1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
|
#[compute]
#version 450
#VERSION_DEFINES
#ifdef MODE_JUMPFLOOD_OPTIMIZED
#define GROUP_SIZE 8
layout(local_size_x = GROUP_SIZE, local_size_y = GROUP_SIZE, local_size_z = GROUP_SIZE) in;
#elif defined(MODE_OCCLUSION) || defined(MODE_SCROLL)
//buffer layout
layout(local_size_x = 64, local_size_y = 1, local_size_z = 1) in;
#else
//grid layout
layout(local_size_x = 4, local_size_y = 4, local_size_z = 4) in;
#endif
#if defined(MODE_INITIALIZE_JUMP_FLOOD) || defined(MODE_INITIALIZE_JUMP_FLOOD_HALF)
layout(r16ui, set = 0, binding = 1) uniform restrict readonly uimage3D src_color;
layout(rgba8ui, set = 0, binding = 2) uniform restrict writeonly uimage3D dst_positions;
#endif
#ifdef MODE_UPSCALE_JUMP_FLOOD
layout(r16ui, set = 0, binding = 1) uniform restrict readonly uimage3D src_color;
layout(rgba8ui, set = 0, binding = 2) uniform restrict readonly uimage3D src_positions_half;
layout(rgba8ui, set = 0, binding = 3) uniform restrict writeonly uimage3D dst_positions;
#endif
#if defined(MODE_JUMPFLOOD) || defined(MODE_JUMPFLOOD_OPTIMIZED)
layout(rgba8ui, set = 0, binding = 1) uniform restrict readonly uimage3D src_positions;
layout(rgba8ui, set = 0, binding = 2) uniform restrict writeonly uimage3D dst_positions;
#endif
#ifdef MODE_JUMPFLOOD_OPTIMIZED
shared uvec4 group_positions[(GROUP_SIZE + 2) * (GROUP_SIZE + 2) * (GROUP_SIZE + 2)]; //4x4x4 with margins
void group_store(ivec3 p_pos, uvec4 p_value) {
uint offset = uint(p_pos.z * (GROUP_SIZE + 2) * (GROUP_SIZE + 2) + p_pos.y * (GROUP_SIZE + 2) + p_pos.x);
group_positions[offset] = p_value;
}
uvec4 group_load(ivec3 p_pos) {
uint offset = uint(p_pos.z * (GROUP_SIZE + 2) * (GROUP_SIZE + 2) + p_pos.y * (GROUP_SIZE + 2) + p_pos.x);
return group_positions[offset];
}
#endif
#ifdef MODE_OCCLUSION
layout(r16ui, set = 0, binding = 1) uniform restrict readonly uimage3D src_color;
layout(r8, set = 0, binding = 2) uniform restrict image3D dst_occlusion[8];
layout(r32ui, set = 0, binding = 3) uniform restrict readonly uimage3D src_facing;
const uvec2 group_size_offset[11] = uvec2[](uvec2(1, 0), uvec2(3, 1), uvec2(6, 4), uvec2(10, 10), uvec2(15, 20), uvec2(21, 35), uvec2(28, 56), uvec2(36, 84), uvec2(42, 120), uvec2(46, 162), uvec2(48, 208));
const uint group_pos[256] = uint[](0,
65536, 256, 1,
131072, 65792, 512, 65537, 257, 2,
196608, 131328, 66048, 768, 131073, 65793, 513, 65538, 258, 3,
262144, 196864, 131584, 66304, 1024, 196609, 131329, 66049, 769, 131074, 65794, 514, 65539, 259, 4,
327680, 262400, 197120, 131840, 66560, 1280, 262145, 196865, 131585, 66305, 1025, 196610, 131330, 66050, 770, 131075, 65795, 515, 65540, 260, 5,
393216, 327936, 262656, 197376, 132096, 66816, 1536, 327681, 262401, 197121, 131841, 66561, 1281, 262146, 196866, 131586, 66306, 1026, 196611, 131331, 66051, 771, 131076, 65796, 516, 65541, 261, 6,
458752, 393472, 328192, 262912, 197632, 132352, 67072, 1792, 393217, 327937, 262657, 197377, 132097, 66817, 1537, 327682, 262402, 197122, 131842, 66562, 1282, 262147, 196867, 131587, 66307, 1027, 196612, 131332, 66052, 772, 131077, 65797, 517, 65542, 262, 7,
459008, 393728, 328448, 263168, 197888, 132608, 67328, 458753, 393473, 328193, 262913, 197633, 132353, 67073, 1793, 393218, 327938, 262658, 197378, 132098, 66818, 1538, 327683, 262403, 197123, 131843, 66563, 1283, 262148, 196868, 131588, 66308, 1028, 196613, 131333, 66053, 773, 131078, 65798, 518, 65543, 263,
459264, 393984, 328704, 263424, 198144, 132864, 459009, 393729, 328449, 263169, 197889, 132609, 67329, 458754, 393474, 328194, 262914, 197634, 132354, 67074, 1794, 393219, 327939, 262659, 197379, 132099, 66819, 1539, 327684, 262404, 197124, 131844, 66564, 1284, 262149, 196869, 131589, 66309, 1029, 196614, 131334, 66054, 774, 131079, 65799, 519,
