1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
|
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Copyright (c) 2016, Intel Corporation
// Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
// documentation files (the "Software"), to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to
// permit persons to whom the Software is furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included in all copies or substantial portions of
// the Software.
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
// THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
// TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// File changes (yyyy-mm-dd)
// 2016-09-07: filip.strugar@intel.com: first commit
// 2020-12-05: clayjohn: convert to Vulkan and Godot
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
#[compute]
#version 450
#VERSION_DEFINES
layout(local_size_x = 8, local_size_y = 8, local_size_z = 1) in;
layout(push_constant, binding = 1, std430) uniform Params {
vec2 pixel_size;
float z_far;
float z_near;
bool orthogonal;
float radius_sq;
uvec2 pad;
}
params;
layout(set = 0, binding = 0) uniform sampler2D source_depth;
layout(r16f, set = 1, binding = 0) uniform restrict writeonly image2DArray dest_image0; //rename
#ifdef GENERATE_MIPS
layout(r16f, set = 2, binding = 0) uniform restrict writeonly image2DArray dest_image1;
layout(r16f, set = 2, binding = 1) uniform restrict writeonly image2DArray dest_image2;
layout(r16f, set = 2, binding = 2) uniform restrict writeonly image2DArray dest_image3;
#endif
vec4 screen_space_to_view_space_depth(vec4 p_depth) {
if (params.orthogonal) {
vec4 depth = p_depth * 2.0 - 1.0;
return ((depth + (params.z_far + params.z_near) / (params.z_far - params.z_near)) * (params.z_far - params.z_near)) / 2.0;
}
float depth_linearize_mul = params.z_near;
float depth_linearize_add = params.z_far;
// Optimised version of "-cameraClipNear / (cameraClipFar - projDepth * (cameraClipFar - cameraClipNear)) * cameraClipFar"
// Set your depth_linearize_mul and depth_linearize_add to:
// depth_linearize_mul = ( cameraClipFar * cameraClipNear) / ( cameraClipFar - cameraClipNear );
// depth_linearize_add = cameraClipFar / ( cameraClipFar - cameraClipNear );
return depth_linearize_mul / (depth_linearize_add - p_depth);
}
float screen_space_to_view_space_depth(float p_depth) {
if (params.orthogonal) {
float depth = p_depth * 2.0 - 1.0;
return ((depth + (params.z_far + params.z_near) / (params.z_far - params.z_near)) * (params.z_far - params.z_near)) / (2.0 * params.z_far);
}
float depth_linearize_mul = params.z_near;
float depth_linearize_add = params.z_far;
return depth_linearize_mul / (depth_linearize_add - p_depth);
}
#ifdef GENERATE_MIPS
shared float depth_buffer[4][8][8];
float mip_smart_average(vec4 p_depths) {
float closest = min(min(p_depths.x, p_depths.y), min(p_depths.z, p_depths.w));
float fallof_sq = -1.0f / params.radius_sq;
vec4 dists = p_depths - closest.xxxx;
vec4 weights = clamp(dists * dists * fallof_sq + 1.0, 0.0, 1.0);
return dot(weights, p_depths) / dot(weights, vec4(1.0, 1.0, 1.0, 1.0));
}
void prepare_depths_and_mips(vec4 p_samples, uvec2 p_output_coord, uvec2 p_gtid) {
p_samples = screen_space_to_view_space_depth(p_samples);
depth_buffer[0][p_gtid.x][p_gtid.y] = p_samples.w;
depth_buffer[1][p_gtid.x][p_gtid.y] = p_samples.z;
depth_buffer[2][p_gtid.x][p_gtid.y] = p_samples.x;
depth_buffer[3][p_gtid.x][p_gtid.y] = p_samples.y;
imageStore(dest_image0, ivec3(p_output_coord.x, p_output_coord.y, 0), vec4(p_samples.w));
imageStore(dest_image0, ivec3(p_output_coord.x, p_output_coord.y, 1), vec4(p_samples.z));
imageStore(dest_image0, ivec3(p_output_coord.x, p_output_coord.y, 2), vec4(p_samples.x));
imageStore(dest_image0, ivec3(p_output_coord.x, p_output_coord.y, 3), vec4(p_samples.y));
uint depth_array_index = 2 * (p_gtid.y % 2) + (p_gtid.x % 2);
uvec2 depth_array_offset = ivec2(p_gtid.x % 2, p_gtid.y % 2);
ivec2 buffer_coord = ivec2(p_gtid) - ivec2(depth_array_offset);
p_output_coord /= 2;
groupMemoryBarrier();
barrier();
// if (still_alive) <-- all threads alive here
{
float sample_00 = depth_buffer[depth_array_index][buffer_coord.x + 0][buffer_coord.y + 0];
