	outputs.data[cell_index] = vec4(accum, 0.0);

#endif

#endif // MODE_SECOND_BOUNCE

	/////////////////UPDATE MIPMAPS///////////////////////////////

#ifdef MODE_UPDATE_MIPMAPS

	{
#ifdef MODE_ANISOTROPIC
		vec3 light_accum[6] = vec3[](vec3(0.0), vec3(0.0), vec3(0.0), vec3(0.0), vec3(0.0), vec3(0.0));
#else
		vec3 light_accum = vec3(0.0);
#endif
		float count = 0.0;
		for (uint i = 0; i < 8; i++) {
			uint child_index = cell_children.data[cell_index].children[i];
			if (child_index == NO_CHILDREN) {
				continue;
			}
#ifdef MODE_ANISOTROPIC
			light_accum[0] += outputs.data[child_index * 6 + 0].rgb;
			light_accum[1] += outputs.data[child_index * 6 + 1].rgb;
			light_accum[2] += outputs.data[child_index * 6 + 2].rgb;
			light_accum[3] += outputs.data[child_index * 6 + 3].rgb;
			light_accum[4] += outputs.data[child_index * 6 + 4].rgb;
			light_accum[5] += outputs.data[child_index * 6 + 5].rgb;

#else
			light_accum += outputs.data[child_index].rgb;

#endif

			count += 1.0;
		}

		float divisor = mix(8.0, count, params.propagation);
#ifdef MODE_ANISOTROPIC
		outputs.data[cell_index * 6 + 0] = vec4(light_accum[0] / divisor, 0.0);
		outputs.data[cell_index * 6 + 1] = vec4(light_accum[1] / divisor, 0.0);
		outputs.data[cell_index * 6 + 2] = vec4(light_accum[2] / divisor, 0.0);
		outputs.data[cell_index * 6 + 3] = vec4(light_accum[3] / divisor, 0.0);
		outputs.data[cell_index * 6 + 4] = vec4(light_accum[4] / divisor, 0.0);
		outputs.data[cell_index * 6 + 5] = vec4(light_accum[5] / divisor, 0.0);

#else
		outputs.data[cell_index] = vec4(light_accum / divisor, 0.0);
#endif
	}
#endif

	///////////////////WRITE TEXTURE/////////////////////////////

#ifdef MODE_WRITE_TEXTURE
	{
#ifdef MODE_ANISOTROPIC
		vec3 accum_total = vec3(0.0);
		accum_total += outputs.data[cell_index * 6 + 0].rgb;
		accum_total += outputs.data[cell_index * 6 + 1].rgb;
		accum_total += outputs.data[cell_index * 6 + 2].rgb;
		accum_total += outputs.data[cell_index * 6 + 3].rgb;
		accum_total += outputs.data[cell_index * 6 + 4].rgb;
		accum_total += outputs.data[cell_index * 6 + 5].rgb;

		float accum_total_energy = max(dot(accum_total, GREY_VEC), 0.00001);
		vec3 iso_positive = vec3(dot(outputs.data[cell_index * 6 + 0].rgb, GREY_VEC), dot(outputs.data[cell_index * 6 + 2].rgb, GREY_VEC), dot(outputs.data[cell_index * 6 + 4].rgb, GREY_VEC)) / vec3(accum_total_energy);
		vec3 iso_negative = vec3(dot(outputs.data[cell_index * 6 + 1].rgb, GREY_VEC), dot(outputs.data[cell_index * 6 + 3].rgb, GREY_VEC), dot(outputs.data[cell_index * 6 + 5].rgb, GREY_VEC)) / vec3(accum_total_energy);

		{
			uint aniso_pos = uint(clamp(iso_positive.b * 31.0, 0.0, 31.0));
			aniso_pos |= uint(clamp(iso_positive.g * 63.0, 0.0, 63.0)) << 5;
			aniso_pos |= uint(clamp(iso_positive.r * 31.0, 0.0, 31.0)) << 11;
			imageStore(aniso_pos_tex, ivec3(posu), uvec4(aniso_pos));
		}

		{
			uint aniso_neg = uint(clamp(iso_negative.b * 31.0, 0.0, 31.0));
			aniso_neg |= uint(clamp(iso_negative.g * 63.0, 0.0, 63.0)) << 5;
			aniso_neg |= uint(clamp(iso_negative.r * 31.0, 0.0, 31.0)) << 11;
			imageStore(aniso_neg_tex, ivec3(posu), uvec4(aniso_neg));
		}

		imageStore(color_tex, ivec3(posu), vec4(accum_total / params.dynamic_range, albedo.a));

#else

		imageStore(color_tex, ivec3(posu), vec4(outputs.data[cell_index].rgb / params.dynamic_range, albedo.a));

#endif
	}
#endif

	///////////////////DYNAMIC LIGHTING/////////////////////////////

#ifdef MODE_DYNAMIC

	ivec2 pos_xy = ivec2(gl_GlobalInvocationID.xy);
	if (any(greaterThanEqual(pos_xy, params.rect_size))) {
		return; //out of bounds
	}

	ivec2 uv_xy = pos_xy;
	if (params.flip_x) {
		uv_xy.x = params.rect_size.x - pos_xy.x - 1;
	}
	if (params.flip_y) {
		uv_xy.y = params.rect_size.y - pos_xy.y - 1;
	}