459520, 394240, 328960, 263680, 198400, 459265, 393985, 328705, 263425, 198145, 132865, 459010, 393730, 328450, 263170, 197890, 132610, 67330, 458755, 393475, 328195, 262915, 197635, 132355, 67075, 1795, 393220, 327940, 262660, 197380, 132100, 66820, 1540, 327685, 262405, 197125, 131845, 66565, 1285, 262150, 196870, 131590, 66310, 1030, 196615, 131335, 66055, 775);
shared uint occlusion_facing[((OCCLUSION_SIZE * 2) * (OCCLUSION_SIZE * 2) * (OCCLUSION_SIZE * 2)) / 4];
uint get_facing(ivec3 p_pos) {
uint ofs = uint(p_pos.z * OCCLUSION_SIZE * 2 * OCCLUSION_SIZE * 2 + p_pos.y * OCCLUSION_SIZE * 2 + p_pos.x);
uint v = occlusion_facing[ofs / 4];
return (v >> ((ofs % 4) * 8)) & 0xFF;
}
#endif
#ifdef MODE_STORE
layout(rgba8ui, set = 0, binding = 1) uniform restrict readonly uimage3D src_positions;
layout(r16ui, set = 0, binding = 2) uniform restrict readonly uimage3D src_albedo;
layout(r8, set = 0, binding = 3) uniform restrict readonly image3D src_occlusion[8];
layout(r32ui, set = 0, binding = 4) uniform restrict readonly uimage3D src_light;
layout(r32ui, set = 0, binding = 5) uniform restrict readonly uimage3D src_light_aniso;
layout(r32ui, set = 0, binding = 6) uniform restrict readonly uimage3D src_facing;
layout(r8, set = 0, binding = 7) uniform restrict writeonly image3D dst_sdf;
layout(r16ui, set = 0, binding = 8) uniform restrict writeonly uimage3D dst_occlusion;
layout(set = 0, binding = 10, std430) restrict buffer DispatchData {
uint x;
uint y;
uint z;
uint total_count;
}
dispatch_data;
struct ProcessVoxel {
uint position; //xyz 7 bit packed, extra 11 bits for neigbours
uint albedo; //rgb bits 0-15 albedo, bits 16-21 are normal bits (set if geometry exists toward that side), extra 11 bits for neibhbours
uint light; //rgbe8985 encoded total saved light, extra 2 bits for neighbours
uint light_aniso; //55555 light anisotropy, extra 2 bits for neighbours
//total neighbours: 26
};
layout(set = 0, binding = 11, std430) restrict buffer writeonly ProcessVoxels {
ProcessVoxel data[];
}
dst_process_voxels;
shared ProcessVoxel store_positions[4 * 4 * 4];
shared uint store_position_count;
shared uint store_from_index;
#endif
#ifdef MODE_SCROLL
layout(r16ui, set = 0, binding = 1) uniform restrict writeonly uimage3D dst_albedo;
layout(r32ui, set = 0, binding = 2) uniform restrict writeonly uimage3D dst_facing;
layout(r32ui, set = 0, binding = 3) uniform restrict writeonly uimage3D dst_light;
layout(r32ui, set = 0, binding = 4) uniform restrict writeonly uimage3D dst_light_aniso;
layout(set = 0, binding = 5, std430) restrict buffer readonly DispatchData {
uint x;
uint y;
uint z;
uint total_count;
}
dispatch_data;
struct ProcessVoxel {
uint position; //xyz 7 bit packed, extra 11 bits for neigbours
uint albedo; //rgb bits 0-15 albedo, bits 16-21 are normal bits (set if geometry exists toward that side), extra 11 bits for neibhbours
uint light; //rgbe8985 encoded total saved light, extra 2 bits for neighbours
uint light_aniso; //55555 light anisotropy, extra 2 bits for neighbours
//total neighbours: 26
};
layout(set = 0, binding = 6, std430) restrict buffer readonly ProcessVoxels {
ProcessVoxel data[];
}
src_process_voxels;
#endif
#ifdef MODE_SCROLL_OCCLUSION
layout(r8, set = 0, binding = 1) uniform restrict image3D dst_occlusion[8];
layout(r16ui, set = 0, binding = 2) uniform restrict readonly uimage3D src_occlusion;
#endif
layout(push_constant, binding = 0, std430) uniform Params {
ivec3 scroll;
int grid_size;
ivec3 probe_offset;
int step_size;
bool half_size;
uint occlusion_index;
int cascade;
uint pad;
}
params;
void main() {
#ifdef MODE_SCROLL
// Pixel being shaded
int index = int(gl_GlobalInvocationID.x);
if (index >= dispatch_data.total_count) { //too big
