summaryrefslogtreecommitdiff
path: root/servers/rendering/renderer_rd/shaders/scene_forward.glsl
blob: 1c12a8a4c72bcb6068c118b8ee08c78570389e59 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
#[vertex]

#version 450

VERSION_DEFINES

#include "scene_forward_inc.glsl"

/* INPUT ATTRIBS */

layout(location = 0) in vec3 vertex_attrib;

//only for pure render depth when normal is not used

#ifdef NORMAL_USED
layout(location = 1) in vec3 normal_attrib;
#endif

#if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED)
layout(location = 2) in vec4 tangent_attrib;
#endif

#if defined(COLOR_USED)
layout(location = 3) in vec4 color_attrib;
#endif

#ifdef UV_USED
layout(location = 4) in vec2 uv_attrib;
#endif

#if defined(UV2_USED) || defined(USE_LIGHTMAP) || defined(MODE_RENDER_MATERIAL)
layout(location = 5) in vec2 uv2_attrib;
#endif

#if defined(CUSTOM0_USED)
layout(location = 6) in vec4 custom0_attrib;
#endif

#if defined(CUSTOM1_USED)
layout(location = 7) in vec4 custom1_attrib;
#endif

#if defined(CUSTOM2_USED)
layout(location = 8) in vec4 custom2_attrib;
#endif

#if defined(CUSTOM3_USED)
layout(location = 9) in vec4 custom3_attrib;
#endif

#if defined(BONES_USED)
layout(location = 10) in uvec4 bone_attrib;
#endif

#if defined(WEIGHTS_USED)
layout(location = 11) in vec4 weight_attrib;
#endif

/* Varyings */

layout(location = 0) out vec3 vertex_interp;

#ifdef NORMAL_USED
layout(location = 1) out vec3 normal_interp;
#endif

#if defined(COLOR_USED)
layout(location = 2) out vec4 color_interp;
#endif

#ifdef UV_USED
layout(location = 3) out vec2 uv_interp;
#endif

#if defined(UV2_USED) || defined(USE_LIGHTMAP)
layout(location = 4) out vec2 uv2_interp;
#endif

#if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED)
layout(location = 5) out vec3 tangent_interp;
layout(location = 6) out vec3 binormal_interp;
#endif

#ifdef USE_MATERIAL_UNIFORMS
layout(set = MATERIAL_UNIFORM_SET, binding = 0, std140) uniform MaterialUniforms{
	/* clang-format off */
MATERIAL_UNIFORMS
	/* clang-format on */
} material;
#endif

/* clang-format off */

VERTEX_SHADER_GLOBALS

/* clang-format on */

invariant gl_Position;

layout(location = 7) flat out uint instance_index;

#ifdef MODE_DUAL_PARABOLOID

layout(location = 8) out float dp_clip;

#endif

void main() {
	instance_index = draw_call.instance_index;
	vec4 instance_custom = vec4(0.0);
#if defined(COLOR_USED)
	color_interp = color_attrib;
#endif

	mat4 world_matrix = instances.data[instance_index].transform;
	mat3 world_normal_matrix = mat3(instances.data[instance_index].normal_transform);

	if (bool(instances.data[instance_index].flags & INSTANCE_FLAGS_MULTIMESH)) {
		//multimesh, instances are for it
		uint offset = (instances.data[instance_index].flags >> INSTANCE_FLAGS_MULTIMESH_STRIDE_SHIFT) & INSTANCE_FLAGS_MULTIMESH_STRIDE_MASK;
		offset *= gl_InstanceIndex;

		mat4 matrix;
		if (bool(instances.data[instance_index].flags & INSTANCE_FLAGS_MULTIMESH_FORMAT_2D)) {
			matrix = mat4(transforms.data[offset + 0], transforms.data[offset + 1], vec4(0.0, 0.0, 1.0, 0.0), vec4(0.0, 0.0, 0.0, 1.0));
			offset += 2;
		} else {
			matrix = mat4(transforms.data[offset + 0], transforms.data[offset + 1], transforms.data[offset + 2], vec4(0.0, 0.0, 0.0, 1.0));
			offset += 3;
		}

		if (bool(instances.data[instance_index].flags & INSTANCE_FLAGS_MULTIMESH_HAS_COLOR)) {
#ifdef COLOR_USED
			color_interp *= transforms.data[offset];
#endif
			offset += 1;
		}

		if (bool(instances.data[instance_index].flags & INSTANCE_FLAGS_MULTIMESH_HAS_CUSTOM_DATA)) {
			instance_custom = transforms.data[offset];
		}

		//transpose
		matrix = transpose(matrix);
		world_matrix = world_matrix * matrix;
		world_normal_matrix = world_normal_matrix * mat3(matrix);

	} else {
		//not a multimesh, instances are for multiple draw calls
		instance_index += gl_InstanceIndex;
	}

	vec3 vertex = vertex_attrib;
#ifdef NORMAL_USED
	vec3 normal = normal_attrib * 2.0 - 1.0;
#endif

#if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED)
	vec3 tangent = tangent_attrib.xyz * 2.0 - 1.0;
	float binormalf = tangent_attrib.a * 2.0 - 1.0;
	vec3 binormal = normalize(cross(normal, tangent) * binormalf);
#endif

#if 0
	if (bool(instances.data[instance_index].flags & INSTANCE_FLAGS_SKELETON)) {
		//multimesh, instances are for it

		uvec2 bones_01 = uvec2(bone_attrib.x & 0xFFFF, bone_attrib.x >> 16) * 3;
		uvec2 bones_23 = uvec2(bone_attrib.y & 0xFFFF, bone_attrib.y >> 16) * 3;
		vec2 weights_01 = unpackUnorm2x16(bone_attrib.z);
		vec2 weights_23 = unpackUnorm2x16(bone_attrib.w);

		mat4 m = mat4(transforms.data[bones_01.x], transforms.data[bones_01.x + 1], transforms.data[bones_01.x + 2], vec4(0.0, 0.0, 0.0, 1.0)) * weights_01.x;
		m += mat4(transforms.data[bones_01.y], transforms.data[bones_01.y + 1], transforms.data[bones_01.y + 2], vec4(0.0, 0.0, 0.0, 1.0)) * weights_01.y;
		m += mat4(transforms.data[bones_23.x], transforms.data[bones_23.x + 1], transforms.data[bones_23.x + 2], vec4(0.0, 0.0, 0.0, 1.0)) * weights_23.x;
		m += mat4(transforms.data[bones_23.y], transforms.data[bones_23.y + 1], transforms.data[bones_23.y + 2], vec4(0.0, 0.0, 0.0, 1.0)) * weights_23.y;