#ifdef MODE_DYNAMIC_LIGHTING

	{
		float z = params.z_base + imageLoad(depth, uv_xy).x * params.z_sign;

		ivec3 pos = params.x_dir * (params.rect_pos.x + pos_xy.x) + params.y_dir * (params.rect_pos.y + pos_xy.y) + abs(params.z_dir) * int(z);

		vec3 normal = imageLoad(source_normal, uv_xy).xyz * 2.0 - 1.0;
		normal = vec3(params.x_dir) * normal.x * mix(1.0, -1.0, params.flip_x) + vec3(params.y_dir) * normal.y * mix(1.0, -1.0, params.flip_y) - vec3(params.z_dir) * normal.z;

		vec4 albedo = imageLoad(source_albedo, uv_xy);

		//determine the position in space

		vec3 accum = vec3(0.0);
		for (uint i = 0; i < params.light_count; i++) {
			vec3 light;
			vec3 light_dir;
			if (!compute_light_at_pos(i, vec3(pos) * params.pos_multiplier, normal, light, light_dir)) {
				continue;
			}

			light *= albedo.rgb;

			accum += max(0.0, dot(normal, -light_dir)) * light;
		}

		accum += imageLoad(emission, uv_xy).xyz;

		imageStore(emission, uv_xy, vec4(accum, albedo.a));
		imageStore(depth, uv_xy, vec4(z));
	}

#endif // MODE DYNAMIC LIGHTING

#ifdef MODE_DYNAMIC_SHRINK

	{
		vec4 accum = vec4(0.0);
		float accum_z = 0.0;
		float count = 0.0;

		for (int i = 0; i < 4; i++) {
			ivec2 ofs = pos_xy * 2 + ivec2(i & 1, i >> 1) - params.prev_rect_ofs;
			if (any(lessThan(ofs, ivec2(0))) || any(greaterThanEqual(ofs, params.prev_rect_size))) {
				continue;
			}
			if (params.flip_x) {
				ofs.x = params.prev_rect_size.x - ofs.x - 1;
			}
			if (params.flip_y) {
				ofs.y = params.prev_rect_size.y - ofs.y - 1;
			}

			vec4 light = imageLoad(source_light, ofs);
			if (light.a == 0.0) { //ignore empty
				continue;
			}
			accum += light;
			float z = imageLoad(source_depth, ofs).x;
			accum_z += z * 0.5; //shrink half too
			count += 1.0;
		}

		if (params.on_mipmap) {
			accum.rgb /= mix(8.0, count, params.propagation);
			accum.a /= 8.0;
		} else {
			accum /= 4.0;
		}

		if (count == 0.0) {
			accum_z = 0.0; //avoid nan
		} else {
			accum_z /= count;
		}

#ifdef MODE_DYNAMIC_SHRINK_WRITE

		imageStore(light, uv_xy, accum);
		imageStore(depth, uv_xy, vec4(accum_z));
#endif

#ifdef MODE_DYNAMIC_SHRINK_PLOT

		if (accum.a < 0.001) {
			return; //do not blit if alpha is too low
		}

		ivec3 pos = params.x_dir * (params.rect_pos.x + pos_xy.x) + params.y_dir * (params.rect_pos.y + pos_xy.y) + abs(params.z_dir) * int(accum_z);

		float z_frac = fract(accum_z);

		for (int i = 0; i < 2; i++) {
			ivec3 pos3d = pos + abs(params.z_dir) * i;
			if (any(lessThan(pos3d, ivec3(0))) || any(greaterThanEqual(pos3d, params.limits))) {
				//skip if offlimits
				continue;
			}
			vec4 color_blit = accum * (i == 0 ? 1.0 - z_frac : z_frac);
			vec4 color = imageLoad(color_texture, pos3d);
			color.rgb *= params.dynamic_range;

#if 0
			color.rgb = mix(color.rgb,color_blit.rgb,color_blit.a);
			color.a+=color_blit.a;
#else

			float sa = 1.0 - color_blit.a;
			vec4 result;
			result.a = color.a * sa + color_blit.a;
			if (result.a == 0.0) {
				result = vec4(0.0);
			} else {
				result.rgb = (color.rgb * color.a * sa + color_blit.rgb * color_blit.a) / result.a;
				color = result;
			}

#endif
			color.rgb /= params.dynamic_range;
			imageStore(color_texture, pos3d, color);
			//imageStore(color_texture,pos3d,vec4(1,1,1,1));

#ifdef MODE_ANISOTROPIC
			//do not care about anisotropy for dynamic objects, just store full lit in all directions
			imageStore(aniso_pos_texture, pos3d, uvec4(0xFFFF));
			imageStore(aniso_neg_texture, pos3d, uvec4(0xFFFF));

#endif // ANISOTROPIC
		}
#endif // MODE_DYNAMIC_SHRINK_PLOT
	}
#endif

#endif // MODE DYNAMIC
}