summaryrefslogtreecommitdiff
path: root/servers/rendering/renderer_rd/shaders/volumetric_fog_process.glsl
blob: fdbd7d3e35c8ae65153216b86c48ece96e1426fb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
#[compute]

#version 450

#VERSION_DEFINES

/* Do not use subgroups here, seems there is not much advantage and causes glitches
#if defined(has_GL_KHR_shader_subgroup_ballot) && defined(has_GL_KHR_shader_subgroup_arithmetic)
#extension GL_KHR_shader_subgroup_ballot: enable
#extension GL_KHR_shader_subgroup_arithmetic: enable

#define USE_SUBGROUPS
#endif
*/

#ifdef MODE_DENSITY
layout(local_size_x = 4, local_size_y = 4, local_size_z = 4) in;
#else
layout(local_size_x = 8, local_size_y = 8, local_size_z = 1) in;
#endif

#include "cluster_data_inc.glsl"
#include "light_data_inc.glsl"

#define M_PI 3.14159265359

#define DENSITY_SCALE 1024.0

layout(set = 0, binding = 1) uniform texture2D shadow_atlas;
layout(set = 0, binding = 2) uniform texture2D directional_shadow_atlas;

layout(set = 0, binding = 3, std430) restrict readonly buffer OmniLights {
	LightData data[];
}
omni_lights;

layout(set = 0, binding = 4, std430) restrict readonly buffer SpotLights {
	LightData data[];
}
spot_lights;

layout(set = 0, binding = 5, std140) uniform DirectionalLights {
	DirectionalLightData data[MAX_DIRECTIONAL_LIGHT_DATA_STRUCTS];
}
directional_lights;

layout(set = 0, binding = 6, std430) buffer restrict readonly ClusterBuffer {
	uint data[];
}
cluster_buffer;

layout(set = 0, binding = 7) uniform sampler linear_sampler;

#ifdef MODE_DENSITY
layout(rgba16f, set = 0, binding = 8) uniform restrict writeonly image3D density_map;
#endif

#ifdef MODE_FOG
layout(rgba16f, set = 0, binding = 8) uniform restrict readonly image3D density_map;
layout(rgba16f, set = 0, binding = 9) uniform restrict writeonly image3D fog_map;
#endif

#ifdef MODE_COPY
layout(rgba16f, set = 0, binding = 8) uniform restrict readonly image3D source_map;
layout(rgba16f, set = 0, binding = 9) uniform restrict writeonly image3D dest_map;
#endif

#ifdef MODE_FILTER
layout(rgba16f, set = 0, binding = 8) uniform restrict readonly image3D source_map;
layout(rgba16f, set = 0, binding = 9) uniform restrict writeonly image3D dest_map;
#endif

layout(set = 0, binding = 10) uniform sampler shadow_sampler;

#define MAX_VOXEL_GI_INSTANCES 8

struct VoxelGIData {
	mat4 xform; // 64 - 64

	vec3 bounds; // 12 - 76
	float dynamic_range; // 4 - 80

	float bias; // 4 - 84
	float normal_bias; // 4 - 88
	bool blend_ambient; // 4 - 92
	uint mipmaps; // 4 - 96
};

layout(set = 0, binding = 11, std140) uniform VoxelGIs {
	VoxelGIData data[MAX_VOXEL_GI_INSTANCES];
}
voxel_gi_instances;

layout(set = 0, binding = 12) uniform texture3D voxel_gi_textures[MAX_VOXEL_GI_INSTANCES];

layout(set = 0, binding = 13) uniform sampler linear_sampler_with_mipmaps;

#ifdef ENABLE_SDFGI

// SDFGI Integration on set 1
#define SDFGI_MAX_CASCADES 8

struct SDFVoxelGICascadeData {
	vec3 position;
	float to_probe;
	ivec3 probe_world_offset;
	float to_cell; // 1/bounds * grid_size
};

layout(set = 1, binding = 0, std140) uniform SDFGI {
	vec3 grid_size;
	uint max_cascades;

	bool use_occlusion;
	int probe_axis_size;
	float probe_to_uvw;
	float normal_bias;

	vec3 lightprobe_tex_pixel_size;
	float energy;

	vec3 lightprobe_uv_offset;
	float y_mult;

	vec3 occlusion_clamp;
	uint pad3;

	vec3 occlusion_renormalize;
	uint pad4;

	vec3 cascade_probe_size;
	uint pad5;

