1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
|
#[vertex]
#version 450
#VERSION_DEFINES
#define MAX_VIEWS 2
#if defined(USE_MULTIVIEW) && defined(has_VK_KHR_multiview)
#extension GL_EXT_multiview : enable
#endif
layout(location = 0) out vec2 uv_interp;
layout(push_constant, std430) uniform Params {
mat3 orientation;
vec4 projections[MAX_VIEWS];
vec4 position_multiplier;
float time;
float luminance_multiplier;
float pad[2];
}
params;
void main() {
vec2 base_arr[4] = vec2[](vec2(-1.0, -1.0), vec2(-1.0, 1.0), vec2(1.0, 1.0), vec2(1.0, -1.0));
uv_interp = base_arr[gl_VertexIndex];
gl_Position = vec4(uv_interp, 1.0, 1.0);
}
#[fragment]
#version 450
#VERSION_DEFINES
#ifdef USE_MULTIVIEW
#ifdef has_VK_KHR_multiview
#extension GL_EXT_multiview : enable
#define ViewIndex gl_ViewIndex
#else // has_VK_KHR_multiview
// !BAS! This needs to become an input once we implement our fallback!
#define ViewIndex 0
#endif // has_VK_KHR_multiview
#else // USE_MULTIVIEW
// Set to zero, not supported in non stereo
#define ViewIndex 0
#endif //USE_MULTIVIEW
#define M_PI 3.14159265359
#define MAX_VIEWS 2
layout(location = 0) in vec2 uv_interp;
layout(push_constant, std430) uniform Params {
mat3 orientation;
vec4 projections[MAX_VIEWS];
vec4 position_multiplier;
float time;
float luminance_multiplier;
float pad[2];
}
params;
#define SAMPLER_NEAREST_CLAMP 0
#define SAMPLER_LINEAR_CLAMP 1
#define SAMPLER_NEAREST_WITH_MIPMAPS_CLAMP 2
#define SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP 3
#define SAMPLER_NEAREST_WITH_MIPMAPS_ANISOTROPIC_CLAMP 4
#define SAMPLER_LINEAR_WITH_MIPMAPS_ANISOTROPIC_CLAMP 5
#define SAMPLER_NEAREST_REPEAT 6
#define SAMPLER_LINEAR_REPEAT 7
#define SAMPLER_NEAREST_WITH_MIPMAPS_REPEAT 8
#define SAMPLER_LINEAR_WITH_MIPMAPS_REPEAT 9
#define SAMPLER_NEAREST_WITH_MIPMAPS_ANISOTROPIC_REPEAT 10
#define SAMPLER_LINEAR_WITH_MIPMAPS_ANISOTROPIC_REPEAT 11
layout(set = 0, binding = 0) uniform sampler material_samplers[12];
layout(set = 0, binding = 1, std430) restrict readonly buffer GlobalVariableData {
vec4 data[];
}
global_variables;
layout(set = 0, binding = 2, std140) uniform SceneData {
bool volumetric_fog_enabled;
float volumetric_fog_inv_length;
float volumetric_fog_detail_spread;
float fog_aerial_perspective;
vec3 fog_light_color;
float fog_sun_scatter;
bool fog_enabled;
float fog_density;
float z_far;
uint directional_light_count;
}
scene_data;
struct DirectionalLightData {
vec4 direction_energy;
vec4 color_size;
bool enabled;
};
layout(set = 0, binding = 3, std140) uniform DirectionalLights {
DirectionalLightData data[MAX_DIRECTIONAL_LIGHT_DATA_STRUCTS];
}
directional_lights;
#ifdef MATERIAL_UNIFORMS_USED
layout(set = 1, binding = 0, std140) uniform MaterialUniforms{
#MATERIAL_UNIFORMS
} material;
#endif
layout(set = 2, binding = 0) uniform textureCube radiance;
#ifdef USE_CUBEMAP_PASS
layout(set = 2, binding = 1) uniform textureCube half_res;
layout(set = 2, binding = 2) uniform textureCube quarter_res;
#else
layout(set = 2, binding = 1) uniform texture2D half_res;
layout(set = 2, binding = 2) uniform texture2D quarter_res;
#endif
layout(set = 3, binding = 0) uniform texture3D volumetric_fog_texture;
#ifdef USE_CUBEMAP_PASS
#define AT_CUBEMAP_PASS true
#else
#define AT_CUBEMAP_PASS false
#endif
#ifdef USE_HALF_RES_PASS
#define AT_HALF_RES_PASS true
#else
#define AT_HALF_RES_PASS false
#endif
#ifdef USE_QUARTER_RES_PASS
#define AT_QUARTER_RES_PASS true
#else
#define AT_QUARTER_RES_PASS false
#endif
#GLOBALS