return;
}
ivec3 read_pos = (ivec3(src_process_voxels.data[index].position) >> ivec3(0, 7, 14)) & ivec3(0x7F);
ivec3 write_pos = read_pos + params.scroll;
if (any(lessThan(write_pos, ivec3(0))) || any(greaterThanEqual(write_pos, ivec3(params.grid_size)))) {
return; //fits outside the 3D texture, dont do anything
}
uint albedo = ((src_process_voxels.data[index].albedo & 0x7FFF) << 1) | 1; //add solid bit
imageStore(dst_albedo, write_pos, uvec4(albedo));
uint facing = (src_process_voxels.data[index].albedo >> 15) & 0x3F; //6 anisotropic facing bits
imageStore(dst_facing, write_pos, uvec4(facing));
uint light = src_process_voxels.data[index].light & 0x3fffffff; //30 bits of RGBE8985
imageStore(dst_light, write_pos, uvec4(light));
uint light_aniso = src_process_voxels.data[index].light_aniso & 0x3fffffff; //30 bits of 6 anisotropic 5 bits values
imageStore(dst_light_aniso, write_pos, uvec4(light_aniso));
#endif
#ifdef MODE_SCROLL_OCCLUSION
ivec3 pos = ivec3(gl_GlobalInvocationID.xyz);
if (any(greaterThanEqual(pos, ivec3(params.grid_size) - abs(params.scroll)))) { //too large, do nothing
return;
}
ivec3 read_pos = pos + max(ivec3(0), -params.scroll);
ivec3 write_pos = pos + max(ivec3(0), params.scroll);
read_pos.z += params.cascade * params.grid_size;
uint occlusion = imageLoad(src_occlusion, read_pos).r;
read_pos.x += params.grid_size;
occlusion |= imageLoad(src_occlusion, read_pos).r << 16;
const uint occlusion_shift[8] = uint[](12, 8, 4, 0, 28, 24, 20, 16);
for (uint i = 0; i < 8; i++) {
float o = float((occlusion >> occlusion_shift[i]) & 0xF) / 15.0;
imageStore(dst_occlusion[i], write_pos, vec4(o));
}
#endif
#ifdef MODE_INITIALIZE_JUMP_FLOOD
ivec3 pos = ivec3(gl_GlobalInvocationID.xyz);
uint c = imageLoad(src_color, pos).r;
uvec4 v;
if (bool(c & 0x1)) {
//bit set means this is solid
v.xyz = uvec3(pos);
v.w = 255; //not zero means used
} else {
v.xyz = uvec3(0);
v.w = 0; // zero means unused
}
imageStore(dst_positions, pos, v);
#endif
#ifdef MODE_INITIALIZE_JUMP_FLOOD_HALF
ivec3 pos = ivec3(gl_GlobalInvocationID.xyz);
ivec3 base_pos = pos * 2;
//since we store in half size, lets kind of randomize what we store, so
//the half size jump flood has a bit better chance to find something
uvec4 closest[8];
int closest_count = 0;
for (uint i = 0; i < 8; i++) {
ivec3 src_pos = base_pos + ((ivec3(i) >> ivec3(0, 1, 2)) & ivec3(1, 1, 1));
uint c = imageLoad(src_color, src_pos).r;
if (bool(c & 1)) {
uvec4 v = uvec4(uvec3(src_pos), 255);
closest[closest_count] = v;
closest_count++;
}
}
if (closest_count == 0) {
imageStore(dst_positions, pos, uvec4(0));
} else {
ivec3 indexv = (pos & ivec3(1, 1, 1)) * ivec3(1, 2, 4);
int index = (indexv.x | indexv.y | indexv.z) % closest_count;
imageStore(dst_positions, pos, closest[index]);
}
#endif
#ifdef MODE_JUMPFLOOD
//regular jumpflood, efficient for large steps, inefficient for small steps
ivec3 pos = ivec3(gl_GlobalInvocationID.xyz);
vec3 posf = vec3(pos);
if (params.half_size) {
posf = posf * 2.0 + 0.5;
}
uvec4 p = imageLoad(src_positions, pos);
if (!params.half_size && p == uvec4(uvec3(pos), 255)) {
imageStore(dst_positions, pos, p);
return; //points to itself and valid, nothing better can be done, just pass
}
float p_dist;
if (p.w != 0) {
p_dist = distance(posf, vec3(p.xyz));
} else {
p_dist = 0.0; //should not matter
}
const uint offset_count = 26;
const ivec3 offsets[offset_count] = ivec3[](
ivec3(-1, -1, -1),
ivec3(-1, -1, 0),
ivec3(-1, -1, 1),
ivec3(-1, 0, -1),
ivec3(-1, 0, 0),
ivec3(-1, 0, 1),
ivec3(-1, 1, -1),
ivec3(-1, 1, 0),
ivec3(-1, 1, 1),
ivec3(0, -1, -1),
ivec3(0, -1, 0),
ivec3(0, -1, 1),
ivec3(0, 0, -1),
ivec3(0, 0, 1),
ivec3(0, 1, -1),
ivec3(0, 1, 0),
ivec3(0, 1, 1),
ivec3(1, -1, -1),
ivec3(1, -1, 0),
ivec3(1, -1, 1),