	SDFVoxelGICascadeData cascades[SDFGI_MAX_CASCADES];
}
sdfgi;

layout(set = 1, binding = 1) uniform texture2DArray sdfgi_ambient_texture;

layout(set = 1, binding = 2) uniform texture3D sdfgi_occlusion_texture;

#endif //SDFGI

layout(set = 0, binding = 14, std140) uniform Params {
	vec2 fog_frustum_size_begin;
	vec2 fog_frustum_size_end;

	float fog_frustum_end;
	float ambient_inject;
	float z_far;
	int filter_axis;

	vec3 ambient_color;
	float sky_contribution;

	ivec3 fog_volume_size;
	uint directional_light_count;

	vec3 base_emission;
	float base_density;

	vec3 base_scattering;
	float phase_g;

	float detail_spread;
	float gi_inject;
	uint max_voxel_gi_instances;
	uint cluster_type_size;

	vec2 screen_size;
	uint cluster_shift;
	uint cluster_width;

	uint max_cluster_element_count_div_32;
	bool use_temporal_reprojection;
	uint temporal_frame;
	float temporal_blend;

	mat3x4 cam_rotation;
	mat4 to_prev_view;

	mat3 radiance_inverse_xform;
}
params;
#ifndef MODE_COPY
layout(set = 0, binding = 15) uniform texture3D prev_density_texture;

#ifdef MOLTENVK_USED
layout(set = 0, binding = 16) buffer density_only_map_buffer {
	uint density_only_map[];
};
layout(set = 0, binding = 17) buffer light_only_map_buffer {
	uint light_only_map[];
};
layout(set = 0, binding = 18) buffer emissive_only_map_buffer {
	uint emissive_only_map[];
};
#else
layout(r32ui, set = 0, binding = 16) uniform uimage3D density_only_map;
layout(r32ui, set = 0, binding = 17) uniform uimage3D light_only_map;
layout(r32ui, set = 0, binding = 18) uniform uimage3D emissive_only_map;
#endif

#ifdef USE_RADIANCE_CUBEMAP_ARRAY
layout(set = 0, binding = 19) uniform textureCubeArray sky_texture;
#else
layout(set = 0, binding = 19) uniform textureCube sky_texture;
#endif
#endif // MODE_COPY

float get_depth_at_pos(float cell_depth_size, int z) {
	float d = float(z) * cell_depth_size + cell_depth_size * 0.5; //center of voxels
	d = pow(d, params.detail_spread);
	return params.fog_frustum_end * d;
}

vec3 hash3f(uvec3 x) {
	x = ((x >> 16) ^ x) * 0x45d9f3b;
	x = ((x >> 16) ^ x) * 0x45d9f3b;
	x = (x >> 16) ^ x;
	return vec3(x & 0xFFFFF) / vec3(float(0xFFFFF));
}

float get_omni_attenuation(float dist, float inv_range, float decay) {
	float nd = dist * inv_range;
	nd *= nd;
	nd *= nd; // nd^4
	nd = max(1.0 - nd, 0.0);
	nd *= nd; // nd^2
	return nd * pow(max(dist, 0.0001), -decay);
}

void cluster_get_item_range(uint p_offset, out uint item_min, out uint item_max, out uint item_from, out uint item_to) {
	uint item_min_max = cluster_buffer.data[p_offset];
	item_min = item_min_max & 0xFFFF;
	item_max = item_min_max >> 16;

	item_from = item_min >> 5;
	item_to = (item_max == 0) ? 0 : ((item_max - 1) >> 5) + 1; //side effect of how it is stored, as item_max 0 means no elements
}

uint cluster_get_range_clip_mask(uint i, uint z_min, uint z_max) {
	int local_min = clamp(int(z_min) - int(i) * 32, 0, 31);
	int mask_width = min(int(z_max) - int(z_min), 32 - local_min);
	return bitfieldInsert(uint(0), uint(0xFFFFFFFF), local_min, mask_width);
}

float henyey_greenstein(float cos_theta, float g) {
	const float k = 0.0795774715459; // 1 / (4 * PI)
	return k * (1.0 - g * g) / (pow(1.0 + g * g - 2.0 * g * cos_theta, 1.5));
}