		//reverse order because its transposed
		vertex = (vec4(vertex, 1.0) * m).xyz;
		normal = (vec4(normal, 0.0) * m).xyz;

#if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED)

		tangent = (vec4(tangent, 0.0) * m).xyz;
		binormal = (vec4(binormal, 0.0) * m).xyz;
#endif
	}
#endif

#ifdef UV_USED
	uv_interp = uv_attrib;
#endif

#if defined(UV2_USED) || defined(USE_LIGHTMAP)
	uv2_interp = uv2_attrib;
#endif

#ifdef USE_OVERRIDE_POSITION
	vec4 position;
#endif

	mat4 projection_matrix = scene_data.projection_matrix;

//using world coordinates
#if !defined(SKIP_TRANSFORM_USED) && defined(VERTEX_WORLD_COORDS_USED)

	vertex = (world_matrix * vec4(vertex, 1.0)).xyz;

	normal = world_normal_matrix * normal;

#if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED)

	tangent = world_normal_matrix * tangent;
	binormal = world_normal_matrix * binormal;

#endif
#endif

	float roughness = 1.0;

	mat4 modelview = scene_data.inv_camera_matrix * world_matrix;
	mat3 modelview_normal = mat3(scene_data.inv_camera_matrix) * world_normal_matrix;

	{
		/* clang-format off */

VERTEX_SHADER_CODE

		/* clang-format on */
	}

// using local coordinates (default)
#if !defined(SKIP_TRANSFORM_USED) && !defined(VERTEX_WORLD_COORDS_USED)

	vertex = (modelview * vec4(vertex, 1.0)).xyz;
#ifdef NORMAL_USED
	normal = modelview_normal * normal;
#endif

#endif

#if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED)

	binormal = modelview_normal * binormal;
	tangent = modelview_normal * tangent;
#endif

//using world coordinates
#if !defined(SKIP_TRANSFORM_USED) && defined(VERTEX_WORLD_COORDS_USED)

	vertex = (scene_data.inv_camera_matrix * vec4(vertex, 1.0)).xyz;
	normal = mat3(scene_data.inverse_normal_matrix) * normal;

#if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED)

	binormal = mat3(scene_data.camera_inverse_binormal_matrix) * binormal;
	tangent = mat3(scene_data.camera_inverse_tangent_matrix) * tangent;
#endif
#endif

	vertex_interp = vertex;
#ifdef NORMAL_USED
	normal_interp = normal;
#endif

#if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED)
	tangent_interp = tangent;
	binormal_interp = binormal;
#endif

#ifdef MODE_RENDER_DEPTH

#ifdef MODE_DUAL_PARABOLOID

	vertex_interp.z *= scene_data.dual_paraboloid_side;

	dp_clip = vertex_interp.z; //this attempts to avoid noise caused by objects sent to the other parabolloid side due to bias

	//for dual paraboloid shadow mapping, this is the fastest but least correct way, as it curves straight edges

	vec3 vtx = vertex_interp;
	float distance = length(vtx);
	vtx = normalize(vtx);
	vtx.xy /= 1.0 - vtx.z;
	vtx.z = (distance / scene_data.z_far);
	vtx.z = vtx.z * 2.0 - 1.0;
	vertex_interp = vtx;

#endif

#endif //MODE_RENDER_DEPTH

#ifdef USE_OVERRIDE_POSITION
	gl_Position = position;
#else
	gl_Position = projection_matrix * vec4(vertex_interp, 1.0);
#endif

#ifdef MODE_RENDER_DEPTH
	if (scene_data.pancake_shadows) {
		if (gl_Position.z <= 0.00001) {
			gl_Position.z = 0.00001;
		}
	}
#endif
#ifdef MODE_RENDER_MATERIAL
	if (scene_data.material_uv2_mode) {
		gl_Position.xy = (uv2_attrib.xy + draw_call.bake_uv2_offset) * 2.0 - 1.0;
		gl_Position.z = 0.00001;
		gl_Position.w = 1.0;
	}
#endif
}

#[fragment]

#version 450

VERSION_DEFINES

#include "scene_forward_inc.glsl"

/* Varyings */

layout(location = 0) in vec3 vertex_interp;

#ifdef NORMAL_USED
layout(location = 1) in vec3 normal_interp;
#endif

#if defined(COLOR_USED)
layout(location = 2) in vec4 color_interp;
#endif

#ifdef UV_USED
layout(location = 3) in vec2 uv_interp;
#endif

#if defined(UV2_USED) || defined(USE_LIGHTMAP)
layout(location = 4) in vec2 uv2_interp;
#endif

#if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED)
layout(location = 5) in vec3 tangent_interp;
layout(location = 6) in vec3 binormal_interp;
#endif

layout(location = 7) flat in uint instance_index;

#ifdef MODE_DUAL_PARABOLOID

layout(location = 8) in float dp_clip;

#endif

//defines to keep compatibility with vertex

#define world_matrix instances.data[instance_index].transform
#define world_normal_matrix instances.data[instance_index].normal_transform
#define projection_matrix scene_data.projection_matrix

#if defined(ENABLE_SSS) && defined(ENABLE_TRANSMITTANCE)
//both required for transmittance to be enabled
#define LIGHT_TRANSMITTANCE_USED
#endif

#ifdef USE_MATERIAL_UNIFORMS
layout(set = MATERIAL_UNIFORM_SET, binding = 0, std140) uniform MaterialUniforms{
	/* clang-format off */
MATERIAL_UNIFORMS
	/* clang-format on */
} material;
#endif

/* clang-format off */

FRAGMENT_SHADER_GLOBALS

/* clang-format on */

#ifdef MODE_RENDER_DEPTH

#ifdef MODE_RENDER_MATERIAL

layout(location = 0) out vec4 albedo_output_buffer;
layout(location = 1) out vec4 normal_output_buffer;
layout(location = 2) out vec4 orm_output_buffer;
layout(location = 3) out vec4 emission_output_buffer;
layout(location = 4) out float depth_output_buffer;

