1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
|
#[compute]
#version 450
#VERSION_DEFINES
layout(local_size_x = 8, local_size_y = 8, local_size_z = 1) in;
layout(rgba16f, set = 0, binding = 0) uniform restrict readonly image2D source_diffuse;
layout(r32f, set = 0, binding = 1) uniform restrict readonly image2D source_depth;
layout(rgba16f, set = 1, binding = 0) uniform restrict writeonly image2D ssr_image;
#ifdef MODE_ROUGH
layout(r8, set = 1, binding = 1) uniform restrict writeonly image2D blur_radius_image;
#endif
layout(rgba8, set = 2, binding = 0) uniform restrict readonly image2D source_normal_roughness;
layout(set = 3, binding = 0) uniform sampler2D source_metallic;
layout(push_constant, binding = 2, std430) uniform Params {
vec4 proj_info;
ivec2 screen_size;
float camera_z_near;
float camera_z_far;
int num_steps;
float depth_tolerance;
float distance_fade;
float curve_fade_in;
bool orthogonal;
float filter_mipmap_levels;
bool use_half_res;
uint metallic_mask;
mat4 projection;
}
params;
vec2 view_to_screen(vec3 view_pos, out float w) {
vec4 projected = params.projection * vec4(view_pos, 1.0);
projected.xyz /= projected.w;
projected.xy = projected.xy * 0.5 + 0.5;
w = projected.w;
return projected.xy;
}
#define M_PI 3.14159265359
vec3 reconstructCSPosition(vec2 S, float z) {
if (params.orthogonal) {
return vec3((S.xy * params.proj_info.xy + params.proj_info.zw), z);
} else {
return vec3((S.xy * params.proj_info.xy + params.proj_info.zw) * z, z);
}
}
void main() {
// Pixel being shaded
ivec2 ssC = ivec2(gl_GlobalInvocationID.xy);
if (any(greaterThanEqual(ssC, params.screen_size))) { //too large, do nothing
return;
}
vec2 pixel_size = 1.0 / vec2(params.screen_size);
vec2 uv = vec2(ssC) * pixel_size;
uv += pixel_size * 0.5;
float base_depth = imageLoad(source_depth, ssC).r;
// World space point being shaded
vec3 vertex = reconstructCSPosition(uv * vec2(params.screen_size), base_depth);
vec4 normal_roughness = imageLoad(source_normal_roughness, ssC);
vec3 normal = normal_roughness.xyz * 2.0 - 1.0;
normal = normalize(normal);
normal.y = -normal.y; //because this code reads flipped
vec3 view_dir = normalize(vertex);
vec3 ray_dir = normalize(reflect(view_dir, normal));
if (dot(ray_dir, normal) < 0.001) {
imageStore(ssr_image, ssC, vec4(0.0));
return;
}
//ray_dir = normalize(view_dir - normal * dot(normal,view_dir) * 2.0);
//ray_dir = normalize(vec3(1.0, 1.0, -1.0));
////////////////
// make ray length and clip it against the near plane (don't want to trace beyond visible)
float ray_len = (vertex.z + ray_dir.z * params.camera_z_far) > -params.camera_z_near ? (-params.camera_z_near - vertex.z) / ray_dir.z : params.camera_z_far;
vec3 ray_end = vertex + ray_dir * ray_len;
float w_begin;
vec2 vp_line_begin = view_to_screen(vertex, w_begin);
float w_end;
vec2 vp_line_end = view_to_screen(ray_end, w_end);
vec2 vp_line_dir = vp_line_end - vp_line_begin;
// we need to interpolate w along the ray, to generate perspective correct reflections
w_begin = 1.0 / w_begin;
w_end = 1.0 / w_end;
float z_begin = vertex.z * w_begin;
float z_end = ray_end.z * w_end;
vec2 line_begin = vp_line_begin / pixel_size;
vec2 line_dir = vp_line_dir / pixel_size;
float z_dir = z_end - z_begin;
float w_dir = w_end - w_begin;
// clip the line to the viewport edges
float scale_max_x = min(1.0, 0.99 * (1.0 - vp_line_begin.x) / max(1e-5, vp_line_dir.x));
float scale_max_y = min(1.0, 0.99 * (1.0 - vp_line_begin.y) / max(1e-5, vp_line_dir.y));
float scale_min_x = min(1.0, 0.99 * vp_line_begin.x / max(1e-5, -vp_line_dir.x));
float scale_min_y = min(1.0, 0.99 * vp_line_begin.y / max(1e-5, -vp_line_dir.y));