#define TEMPORAL_FRAMES 16

const vec3 halton_map[TEMPORAL_FRAMES] = vec3[](
		vec3(0.5, 0.33333333, 0.2),
		vec3(0.25, 0.66666667, 0.4),
		vec3(0.75, 0.11111111, 0.6),
		vec3(0.125, 0.44444444, 0.8),
		vec3(0.625, 0.77777778, 0.04),
		vec3(0.375, 0.22222222, 0.24),
		vec3(0.875, 0.55555556, 0.44),
		vec3(0.0625, 0.88888889, 0.64),
		vec3(0.5625, 0.03703704, 0.84),
		vec3(0.3125, 0.37037037, 0.08),
		vec3(0.8125, 0.7037037, 0.28),
		vec3(0.1875, 0.14814815, 0.48),
		vec3(0.6875, 0.48148148, 0.68),
		vec3(0.4375, 0.81481481, 0.88),
		vec3(0.9375, 0.25925926, 0.12),
		vec3(0.03125, 0.59259259, 0.32));

void main() {
	vec3 fog_cell_size = 1.0 / vec3(params.fog_volume_size);

#ifdef MODE_DENSITY

	ivec3 pos = ivec3(gl_GlobalInvocationID.xyz);
	if (any(greaterThanEqual(pos, params.fog_volume_size))) {
		return; //do not compute
	}
#ifdef MOLTENVK_USED
	uint lpos = pos.z * params.fog_volume_size.x * params.fog_volume_size.y + pos.y * params.fog_volume_size.x + pos.x;
#endif

	vec3 posf = vec3(pos);

	//posf += mix(vec3(0.0),vec3(1.0),0.3) * hash3f(uvec3(pos)) * 2.0 - 1.0;

	vec3 fog_unit_pos = posf * fog_cell_size + fog_cell_size * 0.5; //center of voxels

	uvec2 screen_pos = uvec2(fog_unit_pos.xy * params.screen_size);
	uvec2 cluster_pos = screen_pos >> params.cluster_shift;
	uint cluster_offset = (params.cluster_width * cluster_pos.y + cluster_pos.x) * (params.max_cluster_element_count_div_32 + 32);
	//positions in screen are too spread apart, no hopes for optimizing with subgroups

	fog_unit_pos.z = pow(fog_unit_pos.z, params.detail_spread);

	vec3 view_pos;
	view_pos.xy = (fog_unit_pos.xy * 2.0 - 1.0) * mix(params.fog_frustum_size_begin, params.fog_frustum_size_end, vec2(fog_unit_pos.z));
	view_pos.z = -params.fog_frustum_end * fog_unit_pos.z;
	view_pos.y = -view_pos.y;

	vec4 reprojected_density = vec4(0.0);
	float reproject_amount = 0.0;

	if (params.use_temporal_reprojection) {
		vec3 prev_view = (params.to_prev_view * vec4(view_pos, 1.0)).xyz;
		//undo transform into prev view
		prev_view.y = -prev_view.y;
		//z back to unit size
		prev_view.z /= -params.fog_frustum_end;
		//xy back to unit size
		prev_view.xy /= mix(params.fog_frustum_size_begin, params.fog_frustum_size_end, vec2(prev_view.z));
		prev_view.xy = prev_view.xy * 0.5 + 0.5;
		//z back to unspread value
		prev_view.z = pow(prev_view.z, 1.0 / params.detail_spread);

		if (all(greaterThan(prev_view, vec3(0.0))) && all(lessThan(prev_view, vec3(1.0)))) {
			//reprojectinon fits

			reprojected_density = textureLod(sampler3D(prev_density_texture, linear_sampler), prev_view, 0.0);
			reproject_amount = params.temporal_blend;