#endif

#ifdef MODE_RENDER_NORMAL_ROUGHNESS
layout(location = 0) out vec4 normal_roughness_output_buffer;

#ifdef MODE_RENDER_GIPROBE
layout(location = 1) out uvec2 giprobe_buffer;
#endif

#endif //MODE_RENDER_NORMAL
#else // RENDER DEPTH

#ifdef MODE_MULTIPLE_RENDER_TARGETS

layout(location = 0) out vec4 diffuse_buffer; //diffuse (rgb) and roughness
layout(location = 1) out vec4 specular_buffer; //specular and SSS (subsurface scatter)
#else

layout(location = 0) out vec4 frag_color;
#endif

#endif // RENDER DEPTH

#ifdef ALPHA_HASH_USED

float hash_2d(vec2 p) {
	return fract(1.0e4 * sin(17.0 * p.x + 0.1 * p.y) *
				 (0.1 + abs(sin(13.0 * p.y + p.x))));
}

float hash_3d(vec3 p) {
	return hash_2d(vec2(hash_2d(p.xy), p.z));
}

float compute_alpha_hash_threshold(vec3 pos, float hash_scale) {
	vec3 dx = dFdx(pos);
	vec3 dy = dFdx(pos);
	float delta_max_sqr = max(length(dx), length(dy));
	float pix_scale = 1.0 / (hash_scale * delta_max_sqr);

	vec2 pix_scales =
			vec2(exp2(floor(log2(pix_scale))), exp2(ceil(log2(pix_scale))));

	vec2 a_thresh = vec2(hash_3d(floor(pix_scales.x * pos.xyz)),
			hash_3d(floor(pix_scales.y * pos.xyz)));

	float lerp_factor = fract(log2(pix_scale));

	float a_interp = (1.0 - lerp_factor) * a_thresh.x + lerp_factor * a_thresh.y;

	float min_lerp = min(lerp_factor, 1.0 - lerp_factor);

	vec3 cases = vec3(a_interp * a_interp / (2.0 * min_lerp * (1.0 - min_lerp)),
			(a_interp - 0.5 * min_lerp) / (1.0 - min_lerp),
			1.0 - ((1.0 - a_interp) * (1.0 - a_interp) /
						  (2.0 * min_lerp * (1.0 - min_lerp))));

	float alpha_hash_threshold =
			(lerp_factor < (1.0 - min_lerp)) ? ((lerp_factor < min_lerp) ? cases.x : cases.y) : cases.z;

	return clamp(alpha_hash_threshold, 0.0, 1.0);
}

#endif // ALPHA_HASH_USED

#ifdef ALPHA_ANTIALIASING_EDGE_USED

float calc_mip_level(vec2 texture_coord) {
	vec2 dx = dFdx(texture_coord);
	vec2 dy = dFdy(texture_coord);
	float delta_max_sqr = max(dot(dx, dx), dot(dy, dy));
	return max(0.0, 0.5 * log2(delta_max_sqr));
}

float compute_alpha_antialiasing_edge(float input_alpha, vec2 texture_coord, float alpha_edge) {
	input_alpha *= 1.0 + max(0, calc_mip_level(texture_coord)) * 0.25; // 0.25 mip scale, magic number
	input_alpha = (input_alpha - alpha_edge) / max(fwidth(input_alpha), 0.0001) + 0.5;
	return clamp(input_alpha, 0.0, 1.0);
}

#endif // ALPHA_ANTIALIASING_USED

// This returns the G_GGX function divided by 2 cos_theta_m, where in practice cos_theta_m is either N.L or N.V.
// We're dividing this factor off because the overall term we'll end up looks like
// (see, for example, the first unnumbered equation in B. Burley, "Physically Based Shading at Disney", SIGGRAPH 2012):
//
//   F(L.V) D(N.H) G(N.L) G(N.V) / (4 N.L N.V)
//
// We're basically regouping this as
//
//   F(L.V) D(N.H) [G(N.L)/(2 N.L)] [G(N.V) / (2 N.V)]
//
// and thus, this function implements the [G(N.m)/(2 N.m)] part with m = L or V.
//
// The contents of the D and G (G1) functions (GGX) are taken from
// E. Heitz, "Understanding the Masking-Shadowing Function in Microfacet-Based BRDFs", J. Comp. Graph. Tech. 3 (2) (2014).
// Eqns 71-72 and 85-86 (see also Eqns 43 and 80).

#if !defined(MODE_RENDER_DEPTH) && !defined(MODE_UNSHADED)

float G_GGX_2cos(float cos_theta_m, float alpha) {
	// Schlick's approximation
	// C. Schlick, "An Inexpensive BRDF Model for Physically-based Rendering", Computer Graphics Forum. 13 (3): 233 (1994)
	// Eq. (19), although see Heitz (2014) the about the problems with his derivation.
	// It nevertheless approximates GGX well with k = alpha/2.
	float k = 0.5 * alpha;
	return 0.5 / (cos_theta_m * (1.0 - k) + k);

	// float cos2 = cos_theta_m * cos_theta_m;
	// float sin2 = (1.0 - cos2);
	// return 1.0 / (cos_theta_m + sqrt(cos2 + alpha * alpha * sin2));
}

float D_GGX(float cos_theta_m, float alpha) {
	float alpha2 = alpha * alpha;
	float d = 1.0 + (alpha2 - 1.0) * cos_theta_m * cos_theta_m;
	return alpha2 / (M_PI * d * d);
}

float G_GGX_anisotropic_2cos(float cos_theta_m, float alpha_x, float alpha_y, float cos_phi, float sin_phi) {
	float cos2 = cos_theta_m * cos_theta_m;
	float sin2 = (1.0 - cos2);
	float s_x = alpha_x * cos_phi;
	float s_y = alpha_y * sin_phi;
	return 1.0 / max(cos_theta_m + sqrt(cos2 + (s_x * s_x + s_y * s_y) * sin2), 0.001);
}

float D_GGX_anisotropic(float cos_theta_m, float alpha_x, float alpha_y, float cos_phi, float sin_phi) {
	float cos2 = cos_theta_m * cos_theta_m;
	float sin2 = (1.0 - cos2);
	float r_x = cos_phi / alpha_x;
	float r_y = sin_phi / alpha_y;
	float d = cos2 + sin2 * (r_x * r_x + r_y * r_y);
	return 1.0 / max(M_PI * alpha_x * alpha_y * d * d, 0.001);
}