ivec3(1, 0, -1),
ivec3(1, 0, 0),
ivec3(1, 0, 1),
ivec3(1, 1, -1),
ivec3(1, 1, 0),
ivec3(1, 1, 1));
for (uint i = 0; i < offset_count; i++) {
ivec3 ofs = pos + offsets[i] * params.step_size;
if (any(lessThan(ofs, ivec3(0))) || any(greaterThanEqual(ofs, ivec3(params.grid_size)))) {
continue;
}
uvec4 q = imageLoad(src_positions, ofs);
if (q.w == 0) {
continue; //was not initialized yet, ignore
}
float q_dist = distance(posf, vec3(q.xyz));
if (p.w == 0 || q_dist < p_dist) {
p = q; //just replace because current is unused
p_dist = q_dist;
}
}
imageStore(dst_positions, pos, p);
#endif
#ifdef MODE_JUMPFLOOD_OPTIMIZED
//optimized version using shared compute memory
ivec3 group_offset = ivec3(gl_WorkGroupID.xyz) % params.step_size;
ivec3 group_pos = group_offset + (ivec3(gl_WorkGroupID.xyz) / params.step_size) * ivec3(GROUP_SIZE * params.step_size);
//load data into local group memory
if (all(lessThan(ivec3(gl_LocalInvocationID.xyz), ivec3((GROUP_SIZE + 2) / 2)))) {
//use this thread for loading, this method uses less threads for this but its simpler and less divergent
ivec3 base_pos = ivec3(gl_LocalInvocationID.xyz) * 2;
for (uint i = 0; i < 8; i++) {
ivec3 load_pos = base_pos + ((ivec3(i) >> ivec3(0, 1, 2)) & ivec3(1, 1, 1));
ivec3 load_global_pos = group_pos + (load_pos - ivec3(1)) * params.step_size;
uvec4 q;
if (all(greaterThanEqual(load_global_pos, ivec3(0))) && all(lessThan(load_global_pos, ivec3(params.grid_size)))) {
q = imageLoad(src_positions, load_global_pos);
} else {
q = uvec4(0); //unused
}
group_store(load_pos, q);
}
}
ivec3 global_pos = group_pos + ivec3(gl_LocalInvocationID.xyz) * params.step_size;
if (any(lessThan(global_pos, ivec3(0))) || any(greaterThanEqual(global_pos, ivec3(params.grid_size)))) {
return; //do nothing else, end here because outside range
}
//sync
groupMemoryBarrier();
barrier();
ivec3 local_pos = ivec3(gl_LocalInvocationID.xyz) + ivec3(1);
const uint offset_count = 27;
const ivec3 offsets[offset_count] = ivec3[](
ivec3(-1, -1, -1),
ivec3(-1, -1, 0),
ivec3(-1, -1, 1),
ivec3(-1, 0, -1),
ivec3(-1, 0, 0),
ivec3(-1, 0, 1),
ivec3(-1, 1, -1),
ivec3(-1, 1, 0),
ivec3(-1, 1, 1),
ivec3(0, -1, -1),
ivec3(0, -1, 0),
ivec3(0, -1, 1),
ivec3(0, 0, -1),
ivec3(0, 0, 0),
ivec3(0, 0, 1),
ivec3(0, 1, -1),
ivec3(0, 1, 0),
ivec3(0, 1, 1),
ivec3(1, -1, -1),
ivec3(1, -1, 0),
ivec3(1, -1, 1),
ivec3(1, 0, -1),
ivec3(1, 0, 0),
ivec3(1, 0, 1),
ivec3(1, 1, -1),
ivec3(1, 1, 0),
ivec3(1, 1, 1));
//only makes sense if point is inside screen
uvec4 closest = uvec4(0);
float closest_dist = 0.0;
vec3 posf = vec3(global_pos);
if (params.half_size) {
posf = posf * 2.0 + 0.5;
}
for (uint i = 0; i < offset_count; i++) {
uvec4 point = group_load(local_pos + offsets[i]);
if (point.w == 0) {
continue; //was not initialized yet, ignore
}
float dist = distance(posf, vec3(point.xyz));
if (closest.w == 0 || dist < closest_dist) {
closest = point;
closest_dist = dist;
}
}
imageStore(dst_positions, global_pos, closest);
#endif
#ifdef MODE_UPSCALE_JUMP_FLOOD
ivec3 pos = ivec3(gl_GlobalInvocationID.xyz);
uint c = imageLoad(src_color, pos).r;
uvec4 v;
if (bool(c & 1)) {
//bit set means this is solid
v.xyz = uvec3(pos);
v.w = 255; //not zero means used
} else {
v = imageLoad(src_positions_half, pos >> 1);
float d = length(vec3(ivec3(v.xyz) - pos));
ivec3 vbase = ivec3(v.xyz - (v.xyz & uvec3(1)));
//search around if there is a better candidate from the same block
for (int i = 0; i < 8; i++) {
ivec3 bits = ((ivec3(i) >> ivec3(0, 1, 2)) & ivec3(1, 1, 1));
ivec3 p = vbase + bits;
float d2 = length(vec3(p - pos));
if (d2 < d) { //check valid distance before test so we avoid a read
uint c2 = imageLoad(src_color, p).r;
if (bool(c2 & 1)) {
v.xyz = uvec3(p);
d = d2;
}
}
}
//could validate better position..