			// Since we can reproject, now we must jitter the current view pos.
			// This is done here because cells that can't reproject should not jitter.

			fog_unit_pos = posf * fog_cell_size + fog_cell_size * halton_map[params.temporal_frame]; //center of voxels, offset by halton table

			screen_pos = uvec2(fog_unit_pos.xy * params.screen_size);
			cluster_pos = screen_pos >> params.cluster_shift;
			cluster_offset = (params.cluster_width * cluster_pos.y + cluster_pos.x) * (params.max_cluster_element_count_div_32 + 32);
			//positions in screen are too spread apart, no hopes for optimizing with subgroups

			fog_unit_pos.z = pow(fog_unit_pos.z, params.detail_spread);

			view_pos.xy = (fog_unit_pos.xy * 2.0 - 1.0) * mix(params.fog_frustum_size_begin, params.fog_frustum_size_end, vec2(fog_unit_pos.z));
			view_pos.z = -params.fog_frustum_end * fog_unit_pos.z;
			view_pos.y = -view_pos.y;
		}
	}

	uint cluster_z = uint(clamp((abs(view_pos.z) / params.z_far) * 32.0, 0.0, 31.0));

	vec3 total_light = vec3(0.0);

	float total_density = params.base_density;
#ifdef MOLTENVK_USED
	uint local_density = density_only_map[lpos];
#else
	uint local_density = imageLoad(density_only_map, pos).x;
#endif

	total_density += float(int(local_density)) / DENSITY_SCALE;
	total_density = max(0.0, total_density);

#ifdef MOLTENVK_USED
	uint scattering_u = light_only_map[lpos];
#else
	uint scattering_u = imageLoad(light_only_map, pos).x;
#endif
	vec3 scattering = vec3(scattering_u >> 21, (scattering_u << 11) >> 21, scattering_u % 1024) / vec3(2047.0, 2047.0, 1023.0);
	scattering += params.base_scattering * params.base_density;

#ifdef MOLTENVK_USED
	uint emission_u = emissive_only_map[lpos];
#else
	uint emission_u = imageLoad(emissive_only_map, pos).x;
#endif
	vec3 emission = vec3(emission_u >> 21, (emission_u << 11) >> 21, emission_u % 1024) / vec3(511.0, 511.0, 255.0);
	emission += params.base_emission * params.base_density;

	float cell_depth_size = abs(view_pos.z - get_depth_at_pos(fog_cell_size.z, pos.z + 1));
	//compute directional lights

	if (total_density > 0.001) {
		for (uint i = 0; i < params.directional_light_count; i++) {
			vec3 shadow_attenuation = vec3(1.0);

			if (directional_lights.data[i].shadow_enabled) {
				float depth_z = -view_pos.z;

				vec4 pssm_coord;
				vec3 light_dir = directional_lights.data[i].direction;
				vec4 v = vec4(view_pos, 1.0);
				float z_range;

				if (depth_z < directional_lights.data[i].shadow_split_offsets.x) {
					pssm_coord = (directional_lights.data[i].shadow_matrix1 * v);
					pssm_coord /= pssm_coord.w;
					z_range = directional_lights.data[i].shadow_z_range.x;

				} else if (depth_z < directional_lights.data[i].shadow_split_offsets.y) {
					pssm_coord = (directional_lights.data[i].shadow_matrix2 * v);
					pssm_coord /= pssm_coord.w;
					z_range = directional_lights.data[i].shadow_z_range.y;

				} else if (depth_z < directional_lights.data[i].shadow_split_offsets.z) {
					pssm_coord = (directional_lights.data[i].shadow_matrix3 * v);
					pssm_coord /= pssm_coord.w;
					z_range = directional_lights.data[i].shadow_z_range.z;