float sample_01 = depth_buffer[depth_array_index][buffer_coord.x + 0][buffer_coord.y + 1];
float sample_10 = depth_buffer[depth_array_index][buffer_coord.x + 1][buffer_coord.y + 0];
float sample_11 = depth_buffer[depth_array_index][buffer_coord.x + 1][buffer_coord.y + 1];
float avg = mip_smart_average(vec4(sample_00, sample_01, sample_10, sample_11));
imageStore(dest_image1, ivec3(p_output_coord.x, p_output_coord.y, depth_array_index), vec4(avg));
depth_buffer[depth_array_index][buffer_coord.x][buffer_coord.y] = avg;
}
bool still_alive = p_gtid.x % 4 == depth_array_offset.x && p_gtid.y % 4 == depth_array_offset.y;
p_output_coord /= 2;
groupMemoryBarrier();
barrier();
if (still_alive) {
float sample_00 = depth_buffer[depth_array_index][buffer_coord.x + 0][buffer_coord.y + 0];
float sample_01 = depth_buffer[depth_array_index][buffer_coord.x + 0][buffer_coord.y + 2];
float sample_10 = depth_buffer[depth_array_index][buffer_coord.x + 2][buffer_coord.y + 0];
float sample_11 = depth_buffer[depth_array_index][buffer_coord.x + 2][buffer_coord.y + 2];
float avg = mip_smart_average(vec4(sample_00, sample_01, sample_10, sample_11));
imageStore(dest_image2, ivec3(p_output_coord.x, p_output_coord.y, depth_array_index), vec4(avg));
depth_buffer[depth_array_index][buffer_coord.x][buffer_coord.y] = avg;
}
still_alive = p_gtid.x % 8 == depth_array_offset.x && depth_array_offset.y % 8 == depth_array_offset.y;
p_output_coord /= 2;
groupMemoryBarrier();
barrier();
if (still_alive) {
float sample_00 = depth_buffer[depth_array_index][buffer_coord.x + 0][buffer_coord.y + 0];
float sample_01 = depth_buffer[depth_array_index][buffer_coord.x + 0][buffer_coord.y + 4];
float sample_10 = depth_buffer[depth_array_index][buffer_coord.x + 4][buffer_coord.y + 0];
float sample_11 = depth_buffer[depth_array_index][buffer_coord.x + 4][buffer_coord.y + 4];
float avg = mip_smart_average(vec4(sample_00, sample_01, sample_10, sample_11));
imageStore(dest_image3, ivec3(p_output_coord.x, p_output_coord.y, depth_array_index), vec4(avg));
}
}
#else
#ifndef USE_HALF_BUFFERS
void prepare_depths(vec4 p_samples, uvec2 p_tid) {
p_samples = screen_space_to_view_space_depth(p_samples);
imageStore(dest_image0, ivec3(p_tid, 0), vec4(p_samples.w));
imageStore(dest_image0, ivec3(p_tid, 1), vec4(p_samples.z));
imageStore(dest_image0, ivec3(p_tid, 2), vec4(p_samples.x));
imageStore(dest_image0, ivec3(p_tid, 3), vec4(p_samples.y));
}
#endif
#endif
void main() {
#ifdef USE_HALF_BUFFERS
#ifdef USE_HALF_SIZE
float sample_00 = texelFetch(source_depth, ivec2(4 * gl_GlobalInvocationID.x + 0, 4 * gl_GlobalInvocationID.y + 0), 0).x;
float sample_11 = texelFetch(source_depth, ivec2(4 * gl_GlobalInvocationID.x + 2, 4 * gl_GlobalInvocationID.y + 2), 0).x;
#else
float sample_00 = texelFetch(source_depth, ivec2(2 * gl_GlobalInvocationID.x + 0, 2 * gl_GlobalInvocationID.y + 0), 0).x;
float sample_11 = texelFetch(source_depth, ivec2(2 * gl_GlobalInvocationID.x + 1, 2 * gl_GlobalInvocationID.y + 1), 0).x;
#endif
sample_00 = screen_space_to_view_space_depth(sample_00);
sample_11 = screen_space_to_view_space_depth(sample_11);
imageStore(dest_image0, ivec3(gl_GlobalInvocationID.xy, 0), vec4(sample_00));
imageStore(dest_image0, ivec3(gl_GlobalInvocationID.xy, 3), vec4(sample_11));
#else //!USE_HALF_BUFFERS
#ifdef USE_HALF_SIZE
ivec2 depth_buffer_coord = 4 * ivec2(gl_GlobalInvocationID.xy);
ivec2 output_coord = ivec2(gl_GlobalInvocationID);
vec2 uv = (vec2(depth_buffer_coord) + 0.5f) * params.pixel_size;
vec4 samples;
samples.x = textureLodOffset(source_depth, uv, 0, ivec2(0, 2)).x;
samples.y = textureLodOffset(source_depth, uv, 0, ivec2(2, 2)).x;
samples.z = textureLodOffset(source_depth, uv, 0, ivec2(2, 0)).x;
samples.w = textureLodOffset(source_depth, uv, 0, ivec2(0, 0)).x;
#else
ivec2 depth_buffer_coord = 2 * ivec2(gl_GlobalInvocationID.xy);
ivec2 output_coord = ivec2(gl_GlobalInvocationID);
vec2 uv = (vec2(depth_buffer_coord) + 0.5f) * params.pixel_size;
vec4 samples = textureGather(source_depth, uv);
#endif
#ifdef GENERATE_MIPS
prepare_depths_and_mips(samples, output_coord, gl_LocalInvocationID.xy);
#else
prepare_depths(samples, gl_GlobalInvocationID.xy);
#endif
#endif
}
|