}
imageStore(dst_positions, pos, v);
#endif
#ifdef MODE_OCCLUSION
uint invocation_idx = uint(gl_LocalInvocationID.x);
ivec3 region = ivec3(gl_WorkGroupID);
ivec3 region_offset = -ivec3(OCCLUSION_SIZE);
region_offset += region * OCCLUSION_SIZE * 2;
region_offset += params.probe_offset * OCCLUSION_SIZE;
if (params.scroll != ivec3(0)) {
//validate scroll region
ivec3 region_offset_to = region_offset + ivec3(OCCLUSION_SIZE * 2);
uvec3 scroll_mask = uvec3(notEqual(params.scroll, ivec3(0))); //save which axes acre scrolling
ivec3 scroll_from = mix(ivec3(0), ivec3(params.grid_size) + params.scroll, lessThan(params.scroll, ivec3(0)));
ivec3 scroll_to = mix(ivec3(params.grid_size), params.scroll, greaterThan(params.scroll, ivec3(0)));
if ((uvec3(lessThanEqual(region_offset_to, scroll_from)) | uvec3(greaterThanEqual(region_offset, scroll_to))) * scroll_mask == scroll_mask) { //all axes that scroll are out, exit
return; //region outside scroll bounds, quit
}
}
#define OCC_HALF_SIZE (OCCLUSION_SIZE / 2)
ivec3 local_ofs = ivec3(uvec3(invocation_idx % OCC_HALF_SIZE, (invocation_idx % (OCC_HALF_SIZE * OCC_HALF_SIZE)) / OCC_HALF_SIZE, invocation_idx / (OCC_HALF_SIZE * OCC_HALF_SIZE))) * 4;
/* for(int i=0;i<64;i++) {
ivec3 offset = region_offset + local_ofs + ((ivec3(i) >> ivec3(0,2,4)) & ivec3(3,3,3));
uint facig =
if (all(greaterThanEqual(offset,ivec3(0))) && all(lessThan(offset,ivec3(params.grid_size)))) {*/
for (int i = 0; i < 16; i++) { //skip x, so it can be packed
ivec3 offset = local_ofs + ((ivec3(i * 4) >> ivec3(0, 2, 4)) & ivec3(3, 3, 3));
uint facing_pack = 0;
for (int j = 0; j < 4; j++) {
ivec3 foffset = region_offset + offset + ivec3(j, 0, 0);
if (all(greaterThanEqual(foffset, ivec3(0))) && all(lessThan(foffset, ivec3(params.grid_size)))) {
uint f = imageLoad(src_facing, foffset).r;
facing_pack |= f << (j * 8);
}
}
occlusion_facing[(offset.z * (OCCLUSION_SIZE * 2 * OCCLUSION_SIZE * 2) + offset.y * (OCCLUSION_SIZE * 2) + offset.x) / 4] = facing_pack;
}
//sync occlusion saved
groupMemoryBarrier();
barrier();
//process occlusion
#define OCC_STEPS (OCCLUSION_SIZE * 3 - 2)
#define OCC_HALF_STEPS (OCC_STEPS / 2)
for (int step = 0; step < OCC_STEPS; step++) {
bool shrink = step >= OCC_HALF_STEPS;
int occ_step = shrink ? OCC_HALF_STEPS - (step - OCC_HALF_STEPS) - 1 : step;
if (invocation_idx < group_size_offset[occ_step].x) {
uint pv = group_pos[group_size_offset[occ_step].y + invocation_idx];
ivec3 proc_abs = (ivec3(int(pv)) >> ivec3(0, 8, 16)) & ivec3(0xFF);
if (shrink) {
proc_abs = ivec3(OCCLUSION_SIZE) - proc_abs - ivec3(1);
}
for (int i = 0; i < 8; i++) {
ivec3 bits = ((ivec3(i) >> ivec3(0, 1, 2)) & ivec3(1, 1, 1));
ivec3 proc_sign = bits * 2 - 1;
ivec3 local_offset = ivec3(OCCLUSION_SIZE) + proc_abs * proc_sign - (ivec3(1) - bits);
ivec3 offset = local_offset + region_offset;
if (all(greaterThanEqual(offset, ivec3(0))) && all(lessThan(offset, ivec3(params.grid_size)))) {
float occ;
uint facing = get_facing(local_offset);
if (facing != 0) { //solid
occ = 0.0;
} else if (step == 0) {
#if 0
occ = 0.0;
if (get_facing(local_offset - ivec3(proc_sign.x,0,0))==0) {
occ+=1.0;
}
if (get_facing(local_offset - ivec3(0,proc_sign.y,0))==0) {
occ+=1.0;
}
if (get_facing(local_offset - ivec3(0,0,proc_sign.z))==0) {
occ+=1.0;
}
/*
if (get_facing(local_offset - proc_sign)==0) {
occ+=1.0;
}*/
occ/=3.0;
#endif
occ = 1.0;
} else {
ivec3 read_dir = -proc_sign;
ivec3 major_axis;
if (proc_abs.x < proc_abs.y) {
if (proc_abs.z < proc_abs.y) {
major_axis = ivec3(0, 1, 0);
} else {
major_axis = ivec3(0, 0, 1);
}
} else {
if (proc_abs.z < proc_abs.x) {
major_axis = ivec3(1, 0, 0);
} else {
major_axis = ivec3(0, 0, 1);
}
}
float avg = 0.0;
occ = 0.0;
ivec3 read_x = offset + ivec3(read_dir.x, 0, 0) + (proc_abs.x == 0 ? major_axis * read_dir : ivec3(0));
ivec3 read_y = offset + ivec3(0, read_dir.y, 0) + (proc_abs.y == 0 ? major_axis * read_dir : ivec3(0));
ivec3 read_z = offset + ivec3(0, 0, read_dir.z) + (proc_abs.z == 0 ? major_axis * read_dir : ivec3(0));
uint facing_x = get_facing(read_x - region_offset);
if (facing_x == 0) {
if (all(greaterThanEqual(read_x, ivec3(0))) && all(lessThan(read_x, ivec3(params.grid_size)))) {