				} else {
					pssm_coord = (directional_lights.data[i].shadow_matrix4 * v);
					pssm_coord /= pssm_coord.w;
					z_range = directional_lights.data[i].shadow_z_range.w;
				}

				float depth = texture(sampler2D(directional_shadow_atlas, linear_sampler), pssm_coord.xy).r;
				float shadow = exp(min(0.0, (depth - pssm_coord.z)) * z_range * directional_lights.data[i].shadow_volumetric_fog_fade);

				shadow = mix(shadow, 1.0, smoothstep(directional_lights.data[i].fade_from, directional_lights.data[i].fade_to, view_pos.z)); //done with negative values for performance

				shadow_attenuation = mix(vec3(0.0), vec3(1.0), shadow);
			}

			total_light += shadow_attenuation * directional_lights.data[i].color * directional_lights.data[i].energy * henyey_greenstein(dot(normalize(view_pos), normalize(directional_lights.data[i].direction)), params.phase_g);
		}

		// Compute light from sky
		if (params.ambient_inject > 0.0) {
			vec3 isotropic = vec3(0.0);
			vec3 anisotropic = vec3(0.0);
			if (params.sky_contribution > 0.0) {
				float mip_bias = 2.0 + total_density * (MAX_SKY_LOD - 2.0); // Not physically based, but looks nice
				vec3 scatter_direction = (params.radiance_inverse_xform * normalize(view_pos)) * sign(params.phase_g);
#ifdef USE_RADIANCE_CUBEMAP_ARRAY
				isotropic = texture(samplerCubeArray(sky_texture, linear_sampler_with_mipmaps), vec4(0.0, 1.0, 0.0, mip_bias)).rgb;
				anisotropic = texture(samplerCubeArray(sky_texture, linear_sampler_with_mipmaps), vec4(scatter_direction, mip_bias)).rgb;
#else
				isotropic = textureLod(samplerCube(sky_texture, linear_sampler_with_mipmaps), vec3(0.0, 1.0, 0.0), mip_bias).rgb;
				anisotropic = textureLod(samplerCube(sky_texture, linear_sampler_with_mipmaps), vec3(scatter_direction), mip_bias).rgb;
#endif //USE_RADIANCE_CUBEMAP_ARRAY
			}

			total_light += mix(params.ambient_color, mix(isotropic, anisotropic, abs(params.phase_g)), params.sky_contribution) * params.ambient_inject;
		}

		//compute lights from cluster

		{ //omni lights

			uint cluster_omni_offset = cluster_offset;

			uint item_min;
			uint item_max;
			uint item_from;
			uint item_to;

			cluster_get_item_range(cluster_omni_offset + params.max_cluster_element_count_div_32 + cluster_z, item_min, item_max, item_from, item_to);

#ifdef USE_SUBGROUPS
			item_from = subgroupBroadcastFirst(subgroupMin(item_from));
			item_to = subgroupBroadcastFirst(subgroupMax(item_to));
#endif

			for (uint i = item_from; i < item_to; i++) {
				uint mask = cluster_buffer.data[cluster_omni_offset + i];
				mask &= cluster_get_range_clip_mask(i, item_min, item_max);
#ifdef USE_SUBGROUPS
				uint merged_mask = subgroupBroadcastFirst(subgroupOr(mask));
#else
				uint merged_mask = mask;
#endif

				while (merged_mask != 0) {
					uint bit = findMSB(merged_mask);
					merged_mask &= ~(1 << bit);
#ifdef USE_SUBGROUPS
					if (((1 << bit) & mask) == 0) { //do not process if not originally here
						continue;
					}
#endif
					uint light_index = 32 * i + bit;

					//if (!bool(omni_omni_lights.data[light_index].mask & draw_call.layer_mask)) {
					//	continue; //not masked
					//}

					vec3 light_pos = omni_lights.data[light_index].position;
					float d = distance(omni_lights.data[light_index].position, view_pos);
					float shadow_attenuation = 1.0;

					if (d * omni_lights.data[light_index].inv_radius < 1.0) {
						float attenuation = get_omni_attenuation(d, omni_lights.data[light_index].inv_radius, omni_lights.data[light_index].attenuation);

						vec3 light = omni_lights.data[light_index].color;

