summaryrefslogtreecommitdiff
path: root/servers/rendering/renderer_rd/shaders/sdfgi_debug.glsl
blob: 813ea29fa103ffce33b83433551b720118af2ea3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
#[compute]

#version 450

VERSION_DEFINES

layout(local_size_x = 8, local_size_y = 8, local_size_z = 1) in;

#define MAX_CASCADES 8

layout(set = 0, binding = 1) uniform texture3D sdf_cascades[MAX_CASCADES];
layout(set = 0, binding = 2) uniform texture3D light_cascades[MAX_CASCADES];
layout(set = 0, binding = 3) uniform texture3D aniso0_cascades[MAX_CASCADES];
layout(set = 0, binding = 4) uniform texture3D aniso1_cascades[MAX_CASCADES];
layout(set = 0, binding = 5) uniform texture3D occlusion_texture;

layout(set = 0, binding = 8) uniform sampler linear_sampler;

struct CascadeData {
	vec3 offset; //offset of (0,0,0) in world coordinates
	float to_cell; // 1/bounds * grid_size
	ivec3 probe_world_offset;
	uint pad;
};

layout(set = 0, binding = 9, std140) uniform Cascades {
	CascadeData data[MAX_CASCADES];
}
cascades;

layout(rgba16f, set = 0, binding = 10) uniform restrict writeonly image2D screen_buffer;

layout(set = 0, binding = 11) uniform texture2DArray lightprobe_texture;

layout(push_constant, binding = 0, std430) uniform Params {
	vec3 grid_size;
	uint max_cascades;

	ivec2 screen_size;
	bool use_occlusion;
	float y_mult;

	vec3 cam_extent;
	int probe_axis_size;

	mat4 cam_transform;
}
params;

vec3 linear_to_srgb(vec3 color) {
	//if going to srgb, clamp from 0 to 1.
	color = clamp(color, vec3(0.0), vec3(1.0));
	const vec3 a = vec3(0.055f);
	return mix((vec3(1.0f) + a) * pow(color.rgb, vec3(1.0f / 2.4f)) - a, 12.92f * color.rgb, lessThan(color.rgb, vec3(0.0031308f)));
}

vec2 octahedron_wrap(vec2 v) {
	vec2 signVal;
	signVal.x = v.x >= 0.0 ? 1.0 : -1.0;
	signVal.y = v.y >= 0.0 ? 1.0 : -1.0;
	return (1.0 - abs(v.yx)) * signVal;
}

vec2 octahedron_encode(vec3 n) {
	// https://twitter.com/Stubbesaurus/status/937994790553227264
	n /= (abs(n.x) + abs(n.y) + abs(n.z));
	n.xy = n.z >= 0.0 ? n.xy : octahedron_wrap(n.xy);
	n.xy = n.xy * 0.5 + 0.5;
	return n.xy;
}

void main() {
	// Pixel being shaded
	ivec2 screen_pos = ivec2(gl_GlobalInvocationID.xy);
	if (any(greaterThanEqual(screen_pos, params.screen_size))) { //too large, do nothing
		return;
	}

	vec3 ray_pos;
	vec3 ray_dir;
	{
		ray_pos = params.cam_transform[3].xyz;

		ray_dir.xy = params.cam_extent.xy * ((vec2(screen_pos) / vec2(params.screen_size)) * 2.0 - 1.0);
		ray_dir.z = params.cam_extent.z;

		ray_dir = normalize(mat3(params.cam_transform) * ray_dir);
	}

	ray_pos.y *= params.y_mult;
	ray_dir.y *= params.y_mult;
	ray_dir = normalize(ray_dir);

	vec3 pos_to_uvw = 1.0 / params.grid_size;

	vec3 light = vec3(0.0);
	float blend = 0.0;

#if 1
	vec3 inv_dir = 1.0 / ray_dir;

	float rough = 0.5;
	bool hit = false;

	for (uint i = 0; i < params.max_cascades; i++) {
		//convert to local bounds
		vec3 pos = ray_pos - cascades.data[i].offset;
		pos *= cascades.data[i].to_cell;

		// Should never happen for debug, since we start mostly at the bounds center,
		// but add anyway.
		//if (any(lessThan(pos,vec3(0.0))) || any(greaterThanEqual(pos,params.grid_size))) {
		//	continue; //already past bounds for this cascade, goto next
		//}

		//find maximum advance distance (until reaching bounds)
		vec3 t0 = -pos * inv_dir;
		vec3 t1 = (params.grid_size - pos) * inv_dir;
		vec3 tmax = max(t0, t1);
		float max_advance = min(tmax.x, min(tmax.y, tmax.z));

		float advance = 0.0;
		vec3 uvw;
		hit = false;

		while (advance < max_advance) {
			//read how much to advance from SDF
			uvw = (pos + ray_dir * advance) * pos_to_uvw;

			float distance = texture(sampler3D(sdf_cascades[i], linear_sampler), uvw).r * 255.0 - 1.7;

			if (distance < 0.001) {
				//consider hit
				hit = true;
				break;
			}

			advance += distance;
		}

		if (!hit) {
			pos += ray_dir * min(advance, max_advance);
			pos /= cascades.data[i].to_cell;
			pos += cascades.data[i].offset;
			ray_pos = pos;
			continue;
		}