float SchlickFresnel(float u) {
	float m = 1.0 - u;
	float m2 = m * m;
	return m2 * m2 * m; // pow(m,5)
}

float GTR1(float NdotH, float a) {
	if (a >= 1.0)
		return 1.0 / M_PI;
	float a2 = a * a;
	float t = 1.0 + (a2 - 1.0) * NdotH * NdotH;
	return (a2 - 1.0) / (M_PI * log(a2) * t);
}

vec3 F0(float metallic, float specular, vec3 albedo) {
	float dielectric = 0.16 * specular * specular;
	// use albedo * metallic as colored specular reflectance at 0 angle for metallic materials;
	// see https://google.github.io/filament/Filament.md.html
	return mix(vec3(dielectric), albedo, vec3(metallic));
}

void light_compute(vec3 N, vec3 L, vec3 V, float A, vec3 light_color, float attenuation, vec3 shadow_attenuation, vec3 diffuse_color, float roughness, float metallic, float specular, float specular_blob_intensity,
#ifdef LIGHT_BACKLIGHT_USED
		vec3 backlight,
#endif
#ifdef LIGHT_TRANSMITTANCE_USED
		vec4 transmittance_color,
		float transmittance_depth,
		float transmittance_curve,
		float transmittance_boost,
		float transmittance_z,
#endif
#ifdef LIGHT_RIM_USED
		float rim, float rim_tint,
#endif
#ifdef LIGHT_CLEARCOAT_USED
		float clearcoat, float clearcoat_gloss,
#endif
#ifdef LIGHT_ANISOTROPY_USED
		vec3 B, vec3 T, float anisotropy,
#endif
#ifdef USE_SHADOW_TO_OPACITY
		inout float alpha,
#endif
		inout vec3 diffuse_light, inout vec3 specular_light) {

#if defined(USE_LIGHT_SHADER_CODE)
	// light is written by the light shader

	vec3 normal = N;
	vec3 albedo = diffuse_color;
	vec3 light = L;
	vec3 view = V;

	/* clang-format off */

LIGHT_SHADER_CODE

	/* clang-format on */

#else
	float NdotL = min(A + dot(N, L), 1.0);
	float cNdotL = max(NdotL, 0.0); // clamped NdotL
	float NdotV = dot(N, V);
	float cNdotV = max(NdotV, 0.0);

#if defined(DIFFUSE_BURLEY) || defined(SPECULAR_BLINN) || defined(SPECULAR_SCHLICK_GGX) || defined(LIGHT_CLEARCOAT_USED)
	vec3 H = normalize(V + L);
#endif

#if defined(SPECULAR_BLINN) || defined(SPECULAR_SCHLICK_GGX) || defined(LIGHT_CLEARCOAT_USED)
	float cNdotH = clamp(A + dot(N, H), 0.0, 1.0);
#endif

#if defined(DIFFUSE_BURLEY) || defined(SPECULAR_SCHLICK_GGX) || defined(LIGHT_CLEARCOAT_USED)
	float cLdotH = clamp(A + dot(L, H), 0.0, 1.0);
#endif

	if (metallic < 1.0) {
#if defined(DIFFUSE_OREN_NAYAR)
		vec3 diffuse_brdf_NL;
#else
		float diffuse_brdf_NL; // BRDF times N.L for calculating diffuse radiance
#endif

#if defined(DIFFUSE_LAMBERT_WRAP)
		// energy conserving lambert wrap shader
		diffuse_brdf_NL = max(0.0, (NdotL + roughness) / ((1.0 + roughness) * (1.0 + roughness)));

#elif defined(DIFFUSE_OREN_NAYAR)

		{
			// see http://mimosa-pudica.net/improved-oren-nayar.html
			float LdotV = dot(L, V);

			float s = LdotV - NdotL * NdotV;
			float t = mix(1.0, max(NdotL, NdotV), step(0.0, s));

			float sigma2 = roughness * roughness; // TODO: this needs checking
			vec3 A = 1.0 + sigma2 * (-0.5 / (sigma2 + 0.33) + 0.17 * diffuse_color / (sigma2 + 0.13));
			float B = 0.45 * sigma2 / (sigma2 + 0.09);

			diffuse_brdf_NL = cNdotL * (A + vec3(B) * s / t) * (1.0 / M_PI);
		}

#elif defined(DIFFUSE_TOON)

		diffuse_brdf_NL = smoothstep(-roughness, max(roughness, 0.01), NdotL);

#elif defined(DIFFUSE_BURLEY)

		{
			float FD90_minus_1 = 2.0 * cLdotH * cLdotH * roughness - 0.5;
			float FdV = 1.0 + FD90_minus_1 * SchlickFresnel(cNdotV);
			float FdL = 1.0 + FD90_minus_1 * SchlickFresnel(cNdotL);
			diffuse_brdf_NL = (1.0 / M_PI) * FdV * FdL * cNdotL;
			/*
			float energyBias = mix(roughness, 0.0, 0.5);
			float energyFactor = mix(roughness, 1.0, 1.0 / 1.51);
			float fd90 = energyBias + 2.0 * VoH * VoH * roughness;
			float f0 = 1.0;
			float lightScatter = f0 + (fd90 - f0) * pow(1.0 - cNdotL, 5.0);
			float viewScatter = f0 + (fd90 - f0) * pow(1.0 - cNdotV, 5.0);

			diffuse_brdf_NL = lightScatter * viewScatter * energyFactor;
			*/
		}
#else
		// lambert
		diffuse_brdf_NL = cNdotL * (1.0 / M_PI);
#endif

		diffuse_light += light_color * diffuse_color * shadow_attenuation * diffuse_brdf_NL * attenuation;

#if defined(LIGHT_BACKLIGHT_USED)
		diffuse_light += light_color * diffuse_color * (vec3(1.0 / M_PI) - diffuse_brdf_NL) * backlight * attenuation;
#endif

#if defined(LIGHT_RIM_USED)
		float rim_light = pow(max(0.0, 1.0 - cNdotV), max(0.0, (1.0 - roughness) * 16.0));
		diffuse_light += rim_light * rim * mix(vec3(1.0), diffuse_color, rim_tint) * light_color;
#endif