						if (omni_lights.data[light_index].shadow_enabled) {
							//has shadow
							vec4 uv_rect = omni_lights.data[light_index].atlas_rect;
							vec2 flip_offset = omni_lights.data[light_index].direction.xy;

							vec3 local_vert = (omni_lights.data[light_index].shadow_matrix * vec4(view_pos, 1.0)).xyz;

							float shadow_len = length(local_vert); //need to remember shadow len from here
							vec3 shadow_sample = normalize(local_vert);

							if (shadow_sample.z >= 0.0) {
								uv_rect.xy += flip_offset;
							}

							shadow_sample.z = 1.0 + abs(shadow_sample.z);
							vec3 pos = vec3(shadow_sample.xy / shadow_sample.z, shadow_len - omni_lights.data[light_index].shadow_bias);
							pos.z *= omni_lights.data[light_index].inv_radius;

							pos.xy = pos.xy * 0.5 + 0.5;
							pos.xy = uv_rect.xy + pos.xy * uv_rect.zw;

							float depth = texture(sampler2D(shadow_atlas, linear_sampler), pos.xy).r;

							shadow_attenuation = exp(min(0.0, (depth - pos.z)) / omni_lights.data[light_index].inv_radius * omni_lights.data[light_index].shadow_volumetric_fog_fade);
						}
						total_light += light * attenuation * shadow_attenuation * henyey_greenstein(dot(normalize(light_pos - view_pos), normalize(view_pos)), params.phase_g);
					}
				}
			}
		}

		{ //spot lights

			uint cluster_spot_offset = cluster_offset + params.cluster_type_size;

			uint item_min;
			uint item_max;
			uint item_from;
			uint item_to;

			cluster_get_item_range(cluster_spot_offset + params.max_cluster_element_count_div_32 + cluster_z, item_min, item_max, item_from, item_to);

#ifdef USE_SUBGROUPS
			item_from = subgroupBroadcastFirst(subgroupMin(item_from));
			item_to = subgroupBroadcastFirst(subgroupMax(item_to));
#endif

			for (uint i = item_from; i < item_to; i++) {
				uint mask = cluster_buffer.data[cluster_spot_offset + i];
				mask &= cluster_get_range_clip_mask(i, item_min, item_max);
#ifdef USE_SUBGROUPS
				uint merged_mask = subgroupBroadcastFirst(subgroupOr(mask));
#else
				uint merged_mask = mask;
#endif

				while (merged_mask != 0) {
					uint bit = findMSB(merged_mask);
					merged_mask &= ~(1 << bit);
#ifdef USE_SUBGROUPS
					if (((1 << bit) & mask) == 0) { //do not process if not originally here
						continue;
					}
#endif

					//if (!bool(omni_lights.data[light_index].mask & draw_call.layer_mask)) {
					//	continue; //not masked
					//}

					uint light_index = 32 * i + bit;

					vec3 light_pos = spot_lights.data[light_index].position;
					vec3 light_rel_vec = spot_lights.data[light_index].position - view_pos;
					float d = length(light_rel_vec);
					float shadow_attenuation = 1.0;

					if (d * spot_lights.data[light_index].inv_radius < 1.0) {
						float attenuation = get_omni_attenuation(d, spot_lights.data[light_index].inv_radius, spot_lights.data[light_index].attenuation);

						vec3 spot_dir = spot_lights.data[light_index].direction;
						float scos = max(dot(-normalize(light_rel_vec), spot_dir), spot_lights.data[light_index].cone_angle);
						float spot_rim = max(0.0001, (1.0 - scos) / (1.0 - spot_lights.data[light_index].cone_angle));
						attenuation *= 1.0 - pow(spot_rim, spot_lights.data[light_index].cone_attenuation);

						vec3 light = spot_lights.data[light_index].color;

						if (spot_lights.data[light_index].shadow_enabled) {
							//has shadow
							vec4 uv_rect = spot_lights.data[light_index].atlas_rect;
							vec2 flip_offset = spot_lights.data[light_index].direction.xy;

							vec3 local_vert = (spot_lights.data[light_index].shadow_matrix * vec4(view_pos, 1.0)).xyz;