		//compute albedo, emission and normal at hit point

		const float EPSILON = 0.001;
		vec3 hit_normal = normalize(vec3(
				texture(sampler3D(sdf_cascades[i], linear_sampler), uvw + vec3(EPSILON, 0.0, 0.0)).r - texture(sampler3D(sdf_cascades[i], linear_sampler), uvw - vec3(EPSILON, 0.0, 0.0)).r,
				texture(sampler3D(sdf_cascades[i], linear_sampler), uvw + vec3(0.0, EPSILON, 0.0)).r - texture(sampler3D(sdf_cascades[i], linear_sampler), uvw - vec3(0.0, EPSILON, 0.0)).r,
				texture(sampler3D(sdf_cascades[i], linear_sampler), uvw + vec3(0.0, 0.0, EPSILON)).r - texture(sampler3D(sdf_cascades[i], linear_sampler), uvw - vec3(0.0, 0.0, EPSILON)).r));

		vec3 hit_light = texture(sampler3D(light_cascades[i], linear_sampler), uvw).rgb;
		vec4 aniso0 = texture(sampler3D(aniso0_cascades[i], linear_sampler), uvw);
		vec3 hit_aniso0 = aniso0.rgb;
		vec3 hit_aniso1 = vec3(aniso0.a, texture(sampler3D(aniso1_cascades[i], linear_sampler), uvw).rg);

		hit_light *= (dot(max(vec3(0.0), (hit_normal * hit_aniso0)), vec3(1.0)) + dot(max(vec3(0.0), (-hit_normal * hit_aniso1)), vec3(1.0)));

		if (blend > 0.0) {
			light = mix(light, hit_light, blend);
			blend = 0.0;
		} else {
			light = hit_light;

			//process blend
			float blend_from = (float(params.probe_axis_size - 1) / 2.0) - 2.5;
			float blend_to = blend_from + 2.0;

			vec3 cam_pos = params.cam_transform[3].xyz - cascades.data[i].offset;
			cam_pos *= cascades.data[i].to_cell;

			pos += ray_dir * min(advance, max_advance);
			vec3 inner_pos = pos - cam_pos;

			inner_pos = inner_pos * float(params.probe_axis_size - 1) / params.grid_size.x;

			float len = length(inner_pos);

			inner_pos = abs(normalize(inner_pos));
			len *= max(inner_pos.x, max(inner_pos.y, inner_pos.z));

			if (len >= blend_from) {
				blend = smoothstep(blend_from, blend_to, len);

				pos /= cascades.data[i].to_cell;
				pos += cascades.data[i].offset;
				ray_pos = pos;
				hit = false; //continue trace for blend

				continue;
			}
		}

		break;
	}

	light = mix(light, vec3(0.0), blend);

#else

	vec3 inv_dir = 1.0 / ray_dir;

	bool hit = false;
	vec4 light_accum = vec4(0.0);

	float blend_size = (params.grid_size.x / float(params.probe_axis_size - 1)) * 0.5;

	float radius_sizes[MAX_CASCADES];
	for (uint i = 0; i < params.max_cascades; i++) {
		radius_sizes[i] = (1.0 / cascades.data[i].to_cell) * (params.grid_size.x * 0.5 - blend_size);
	}

	float max_distance = radius_sizes[params.max_cascades - 1];
	float advance = 0;
	while (advance < max_distance) {
		for (uint i = 0; i < params.max_cascades; i++) {
			if (advance < radius_sizes[i]) {
				vec3 pos = (ray_pos + ray_dir * advance) - cascades.data[i].offset;
				pos *= cascades.data[i].to_cell * pos_to_uvw;

				float distance = texture(sampler3D(sdf_cascades[i], linear_sampler), pos).r * 255.0 - 1.0;

				vec4 hit_light = vec4(0.0);
				if (distance < 1.0) {
					hit_light.a = max(0.0, 1.0 - distance);
					hit_light.rgb = texture(sampler3D(light_cascades[i], linear_sampler), pos).rgb;
					hit_light.rgb *= hit_light.a;
				}

				distance /= cascades.data[i].to_cell;

				if (i < (params.max_cascades - 1)) {
					pos = (ray_pos + ray_dir * advance) - cascades.data[i + 1].offset;
					pos *= cascades.data[i + 1].to_cell * pos_to_uvw;

					float distance2 = texture(sampler3D(sdf_cascades[i + 1], linear_sampler), pos).r * 255.0 - 1.0;

					vec4 hit_light2 = vec4(0.0);
					if (distance2 < 1.0) {
						hit_light2.a = max(0.0, 1.0 - distance2);
						hit_light2.rgb = texture(sampler3D(light_cascades[i + 1], linear_sampler), pos).rgb;
						hit_light2.rgb *= hit_light2.a;
					}

					float prev_radius = i == 0 ? 0.0 : radius_sizes[i - 1];
					float blend = (advance - prev_radius) / (radius_sizes[i] - prev_radius);

					distance2 /= cascades.data[i + 1].to_cell;

					hit_light = mix(hit_light, hit_light2, blend);
					distance = mix(distance, distance2, blend);
				}

				light_accum += hit_light;
				advance += distance;
				break;
			}
		}

		if (light_accum.a > 0.98) {
			break;
		}
	}

	light = light_accum.rgb / light_accum.a;

#endif

	imageStore(screen_buffer, screen_pos, vec4(linear_to_srgb(light), 1.0));
}