#ifdef LIGHT_TRANSMITTANCE_USED

#ifdef SSS_MODE_SKIN

		{
			float scale = 8.25 / transmittance_depth;
			float d = scale * abs(transmittance_z);
			float dd = -d * d;
			vec3 profile = vec3(0.233, 0.455, 0.649) * exp(dd / 0.0064) +
						   vec3(0.1, 0.336, 0.344) * exp(dd / 0.0484) +
						   vec3(0.118, 0.198, 0.0) * exp(dd / 0.187) +
						   vec3(0.113, 0.007, 0.007) * exp(dd / 0.567) +
						   vec3(0.358, 0.004, 0.0) * exp(dd / 1.99) +
						   vec3(0.078, 0.0, 0.0) * exp(dd / 7.41);

			diffuse_light += profile * transmittance_color.a * diffuse_color * light_color * clamp(transmittance_boost - NdotL, 0.0, 1.0) * (1.0 / M_PI) * attenuation;
		}
#else

		if (transmittance_depth > 0.0) {
			float fade = clamp(abs(transmittance_z / transmittance_depth), 0.0, 1.0);

			fade = pow(max(0.0, 1.0 - fade), transmittance_curve);
			fade *= clamp(transmittance_boost - NdotL, 0.0, 1.0);

			diffuse_light += diffuse_color * transmittance_color.rgb * light_color * (1.0 / M_PI) * transmittance_color.a * fade * attenuation;
		}

#endif //SSS_MODE_SKIN

#endif //LIGHT_TRANSMITTANCE_USED
	}

	if (roughness > 0.0) { // FIXME: roughness == 0 should not disable specular light entirely

		// D

#if defined(SPECULAR_BLINN)

		//normalized blinn
		float shininess = exp2(15.0 * (1.0 - roughness) + 1.0) * 0.25;
		float blinn = pow(cNdotH, shininess) * cNdotL;
		blinn *= (shininess + 8.0) * (1.0 / (8.0 * M_PI));
		float intensity = blinn;

		specular_light += light_color * shadow_attenuation * intensity * specular_blob_intensity * attenuation;

#elif defined(SPECULAR_PHONG)

		vec3 R = normalize(-reflect(L, N));
		float cRdotV = clamp(A + dot(R, V), 0.0, 1.0);
		float shininess = exp2(15.0 * (1.0 - roughness) + 1.0) * 0.25;
		float phong = pow(cRdotV, shininess);
		phong *= (shininess + 8.0) * (1.0 / (8.0 * M_PI));
		float intensity = (phong) / max(4.0 * cNdotV * cNdotL, 0.75);

		specular_light += light_color * shadow_attenuation * intensity * specular_blob_intensity * attenuation;

#elif defined(SPECULAR_TOON)

		vec3 R = normalize(-reflect(L, N));
		float RdotV = dot(R, V);
		float mid = 1.0 - roughness;
		mid *= mid;
		float intensity = smoothstep(mid - roughness * 0.5, mid + roughness * 0.5, RdotV) * mid;
		diffuse_light += light_color * shadow_attenuation * intensity * specular_blob_intensity * attenuation; // write to diffuse_light, as in toon shading you generally want no reflection

#elif defined(SPECULAR_DISABLED)
		// none..

#elif defined(SPECULAR_SCHLICK_GGX)
		// shlick+ggx as default

#if defined(LIGHT_ANISOTROPY_USED)

		float alpha_ggx = roughness * roughness;
		float aspect = sqrt(1.0 - anisotropy * 0.9);
		float ax = alpha_ggx / aspect;
		float ay = alpha_ggx * aspect;
		float XdotH = dot(T, H);
		float YdotH = dot(B, H);
		float D = D_GGX_anisotropic(cNdotH, ax, ay, XdotH, YdotH);
		float G = G_GGX_anisotropic_2cos(cNdotL, ax, ay, XdotH, YdotH) * G_GGX_anisotropic_2cos(cNdotV, ax, ay, XdotH, YdotH);

#else
		float alpha_ggx = roughness * roughness;
		float D = D_GGX(cNdotH, alpha_ggx);
		float G = G_GGX_2cos(cNdotL, alpha_ggx) * G_GGX_2cos(cNdotV, alpha_ggx);
#endif
		// F
		vec3 f0 = F0(metallic, specular, diffuse_color);
		float cLdotH5 = SchlickFresnel(cLdotH);
		vec3 F = mix(vec3(cLdotH5), vec3(1.0), f0);

		vec3 specular_brdf_NL = cNdotL * D * F * G;

		specular_light += specular_brdf_NL * light_color * shadow_attenuation * specular_blob_intensity * attenuation;
#endif

#if defined(LIGHT_CLEARCOAT_USED)

#if !defined(SPECULAR_SCHLICK_GGX)
		float cLdotH5 = SchlickFresnel(cLdotH);
#endif
		float Dr = GTR1(cNdotH, mix(.1, .001, clearcoat_gloss));
		float Fr = mix(.04, 1.0, cLdotH5);
		float Gr = G_GGX_2cos(cNdotL, .25) * G_GGX_2cos(cNdotV, .25);

		float clearcoat_specular_brdf_NL = 0.25 * clearcoat * Gr * Fr * Dr * cNdotL;

		specular_light += clearcoat_specular_brdf_NL * light_color * shadow_attenuation * specular_blob_intensity * attenuation;
#endif
	}

#ifdef USE_SHADOW_TO_OPACITY
	alpha = min(alpha, clamp(1.0 - length(shadow_attenuation * attenuation), 0.0, 1.0));
#endif

#endif //defined(USE_LIGHT_SHADER_CODE)
}

#ifndef USE_NO_SHADOWS

// Produces cheap white noise, optimized for window-space
// Comes from: https://www.shadertoy.com/view/4djSRW
// Copyright: Dave Hoskins, MIT License
float quick_hash(vec2 pos) {
	vec3 p3 = fract(vec3(pos.xyx) * .1031);
	p3 += dot(p3, p3.yzx + 33.33);
	return fract((p3.x + p3.y) * p3.z);
}

float sample_directional_pcf_shadow(texture2D shadow, vec2 shadow_pixel_size, vec4 coord) {
	vec2 pos = coord.xy;
	float depth = coord.z;