float line_clip = min(scale_max_x, scale_max_y) * min(scale_min_x, scale_min_y);
line_dir *= line_clip;
z_dir *= line_clip;
w_dir *= line_clip;
// clip z and w advance to line advance
vec2 line_advance = normalize(line_dir); // down to pixel
float step_size = length(line_advance) / length(line_dir);
float z_advance = z_dir * step_size; // adapt z advance to line advance
float w_advance = w_dir * step_size; // adapt w advance to line advance
// make line advance faster if direction is closer to pixel edges (this avoids sampling the same pixel twice)
float advance_angle_adj = 1.0 / max(abs(line_advance.x), abs(line_advance.y));
line_advance *= advance_angle_adj; // adapt z advance to line advance
z_advance *= advance_angle_adj;
w_advance *= advance_angle_adj;
vec2 pos = line_begin;
float z = z_begin;
float w = w_begin;
float z_from = z / w;
float z_to = z_from;
float depth;
vec2 prev_pos = pos;
bool found = false;
float steps_taken = 0.0;
for (int i = 0; i < params.num_steps; i++) {
pos += line_advance;
z += z_advance;
w += w_advance;
// convert to linear depth
depth = imageLoad(source_depth, ivec2(pos - 0.5)).r;
z_from = z_to;
z_to = z / w;
if (depth > z_to) {
// if depth was surpassed
if (depth <= max(z_to, z_from) + params.depth_tolerance && -depth < params.camera_z_far) {
// check the depth tolerance and far clip
// check that normal is valid
found = true;
}
break;
}
steps_taken += 1.0;
prev_pos = pos;
}
if (found) {
float margin_blend = 1.0;
vec2 margin = vec2((params.screen_size.x + params.screen_size.y) * 0.5 * 0.05); // make a uniform margin
if (any(bvec4(lessThan(pos, -margin), greaterThan(pos, params.screen_size + margin)))) {
// clip outside screen + margin
imageStore(ssr_image, ssC, vec4(0.0));
return;
}
{
//blend fading out towards external margin
vec2 margin_grad = mix(pos - params.screen_size, -pos, lessThan(pos, vec2(0.0)));
margin_blend = 1.0 - smoothstep(0.0, margin.x, max(margin_grad.x, margin_grad.y));
//margin_blend = 1.0;
}
vec2 final_pos;
float grad;
grad = steps_taken / float(params.num_steps);
float initial_fade = params.curve_fade_in == 0.0 ? 1.0 : pow(clamp(grad, 0.0, 1.0), params.curve_fade_in);
float fade = pow(clamp(1.0 - grad, 0.0, 1.0), params.distance_fade) * initial_fade;
final_pos = pos;
vec4 final_color;
#ifdef MODE_ROUGH
// if roughness is enabled, do screen space cone tracing
float blur_radius = 0.0;
float roughness = normal_roughness.w;
if (roughness > 0.001) {
float cone_angle = min(roughness, 0.999) * M_PI * 0.5;
float cone_len = length(final_pos - line_begin);
float op_len = 2.0 * tan(cone_angle) * cone_len; // opposite side of iso triangle
{
// fit to sphere inside cone (sphere ends at end of cone), something like this:
// ___
// \O/
// V
//
// as it avoids bleeding from beyond the reflection as much as possible. As a plus
// it also makes the rough reflection more elongated.
float a = op_len;
float h = cone_len;
float a2 = a * a;
float fh2 = 4.0f * h * h;
blur_radius = (a * (sqrt(a2 + fh2) - a)) / (4.0f * h);
}
}
final_color = imageLoad(source_diffuse, ivec2((final_pos - 0.5) * pixel_size));
imageStore(blur_radius_image, ssC, vec4(blur_radius / 255.0)); //stored in r8
#endif
final_color = vec4(imageLoad(source_diffuse, ivec2(final_pos - 0.5)).rgb, fade * margin_blend);
//change blend by metallic
vec4 metallic_mask = unpackUnorm4x8(params.metallic_mask);
final_color.a *= dot(metallic_mask, texelFetch(source_metallic, ssC << 1, 0));
imageStore(ssr_image, ssC, final_color);
} else {
#ifdef MODE_ROUGH
imageStore(blur_radius_image, ssC, vec4(0.0));
#endif
imageStore(ssr_image, ssC, vec4(0.0));
}
}
|