occ += imageLoad(dst_occlusion[params.occlusion_index], read_x).r;
avg += 1.0;
}
} else {
if (proc_abs.x != 0) { //do not occlude from voxels in the opposite octant
avg += 1.0;
}
}
uint facing_y = get_facing(read_y - region_offset);
if (facing_y == 0) {
if (all(greaterThanEqual(read_y, ivec3(0))) && all(lessThan(read_y, ivec3(params.grid_size)))) {
occ += imageLoad(dst_occlusion[params.occlusion_index], read_y).r;
avg += 1.0;
}
} else {
if (proc_abs.y != 0) {
avg += 1.0;
}
}
uint facing_z = get_facing(read_z - region_offset);
if (facing_z == 0) {
if (all(greaterThanEqual(read_z, ivec3(0))) && all(lessThan(read_z, ivec3(params.grid_size)))) {
occ += imageLoad(dst_occlusion[params.occlusion_index], read_z).r;
avg += 1.0;
}
} else {
if (proc_abs.z != 0) {
avg += 1.0;
}
}
if (avg > 0.0) {
occ /= avg;
}
}
imageStore(dst_occlusion[params.occlusion_index], offset, vec4(occ));
}
}
}
groupMemoryBarrier();
barrier();
}
#if 1
//bias solid voxels away
for (int i = 0; i < 64; i++) {
ivec3 local_offset = local_ofs + ((ivec3(i) >> ivec3(0, 2, 4)) & ivec3(3, 3, 3));
ivec3 offset = region_offset + local_offset;
if (all(greaterThanEqual(offset, ivec3(0))) && all(lessThan(offset, ivec3(params.grid_size)))) {
uint facing = get_facing(local_offset);
if (facing != 0) {
//only work on solids
ivec3 proc_pos = local_offset - ivec3(OCCLUSION_SIZE);
proc_pos += mix(ivec3(0), ivec3(1), greaterThanEqual(proc_pos, ivec3(0)));
float avg = 0.0;
float occ = 0.0;
ivec3 read_dir = -sign(proc_pos);
ivec3 read_dir_x = ivec3(read_dir.x, 0, 0);
ivec3 read_dir_y = ivec3(0, read_dir.y, 0);
ivec3 read_dir_z = ivec3(0, 0, read_dir.z);
//solid
#if 0
uvec3 facing_pos_base = (uvec3(facing) >> uvec3(0,1,2)) & uvec3(1,1,1);
uvec3 facing_neg_base = (uvec3(facing) >> uvec3(3,4,5)) & uvec3(1,1,1);
uvec3 facing_pos= facing_pos_base &((~facing_neg_base)&uvec3(1,1,1));
uvec3 facing_neg= facing_neg_base &((~facing_pos_base)&uvec3(1,1,1));
#else
uvec3 facing_pos = (uvec3(facing) >> uvec3(0, 1, 2)) & uvec3(1, 1, 1);
uvec3 facing_neg = (uvec3(facing) >> uvec3(3, 4, 5)) & uvec3(1, 1, 1);
#endif
bvec3 read_valid = bvec3(mix(facing_neg, facing_pos, greaterThan(read_dir, ivec3(0))));
//sides
if (read_valid.x) {
ivec3 read_offset = local_offset + read_dir_x;
uint f = get_facing(read_offset);
if (f == 0) {
read_offset += region_offset;
if (all(greaterThanEqual(read_offset, ivec3(0))) && all(lessThan(read_offset, ivec3(params.grid_size)))) {
occ += imageLoad(dst_occlusion[params.occlusion_index], read_offset).r;
avg += 1.0;
}
}
}
if (read_valid.y) {
ivec3 read_offset = local_offset + read_dir_y;
uint f = get_facing(read_offset);
if (f == 0) {
read_offset += region_offset;
if (all(greaterThanEqual(read_offset, ivec3(0))) && all(lessThan(read_offset, ivec3(params.grid_size)))) {
occ += imageLoad(dst_occlusion[params.occlusion_index], read_offset).r;
avg += 1.0;
}
}
}
if (read_valid.z) {
ivec3 read_offset = local_offset + read_dir_z;
uint f = get_facing(read_offset);
if (f == 0) {
read_offset += region_offset;
if (all(greaterThanEqual(read_offset, ivec3(0))) && all(lessThan(read_offset, ivec3(params.grid_size)))) {
occ += imageLoad(dst_occlusion[params.occlusion_index], read_offset).r;
avg += 1.0;
}
}
}
//adjacents
if (all(read_valid.yz)) {
ivec3 read_offset = local_offset + read_dir_y + read_dir_z;
uint f = get_facing(read_offset);
if (f == 0) {
read_offset += region_offset;
if (all(greaterThanEqual(read_offset, ivec3(0))) && all(lessThan(read_offset, ivec3(params.grid_size)))) {
occ += imageLoad(dst_occlusion[params.occlusion_index], read_offset).r;
avg += 1.0;
}
}
}
if (all(read_valid.xz)) {
ivec3 read_offset = local_offset + read_dir_x + read_dir_z;
uint f = get_facing(read_offset);
if (f == 0) {
read_offset += region_offset;
if (all(greaterThanEqual(read_offset, ivec3(0))) && all(lessThan(read_offset, ivec3(params.grid_size)))) {
occ += imageLoad(dst_occlusion[params.occlusion_index], read_offset).r;
avg += 1.0;
}
}
}
if (all(read_valid.xy)) {
ivec3 read_offset = local_offset + read_dir_x + read_dir_y;
uint f = get_facing(read_offset);
if (f == 0) {
read_offset += region_offset;
if (all(greaterThanEqual(read_offset, ivec3(0))) && all(lessThan(read_offset, ivec3(params.grid_size)))) {