							float shadow_len = length(local_vert); //need to remember shadow len from here
							vec3 shadow_sample = normalize(local_vert);

							if (shadow_sample.z >= 0.0) {
								uv_rect.xy += flip_offset;
							}

							shadow_sample.z = 1.0 + abs(shadow_sample.z);
							vec3 pos = vec3(shadow_sample.xy / shadow_sample.z, shadow_len - spot_lights.data[light_index].shadow_bias);
							pos.z *= spot_lights.data[light_index].inv_radius;

							pos.xy = pos.xy * 0.5 + 0.5;
							pos.xy = uv_rect.xy + pos.xy * uv_rect.zw;

							float depth = texture(sampler2D(shadow_atlas, linear_sampler), pos.xy).r;

							shadow_attenuation = exp(min(0.0, (depth - pos.z)) / spot_lights.data[light_index].inv_radius * spot_lights.data[light_index].shadow_volumetric_fog_fade);
						}
						total_light += light * attenuation * shadow_attenuation * henyey_greenstein(dot(normalize(light_rel_vec), normalize(view_pos)), params.phase_g);
					}
				}
			}
		}

		vec3 world_pos = mat3(params.cam_rotation) * view_pos;

		for (uint i = 0; i < params.max_voxel_gi_instances; i++) {
			vec3 position = (voxel_gi_instances.data[i].xform * vec4(world_pos, 1.0)).xyz;

			//this causes corrupted pixels, i have no idea why..
			if (all(bvec2(all(greaterThanEqual(position, vec3(0.0))), all(lessThan(position, voxel_gi_instances.data[i].bounds))))) {
				position /= voxel_gi_instances.data[i].bounds;

				vec4 light = vec4(0.0);
				for (uint j = 0; j < voxel_gi_instances.data[i].mipmaps; j++) {
					vec4 slight = textureLod(sampler3D(voxel_gi_textures[i], linear_sampler_with_mipmaps), position, float(j));
					float a = (1.0 - light.a);
					light += a * slight;
				}

				light.rgb *= voxel_gi_instances.data[i].dynamic_range * params.gi_inject;

				total_light += light.rgb;
			}
		}

		//sdfgi
#ifdef ENABLE_SDFGI

		{
			float blend = -1.0;
			vec3 ambient_total = vec3(0.0);

			for (uint i = 0; i < sdfgi.max_cascades; i++) {
				vec3 cascade_pos = (world_pos - sdfgi.cascades[i].position) * sdfgi.cascades[i].to_probe;

				if (any(lessThan(cascade_pos, vec3(0.0))) || any(greaterThanEqual(cascade_pos, sdfgi.cascade_probe_size))) {
					continue; //skip cascade
				}

				vec3 base_pos = floor(cascade_pos);
				ivec3 probe_base_pos = ivec3(base_pos);

				vec4 ambient_accum = vec4(0.0);

				ivec3 tex_pos = ivec3(probe_base_pos.xy, int(i));
				tex_pos.x += probe_base_pos.z * sdfgi.probe_axis_size;

				for (uint j = 0; j < 8; j++) {
					ivec3 offset = (ivec3(j) >> ivec3(0, 1, 2)) & ivec3(1, 1, 1);
					ivec3 probe_posi = probe_base_pos;
					probe_posi += offset;

					// Compute weight

					vec3 probe_pos = vec3(probe_posi);
					vec3 probe_to_pos = cascade_pos - probe_pos;

					vec3 trilinear = vec3(1.0) - abs(probe_to_pos);
					float weight = trilinear.x * trilinear.y * trilinear.z;