	//if only one sample is taken, take it from the center
	if (scene_data.directional_soft_shadow_samples == 1) {
		return textureProj(sampler2DShadow(shadow, shadow_sampler), vec4(pos, depth, 1.0));
	}

	mat2 disk_rotation;
	{
		float r = quick_hash(gl_FragCoord.xy) * 2.0 * M_PI;
		float sr = sin(r);
		float cr = cos(r);
		disk_rotation = mat2(vec2(cr, -sr), vec2(sr, cr));
	}

	float avg = 0.0;

	for (uint i = 0; i < scene_data.directional_soft_shadow_samples; i++) {
		avg += textureProj(sampler2DShadow(shadow, shadow_sampler), vec4(pos + shadow_pixel_size * (disk_rotation * scene_data.directional_soft_shadow_kernel[i].xy), depth, 1.0));
	}

	return avg * (1.0 / float(scene_data.directional_soft_shadow_samples));
}

float sample_pcf_shadow(texture2D shadow, vec2 shadow_pixel_size, vec4 coord) {
	vec2 pos = coord.xy;
	float depth = coord.z;

	//if only one sample is taken, take it from the center
	if (scene_data.soft_shadow_samples == 1) {
		return textureProj(sampler2DShadow(shadow, shadow_sampler), vec4(pos, depth, 1.0));
	}

	mat2 disk_rotation;
	{
		float r = quick_hash(gl_FragCoord.xy) * 2.0 * M_PI;
		float sr = sin(r);
		float cr = cos(r);
		disk_rotation = mat2(vec2(cr, -sr), vec2(sr, cr));
	}

	float avg = 0.0;

	for (uint i = 0; i < scene_data.soft_shadow_samples; i++) {
		avg += textureProj(sampler2DShadow(shadow, shadow_sampler), vec4(pos + shadow_pixel_size * (disk_rotation * scene_data.soft_shadow_kernel[i].xy), depth, 1.0));
	}

	return avg * (1.0 / float(scene_data.soft_shadow_samples));
}

float sample_directional_soft_shadow(texture2D shadow, vec3 pssm_coord, vec2 tex_scale) {
	//find blocker
	float blocker_count = 0.0;
	float blocker_average = 0.0;

	mat2 disk_rotation;
	{
		float r = quick_hash(gl_FragCoord.xy) * 2.0 * M_PI;
		float sr = sin(r);
		float cr = cos(r);
		disk_rotation = mat2(vec2(cr, -sr), vec2(sr, cr));
	}

	for (uint i = 0; i < scene_data.directional_penumbra_shadow_samples; i++) {
		vec2 suv = pssm_coord.xy + (disk_rotation * scene_data.directional_penumbra_shadow_kernel[i].xy) * tex_scale;
		float d = textureLod(sampler2D(shadow, material_samplers[SAMPLER_LINEAR_CLAMP]), suv, 0.0).r;
		if (d < pssm_coord.z) {
			blocker_average += d;
			blocker_count += 1.0;
		}
	}

	if (blocker_count > 0.0) {
		//blockers found, do soft shadow
		blocker_average /= blocker_count;
		float penumbra = (pssm_coord.z - blocker_average) / blocker_average;
		tex_scale *= penumbra;

		float s = 0.0;
		for (uint i = 0; i < scene_data.directional_penumbra_shadow_samples; i++) {
			vec2 suv = pssm_coord.xy + (disk_rotation * scene_data.directional_penumbra_shadow_kernel[i].xy) * tex_scale;
			s += textureProj(sampler2DShadow(shadow, shadow_sampler), vec4(suv, pssm_coord.z, 1.0));
		}

		return s / float(scene_data.directional_penumbra_shadow_samples);

	} else {
		//no blockers found, so no shadow
		return 1.0;
	}
}

#endif //USE_NO_SHADOWS

void light_process_omni(uint idx, vec3 vertex, vec3 eye_vec, vec3 normal, vec3 vertex_ddx, vec3 vertex_ddy, vec3 albedo, float roughness, float metallic, float specular, float p_blob_intensity,
#ifdef LIGHT_BACKLIGHT_USED
		vec3 backlight,
#endif
#ifdef LIGHT_TRANSMITTANCE_USED
		vec4 transmittance_color,
		float transmittance_depth,
		float transmittance_curve,
		float transmittance_boost,
#endif
#ifdef LIGHT_RIM_USED
		float rim, float rim_tint,
#endif
#ifdef LIGHT_CLEARCOAT_USED
		float clearcoat, float clearcoat_gloss,
#endif
#ifdef LIGHT_ANISOTROPY_USED
		vec3 binormal, vec3 tangent, float anisotropy,
#endif
#ifdef USE_SHADOW_TO_OPACITY
		inout float alpha,
#endif
		inout vec3 diffuse_light, inout vec3 specular_light) {
	vec3 light_rel_vec = lights.data[idx].position - vertex;
	float light_length = length(light_rel_vec);
	float normalized_distance = light_length * lights.data[idx].inv_radius;
	vec2 attenuation_energy = unpackHalf2x16(lights.data[idx].attenuation_energy);
	float omni_attenuation = pow(max(1.0 - normalized_distance, 0.0), attenuation_energy.x);
	float light_attenuation = omni_attenuation;
	vec3 shadow_attenuation = vec3(1.0);
	vec4 color_specular = unpackUnorm4x8(lights.data[idx].color_specular);
	color_specular.rgb *= attenuation_energy.y;
	float size_A = 0.0;

	if (lights.data[idx].size > 0.0) {
		float t = lights.data[idx].size / max(0.001, light_length);
		size_A = max(0.0, 1.0 - 1 / sqrt(1 + t * t));
	}

#ifdef LIGHT_TRANSMITTANCE_USED
	float transmittance_z = transmittance_depth; //no transmittance by default
#endif

#ifndef USE_NO_SHADOWS
	vec4 shadow_color_enabled = unpackUnorm4x8(lights.data[idx].shadow_color_enabled);
	if (shadow_color_enabled.w > 0.5) {
		// there is a shadowmap

		vec4 v = vec4(vertex, 1.0);

		vec4 splane = (lights.data[idx].shadow_matrix * v);
		float shadow_len = length(splane.xyz); //need to remember shadow len from here