occ += imageLoad(dst_occlusion[params.occlusion_index], read_offset).r;
avg += 1.0;
}
}
}
//diagonal
if (all(read_valid)) {
ivec3 read_offset = local_offset + read_dir;
uint f = get_facing(read_offset);
if (f == 0) {
read_offset += region_offset;
if (all(greaterThanEqual(read_offset, ivec3(0))) && all(lessThan(read_offset, ivec3(params.grid_size)))) {
occ += imageLoad(dst_occlusion[params.occlusion_index], read_offset).r;
avg += 1.0;
}
}
}
if (avg > 0.0) {
occ /= avg;
}
imageStore(dst_occlusion[params.occlusion_index], offset, vec4(occ));
}
}
}
#endif
#if 1
groupMemoryBarrier();
barrier();
for (int i = 0; i < 64; i++) {
ivec3 local_offset = local_ofs + ((ivec3(i) >> ivec3(0, 2, 4)) & ivec3(3, 3, 3));
ivec3 offset = region_offset + local_offset;
if (all(greaterThanEqual(offset, ivec3(0))) && all(lessThan(offset, ivec3(params.grid_size)))) {
uint facing = get_facing(local_offset);
if (facing == 0) {
ivec3 proc_pos = local_offset - ivec3(OCCLUSION_SIZE);
proc_pos += mix(ivec3(0), ivec3(1), greaterThanEqual(proc_pos, ivec3(0)));
ivec3 proc_abs = abs(proc_pos);
ivec3 read_dir = sign(proc_pos); //opposite direction
ivec3 read_dir_x = ivec3(read_dir.x, 0, 0);
ivec3 read_dir_y = ivec3(0, read_dir.y, 0);
ivec3 read_dir_z = ivec3(0, 0, read_dir.z);
//solid
uvec3 read_mask = mix(uvec3(1, 2, 4), uvec3(8, 16, 32), greaterThan(read_dir, ivec3(0))); //match positive with negative normals
uvec3 block_mask = mix(uvec3(1, 2, 4), uvec3(8, 16, 32), lessThan(read_dir, ivec3(0))); //match positive with negative normals
block_mask = uvec3(0);
float visible = 0.0;
float occlude_total = 0.0;
if (proc_abs.x < OCCLUSION_SIZE) {
ivec3 read_offset = local_offset + read_dir_x;
uint x_mask = get_facing(read_offset);
if (x_mask != 0) {
read_offset += region_offset;
if (all(greaterThanEqual(read_offset, ivec3(0))) && all(lessThan(read_offset, ivec3(params.grid_size)))) {
occlude_total += 1.0;
if (bool(x_mask & read_mask.x) && !bool(x_mask & block_mask.x)) {
visible += 1.0;
}
}
}
}
if (proc_abs.y < OCCLUSION_SIZE) {
ivec3 read_offset = local_offset + read_dir_y;
uint y_mask = get_facing(read_offset);
if (y_mask != 0) {
read_offset += region_offset;
if (all(greaterThanEqual(read_offset, ivec3(0))) && all(lessThan(read_offset, ivec3(params.grid_size)))) {
occlude_total += 1.0;
if (bool(y_mask & read_mask.y) && !bool(y_mask & block_mask.y)) {
visible += 1.0;
}
}
}
}
if (proc_abs.z < OCCLUSION_SIZE) {
ivec3 read_offset = local_offset + read_dir_z;
uint z_mask = get_facing(read_offset);
if (z_mask != 0) {
read_offset += region_offset;
if (all(greaterThanEqual(read_offset, ivec3(0))) && all(lessThan(read_offset, ivec3(params.grid_size)))) {
occlude_total += 1.0;
if (bool(z_mask & read_mask.z) && !bool(z_mask & block_mask.z)) {
visible += 1.0;
}
}
}
}
//if near the cartesian plane, test in opposite direction too
read_mask = mix(uvec3(1, 2, 4), uvec3(8, 16, 32), lessThan(read_dir, ivec3(0))); //match negative with positive normals
block_mask = mix(uvec3(1, 2, 4), uvec3(8, 16, 32), greaterThan(read_dir, ivec3(0))); //match negative with positive normals
block_mask = uvec3(0);
if (proc_abs.x == 1) {
ivec3 read_offset = local_offset - read_dir_x;
uint x_mask = get_facing(read_offset);
if (x_mask != 0) {
read_offset += region_offset;
if (all(greaterThanEqual(read_offset, ivec3(0))) && all(lessThan(read_offset, ivec3(params.grid_size)))) {
occlude_total += 1.0;
if (bool(x_mask & read_mask.x) && !bool(x_mask & block_mask.x)) {
visible += 1.0;
}
}
}
}
if (proc_abs.y == 1) {
ivec3 read_offset = local_offset - read_dir_y;
uint y_mask = get_facing(read_offset);
if (y_mask != 0) {
read_offset += region_offset;
if (all(greaterThanEqual(read_offset, ivec3(0))) && all(lessThan(read_offset, ivec3(params.grid_size)))) {
occlude_total += 1.0;
if (bool(y_mask & read_mask.y) && !bool(y_mask & block_mask.y)) {
visible += 1.0;
}
}
}
}
if (proc_abs.z == 1) {
ivec3 read_offset = local_offset - read_dir_z;
uint z_mask = get_facing(read_offset);
if (z_mask != 0) {
read_offset += region_offset;
if (all(greaterThanEqual(read_offset, ivec3(0))) && all(lessThan(read_offset, ivec3(params.grid_size)))) {
occlude_total += 1.0;
if (bool(z_mask & read_mask.z) && !bool(z_mask & block_mask.z)) {
visible += 1.0;
}
}