					// Compute lightprobe occlusion

					if (sdfgi.use_occlusion) {
						ivec3 occ_indexv = abs((sdfgi.cascades[i].probe_world_offset + probe_posi) & ivec3(1, 1, 1)) * ivec3(1, 2, 4);
						vec4 occ_mask = mix(vec4(0.0), vec4(1.0), equal(ivec4(occ_indexv.x | occ_indexv.y), ivec4(0, 1, 2, 3)));

						vec3 occ_pos = clamp(cascade_pos, probe_pos - sdfgi.occlusion_clamp, probe_pos + sdfgi.occlusion_clamp) * sdfgi.probe_to_uvw;
						occ_pos.z += float(i);
						if (occ_indexv.z != 0) { //z bit is on, means index is >=4, so make it switch to the other half of textures
							occ_pos.x += 1.0;
						}

						occ_pos *= sdfgi.occlusion_renormalize;
						float occlusion = dot(textureLod(sampler3D(sdfgi_occlusion_texture, linear_sampler), occ_pos, 0.0), occ_mask);

						weight *= max(occlusion, 0.01);
					}

					// Compute ambient texture position

					ivec3 uvw = tex_pos;
					uvw.xy += offset.xy;
					uvw.x += offset.z * sdfgi.probe_axis_size;

					vec3 ambient = texelFetch(sampler2DArray(sdfgi_ambient_texture, linear_sampler), uvw, 0).rgb;

					ambient_accum.rgb += ambient * weight;
					ambient_accum.a += weight;
				}

				if (ambient_accum.a > 0) {
					ambient_accum.rgb /= ambient_accum.a;
				}
				ambient_total = ambient_accum.rgb;
				break;
			}

			total_light += ambient_total * params.gi_inject;
		}

#endif
	}

	vec4 final_density = vec4(total_light * scattering + emission, total_density);

	final_density = mix(final_density, reprojected_density, reproject_amount);

	imageStore(density_map, pos, final_density);
#ifdef MOLTENVK_USED
	density_only_map[lpos] = 0;
	light_only_map[lpos] = 0;
	emissive_only_map[lpos] = 0;
#else
	imageStore(density_only_map, pos, uvec4(0));
	imageStore(light_only_map, pos, uvec4(0));
	imageStore(emissive_only_map, pos, uvec4(0));
#endif
#endif

#ifdef MODE_FOG

	ivec3 pos = ivec3(gl_GlobalInvocationID.xy, 0);

	if (any(greaterThanEqual(pos, params.fog_volume_size))) {
		return; //do not compute
	}

	vec4 fog_accum = vec4(0.0, 0.0, 0.0, 1.0);
	float prev_z = 0.0;

	for (int i = 0; i < params.fog_volume_size.z; i++) {
		//compute fog position
		ivec3 fog_pos = pos + ivec3(0, 0, i);
		//get fog value
		vec4 fog = imageLoad(density_map, fog_pos);

		//get depth at cell pos
		float z = get_depth_at_pos(fog_cell_size.z, i);
		//get distance from previous pos
		float d = abs(prev_z - z);
		//compute transmittance using beer's law
		float transmittance = exp(-d * fog.a);

		fog_accum.rgb += ((fog.rgb - fog.rgb * transmittance) / max(fog.a, 0.00001)) * fog_accum.a;
		fog_accum.a *= transmittance;

		prev_z = z;

		imageStore(fog_map, fog_pos, vec4(fog_accum.rgb, 1.0 - fog_accum.a));
	}

#endif

#ifdef MODE_FILTER

	ivec3 pos = ivec3(gl_GlobalInvocationID.xyz);

	const float gauss[7] = float[](0.071303, 0.131514, 0.189879, 0.214607, 0.189879, 0.131514, 0.071303);

	const ivec3 filter_dir[3] = ivec3[](ivec3(1, 0, 0), ivec3(0, 1, 0), ivec3(0, 0, 1));
	ivec3 offset = filter_dir[params.filter_axis];

	vec4 accum = vec4(0.0);
	for (int i = -3; i <= 3; i++) {
		accum += imageLoad(source_map, clamp(pos + offset * i, ivec3(0), params.fog_volume_size - ivec3(1))) * gauss[i + 3];
	}

	imageStore(dest_map, pos, accum);

#endif
#ifdef MODE_COPY
	ivec3 pos = ivec3(gl_GlobalInvocationID.xyz);
	if (any(greaterThanEqual(pos, params.fog_volume_size))) {
		return; //do not compute
	}

	imageStore(dest_map, pos, imageLoad(source_map, pos));

#endif
}