		{
			vec3 nofs = normal_interp * lights.data[idx].shadow_normal_bias / lights.data[idx].inv_radius;
			nofs *= (1.0 - max(0.0, dot(normalize(light_rel_vec), normalize(normal_interp))));
			v.xyz += nofs;
			splane = (lights.data[idx].shadow_matrix * v);
		}

		float shadow;

		if (lights.data[idx].soft_shadow_size > 0.0) {
			//soft shadow

			//find blocker

			float blocker_count = 0.0;
			float blocker_average = 0.0;

			mat2 disk_rotation;
			{
				float r = quick_hash(gl_FragCoord.xy) * 2.0 * M_PI;
				float sr = sin(r);
				float cr = cos(r);
				disk_rotation = mat2(vec2(cr, -sr), vec2(sr, cr));
			}

			vec3 normal = normalize(splane.xyz);
			vec3 v0 = abs(normal.z) < 0.999 ? vec3(0.0, 0.0, 1.0) : vec3(0.0, 1.0, 0.0);
			vec3 tangent = normalize(cross(v0, normal));
			vec3 bitangent = normalize(cross(tangent, normal));
			float z_norm = shadow_len * lights.data[idx].inv_radius;

			tangent *= lights.data[idx].soft_shadow_size * lights.data[idx].soft_shadow_scale;
			bitangent *= lights.data[idx].soft_shadow_size * lights.data[idx].soft_shadow_scale;

			for (uint i = 0; i < scene_data.penumbra_shadow_samples; i++) {
				vec2 disk = disk_rotation * scene_data.penumbra_shadow_kernel[i].xy;

				vec3 pos = splane.xyz + tangent * disk.x + bitangent * disk.y;

				pos = normalize(pos);
				vec4 uv_rect = lights.data[idx].atlas_rect;

				if (pos.z >= 0.0) {
					pos.z += 1.0;
					uv_rect.y += uv_rect.w;
				} else {
					pos.z = 1.0 - pos.z;
				}

				pos.xy /= pos.z;

				pos.xy = pos.xy * 0.5 + 0.5;
				pos.xy = uv_rect.xy + pos.xy * uv_rect.zw;

				float d = textureLod(sampler2D(shadow_atlas, material_samplers[SAMPLER_LINEAR_CLAMP]), pos.xy, 0.0).r;
				if (d < z_norm) {
					blocker_average += d;
					blocker_count += 1.0;
				}
			}

			if (blocker_count > 0.0) {
				//blockers found, do soft shadow
				blocker_average /= blocker_count;
				float penumbra = (z_norm - blocker_average) / blocker_average;
				tangent *= penumbra;
				bitangent *= penumbra;

				z_norm -= lights.data[idx].inv_radius * lights.data[idx].shadow_bias;

				shadow = 0.0;
				for (uint i = 0; i < scene_data.penumbra_shadow_samples; i++) {
					vec2 disk = disk_rotation * scene_data.penumbra_shadow_kernel[i].xy;
					vec3 pos = splane.xyz + tangent * disk.x + bitangent * disk.y;

					pos = normalize(pos);
					vec4 uv_rect = lights.data[idx].atlas_rect;

					if (pos.z >= 0.0) {
						pos.z += 1.0;
						uv_rect.y += uv_rect.w;
					} else {
						pos.z = 1.0 - pos.z;
					}

					pos.xy /= pos.z;

					pos.xy = pos.xy * 0.5 + 0.5;
					pos.xy = uv_rect.xy + pos.xy * uv_rect.zw;
					shadow += textureProj(sampler2DShadow(shadow_atlas, shadow_sampler), vec4(pos.xy, z_norm, 1.0));
				}

				shadow /= float(scene_data.penumbra_shadow_samples);

			} else {
				//no blockers found, so no shadow
				shadow = 1.0;
			}
		} else {
			splane.xyz = normalize(splane.xyz);
			vec4 clamp_rect = lights.data[idx].atlas_rect;

			if (splane.z >= 0.0) {
				splane.z += 1.0;

				clamp_rect.y += clamp_rect.w;

			} else {
				splane.z = 1.0 - splane.z;
			}

			splane.xy /= splane.z;

			splane.xy = splane.xy * 0.5 + 0.5;
			splane.z = (shadow_len - lights.data[idx].shadow_bias) * lights.data[idx].inv_radius;
			splane.xy = clamp_rect.xy + splane.xy * clamp_rect.zw;
			splane.w = 1.0; //needed? i think it should be 1 already
			shadow = sample_pcf_shadow(shadow_atlas, lights.data[idx].soft_shadow_scale * scene_data.shadow_atlas_pixel_size, splane);
		}

#ifdef LIGHT_TRANSMITTANCE_USED
		{
			vec4 clamp_rect = lights.data[idx].atlas_rect;

			//redo shadowmapping, but shrink the model a bit to avoid arctifacts
			splane = (lights.data[idx].shadow_matrix * vec4(vertex - normalize(normal_interp) * lights.data[idx].transmittance_bias, 1.0));

			shadow_len = length(splane.xyz);
			splane = normalize(splane.xyz);

			if (splane.z >= 0.0) {
				splane.z += 1.0;

			} else {
				splane.z = 1.0 - splane.z;
			}

			splane.xy /= splane.z;
			splane.xy = splane.xy * 0.5 + 0.5;
			splane.z = shadow_len * lights.data[idx].inv_radius;
			splane.xy = clamp_rect.xy + splane.xy * clamp_rect.zw;
			splane.w = 1.0; //needed? i think it should be 1 already

			float shadow_z = textureLod(sampler2D(shadow_atlas, material_samplers[SAMPLER_LINEAR_CLAMP]), splane.xy, 0.0).r;
			transmittance_z = (splane.z - shadow_z) / lights.data[idx].inv_radius;
		}
#endif

		vec3 no_shadow = vec3(1.0);

		if (lights.data[idx].projector_rect != vec4(0.0)) {
			vec3 local_v = (lights.data[idx].shadow_matrix * vec4(vertex, 1.0)).xyz;
			local_v = normalize(local_v);

			vec4 atlas_rect = lights.data[idx].projector_rect;

			if (local_v.z >= 0.0) {
				local_v.z += 1.0;
				atlas_rect.y += atlas_rect.w;