}
}
if (occlude_total > 0.0) {
float occ = imageLoad(dst_occlusion[params.occlusion_index], offset).r;
occ *= visible / occlude_total;
imageStore(dst_occlusion[params.occlusion_index], offset, vec4(occ));
}
}
}
}
#endif
/*
for(int i=0;i<8;i++) {
ivec3 local_offset = local_pos + ((ivec3(i) >> ivec3(2,1,0)) & ivec3(1,1,1)) * OCCLUSION_SIZE;
ivec3 offset = local_offset - ivec3(OCCLUSION_SIZE); //looking around probe, so starts negative
offset += region * OCCLUSION_SIZE * 2; //offset by region
offset += params.probe_offset * OCCLUSION_SIZE; // offset by probe offset
if (all(greaterThanEqual(offset,ivec3(0))) && all(lessThan(offset,ivec3(params.grid_size)))) {
imageStore(dst_occlusion[params.occlusion_index],offset,vec4( occlusion_data[ to_linear(local_offset) ] ));
//imageStore(dst_occlusion[params.occlusion_index],offset,vec4( occlusion_solid[ to_linear(local_offset) ] ));
}
}
*/
#endif
#ifdef MODE_STORE
ivec3 local = ivec3(gl_LocalInvocationID.xyz);
ivec3 pos = ivec3(gl_GlobalInvocationID.xyz);
// store SDF
uvec4 p = imageLoad(src_positions, pos);
bool solid = false;
float d;
if (ivec3(p.xyz) == pos) {
//solid block
d = 0;
solid = true;
} else {
//distance block
d = 1.0 + length(vec3(p.xyz) - vec3(pos));
}
d /= 255.0;
imageStore(dst_sdf, pos, vec4(d));
// STORE OCCLUSION
uint occlusion = 0;
const uint occlusion_shift[8] = uint[](12, 8, 4, 0, 28, 24, 20, 16);
for (int i = 0; i < 8; i++) {
float occ = imageLoad(src_occlusion[i], pos).r;
occlusion |= uint(clamp(occ * 15.0, 0.0, 15.0)) << occlusion_shift[i];
}
{
ivec3 occ_pos = pos;
occ_pos.z += params.cascade * params.grid_size;
imageStore(dst_occlusion, occ_pos, uvec4(occlusion & 0xFFFF));
occ_pos.x += params.grid_size;
imageStore(dst_occlusion, occ_pos, uvec4(occlusion >> 16));
}
// STORE POSITIONS
if (local == ivec3(0)) {
store_position_count = 0; //base one stores as zero, the others wait
}
groupMemoryBarrier();
barrier();
if (solid) {
uint index = atomicAdd(store_position_count, 1);
// At least do the conversion work in parallel
store_positions[index].position = uint(pos.x | (pos.y << 7) | (pos.z << 14));
//see around which voxels point to this one, add them to the list
uint bit_index = 0;
uint neighbour_bits = 0;
for (int i = -1; i <= 1; i++) {
for (int j = -1; j <= 1; j++) {
for (int k = -1; k <= 1; k++) {
if (i == 0 && j == 0 && k == 0) {
continue;
}
ivec3 npos = pos + ivec3(i, j, k);
if (all(greaterThanEqual(npos, ivec3(0))) && all(lessThan(npos, ivec3(params.grid_size)))) {
p = imageLoad(src_positions, npos);
if (ivec3(p.xyz) == pos) {
neighbour_bits |= (1 << bit_index);
}
}
bit_index++;
}
}
}
uint rgb = imageLoad(src_albedo, pos).r;
uint facing = imageLoad(src_facing, pos).r;
store_positions[index].albedo = rgb >> 1; //store as it comes (555) to avoid precision loss (and move away the alpha bit)
store_positions[index].albedo |= (facing & 0x3F) << 15; // store facing in bits 15-21
store_positions[index].albedo |= neighbour_bits << 21; //store lower 11 bits of neighbours with remaining albedo
store_positions[index].position |= (neighbour_bits >> 11) << 21; //store 11 bits more of neighbours with position
store_positions[index].light = imageLoad(src_light, pos).r;
store_positions[index].light_aniso = imageLoad(src_light_aniso, pos).r;
//add neighbours
store_positions[index].light |= (neighbour_bits >> 22) << 30; //store 2 bits more of neighbours with light
store_positions[index].light_aniso |= (neighbour_bits >> 24) << 30; //store 2 bits more of neighbours with aniso
}
groupMemoryBarrier();
barrier();
// global increment only once per group, to reduce pressure
if (local == ivec3(0) && store_position_count > 0) {
store_from_index = atomicAdd(dispatch_data.total_count, store_position_count);
uint group_count = (store_from_index + store_position_count - 1) / 64 + 1;
atomicMax(dispatch_data.x, group_count);
}
groupMemoryBarrier();
barrier();
uint read_index = uint(local.z * 4 * 4 + local.y * 4 + local.x);
uint write_index = store_from_index + read_index;
if (read_index < store_position_count) {
dst_process_voxels.data[write_index] = store_positions[read_index];
}
if (pos == ivec3(0)) {
//this thread clears y and z
dispatch_data.y = 1;
dispatch_data.z = 1;
}
#endif
}
|