layout(location = 0) out vec4 frag_color;
vec4 volumetric_fog_process(vec2 screen_uv) {
vec3 fog_pos = vec3(screen_uv, 1.0);
return texture(sampler3D(volumetric_fog_texture, material_samplers[SAMPLER_LINEAR_CLAMP]), fog_pos);
}
vec4 fog_process(vec3 view, vec3 sky_color) {
vec3 fog_color = mix(scene_data.fog_light_color, sky_color, scene_data.fog_aerial_perspective);
if (scene_data.fog_sun_scatter > 0.001) {
vec4 sun_scatter = vec4(0.0);
float sun_total = 0.0;
for (uint i = 0; i < scene_data.directional_light_count; i++) {
vec3 light_color = directional_lights.data[i].color_size.xyz * directional_lights.data[i].direction_energy.w;
float light_amount = pow(max(dot(view, directional_lights.data[i].direction_energy.xyz), 0.0), 8.0);
fog_color += light_color * light_amount * scene_data.fog_sun_scatter;
}
}
float fog_amount = clamp(1.0 - exp(-scene_data.z_far * scene_data.fog_density), 0.0, 1.0);
return vec4(fog_color, fog_amount);
}
void main() {
vec3 cube_normal;
cube_normal.z = -1.0;
cube_normal.x = (cube_normal.z * (-uv_interp.x - params.projections[ViewIndex].x)) / params.projections[ViewIndex].y;
cube_normal.y = -(cube_normal.z * (-uv_interp.y - params.projections[ViewIndex].z)) / params.projections[ViewIndex].w;
cube_normal = mat3(params.orientation) * cube_normal;
cube_normal = normalize(cube_normal);
vec2 uv = uv_interp * 0.5 + 0.5;
vec2 panorama_coords = vec2(atan(cube_normal.x, -cube_normal.z), acos(cube_normal.y));
if (panorama_coords.x < 0.0) {
panorama_coords.x += M_PI * 2.0;
}
panorama_coords /= vec2(M_PI * 2.0, M_PI);
vec3 color = vec3(0.0, 0.0, 0.0);
float alpha = 1.0; // Only available to subpasses
vec4 half_res_color = vec4(1.0);
vec4 quarter_res_color = vec4(1.0);
vec4 custom_fog = vec4(0.0);
#ifdef USE_CUBEMAP_PASS
#ifdef USES_HALF_RES_COLOR
half_res_color = texture(samplerCube(half_res, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), cube_normal) * params.luminance_multiplier;
#endif
#ifdef USES_QUARTER_RES_COLOR
quarter_res_color = texture(samplerCube(quarter_res, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), cube_normal) * params.luminance_multiplier;
#endif
#else
#ifdef USES_HALF_RES_COLOR
half_res_color = textureLod(sampler2D(half_res, material_samplers[SAMPLER_LINEAR_CLAMP]), uv, 0.0) * params.luminance_multiplier;
#endif
#ifdef USES_QUARTER_RES_COLOR
quarter_res_color = textureLod(sampler2D(quarter_res, material_samplers[SAMPLER_LINEAR_CLAMP]), uv, 0.0) * params.luminance_multiplier;
#endif
#endif
{
#CODE : SKY
}
frag_color.rgb = color * params.position_multiplier.w;
frag_color.a = alpha;
#if !defined(DISABLE_FOG) && !defined(USE_CUBEMAP_PASS)
// Draw "fixed" fog before volumetric fog to ensure volumetric fog can appear in front of the sky.
if (scene_data.fog_enabled) {
vec4 fog = fog_process(cube_normal, frag_color.rgb);
frag_color.rgb = mix(frag_color.rgb, fog.rgb, fog.a);
}
if (scene_data.volumetric_fog_enabled) {
vec4 fog = volumetric_fog_process(uv);
frag_color.rgb = mix(frag_color.rgb, fog.rgb, fog.a);
}
if (custom_fog.a > 0.0) {
frag_color.rgb = mix(frag_color.rgb, custom_fog.rgb, custom_fog.a);
}
#endif // DISABLE_FOG
// Blending is disabled for Sky, so alpha doesn't blend
// alpha is used for subsurface scattering so make sure it doesn't get applied to Sky
if (!AT_CUBEMAP_PASS && !AT_HALF_RES_PASS && !AT_QUARTER_RES_PASS) {
frag_color.a = 0.0;
}
// For mobile renderer we're dividing by 2.0 as we're using a UNORM buffer
frag_color.rgb = frag_color.rgb / params.luminance_multiplier;
}
|