			} else {
				local_v.z = 1.0 - local_v.z;
			}

			local_v.xy /= local_v.z;
			local_v.xy = local_v.xy * 0.5 + 0.5;
			vec2 proj_uv = local_v.xy * atlas_rect.zw;

			vec2 proj_uv_ddx;
			vec2 proj_uv_ddy;
			{
				vec3 local_v_ddx = (lights.data[idx].shadow_matrix * vec4(vertex + vertex_ddx, 1.0)).xyz;
				local_v_ddx = normalize(local_v_ddx);

				if (local_v_ddx.z >= 0.0) {
					local_v_ddx.z += 1.0;
				} else {
					local_v_ddx.z = 1.0 - local_v_ddx.z;
				}

				local_v_ddx.xy /= local_v_ddx.z;
				local_v_ddx.xy = local_v_ddx.xy * 0.5 + 0.5;

				proj_uv_ddx = local_v_ddx.xy * atlas_rect.zw - proj_uv;

				vec3 local_v_ddy = (lights.data[idx].shadow_matrix * vec4(vertex + vertex_ddy, 1.0)).xyz;
				local_v_ddy = normalize(local_v_ddy);

				if (local_v_ddy.z >= 0.0) {
					local_v_ddy.z += 1.0;
				} else {
					local_v_ddy.z = 1.0 - local_v_ddy.z;
				}

				local_v_ddy.xy /= local_v_ddy.z;
				local_v_ddy.xy = local_v_ddy.xy * 0.5 + 0.5;

				proj_uv_ddy = local_v_ddy.xy * atlas_rect.zw - proj_uv;
			}

			vec4 proj = textureGrad(sampler2D(decal_atlas_srgb, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), proj_uv + atlas_rect.xy, proj_uv_ddx, proj_uv_ddy);
			no_shadow = mix(no_shadow, proj.rgb, proj.a);
		}

		shadow_attenuation = mix(shadow_color_enabled.rgb, no_shadow, shadow);
	}
#endif //USE_NO_SHADOWS

	light_compute(normal, normalize(light_rel_vec), eye_vec, size_A, color_specular.rgb, light_attenuation, shadow_attenuation, albedo, roughness, metallic, specular, color_specular.a * p_blob_intensity,
#ifdef LIGHT_BACKLIGHT_USED
			backlight,
#endif
#ifdef LIGHT_TRANSMITTANCE_USED
			transmittance_color,
			transmittance_depth,
			transmittance_curve,
			transmittance_boost,
			transmittance_z,
#endif
#ifdef LIGHT_RIM_USED
			rim * omni_attenuation, rim_tint,
#endif
#ifdef LIGHT_CLEARCOAT_USED
			clearcoat, clearcoat_gloss,
#endif
#ifdef LIGHT_ANISOTROPY_USED
			binormal, tangent, anisotropy,
#endif
#ifdef USE_SHADOW_TO_OPACITY
			alpha,
#endif
			diffuse_light,
			specular_light);
}

void light_process_spot(uint idx, vec3 vertex, vec3 eye_vec, vec3 normal, vec3 vertex_ddx, vec3 vertex_ddy, vec3 albedo, float roughness, float metallic, float specular, float p_blob_intensity,
#ifdef LIGHT_BACKLIGHT_USED
		vec3 backlight,
#endif
#ifdef LIGHT_TRANSMITTANCE_USED
		vec4 transmittance_color,
		float transmittance_depth,
		float transmittance_curve,
		float transmittance_boost,
#endif
#ifdef LIGHT_RIM_USED
		float rim, float rim_tint,
#endif
#ifdef LIGHT_CLEARCOAT_USED
		float clearcoat, float clearcoat_gloss,
#endif
#ifdef LIGHT_ANISOTROPY_USED
		vec3 binormal, vec3 tangent, float anisotropy,
#endif
#ifdef USE_SHADOW_TO_OPACITY
		inout float alpha,
#endif
		inout vec3 diffuse_light,
		inout vec3 specular_light) {
	vec3 light_rel_vec = lights.data[idx].position - vertex;
	float light_length = length(light_rel_vec);
	float normalized_distance = light_length * lights.data[idx].inv_radius;
	vec2 attenuation_energy = unpackHalf2x16(lights.data[idx].attenuation_energy);
	float spot_attenuation = pow(max(1.0 - normalized_distance, 0.001), attenuation_energy.x);
	vec3 spot_dir = lights.data[idx].direction;
	vec2 spot_att_angle = unpackHalf2x16(lights.data[idx].cone_attenuation_angle);
	float scos = max(dot(-normalize(light_rel_vec), spot_dir), spot_att_angle.y);
	float spot_rim = max(0.0001, (1.0 - scos) / (1.0 - spot_att_angle.y));
	spot_attenuation *= 1.0 - pow(spot_rim, spot_att_angle.x);
	float light_attenuation = spot_attenuation;
	vec3 shadow_attenuation = vec3(1.0);
	vec4 color_specular = unpackUnorm4x8(lights.data[idx].color_specular);
	color_specular.rgb *= attenuation_energy.y;

	float size_A = 0.0;

	if (lights.data[idx].size > 0.0) {
		float t = lights.data[idx].size / max(0.001, light_length);
		size_A = max(0.0, 1.0 - 1 / sqrt(1 + t * t));
	}
/*
	if (lights.data[idx].atlas_rect!=vec4(0.0)) {
		//use projector texture
	}
	*/
#ifdef LIGHT_TRANSMITTANCE_USED
	float transmittance_z = transmittance_depth;
#endif

#ifndef USE_NO_SHADOWS
	vec4 shadow_color_enabled = unpackUnorm4x8(lights.data[idx].shadow_color_enabled);
	if (shadow_color_enabled.w > 0.5) {
		//there is a shadowmap
		vec4 v = vec4(vertex, 1.0);

		v.xyz -= spot_dir * lights.data[idx].shadow_bias;

		float z_norm = dot(spot_dir, -light_rel_vec) * lights.data[idx].inv_radius;

		float depth_bias_scale = 1.0 / (max(0.0001, z_norm)); //the closer to the light origin, the more you have to offset to reach 1px in the map
		vec3 normal_bias = normalize(normal_interp) * (1.0 - max(0.0, dot(spot_dir, -normalize(normal_interp)))) * lights.data[idx].shadow_normal_bias * depth_bias_scale;
		normal_bias -= spot_dir * dot(spot_dir, normal_bias); //only XY, no Z
		v.xyz += normal_bias;

		//adjust with bias
		z_norm = dot(spot_dir, v.xyz - lights.data[idx].position) * lights.data[idx].inv_radius;

		float shadow;

		vec4 splane = (lights.data[idx].shadow_matrix * v);
		splane /= splane.w;

		if (lights.data[idx].soft_shadow_size > 0.0) {
			//soft shadow

			//find blocker

			vec2 shadow_uv = splane.xy * lights.data[idx].atlas_rect.zw + lights.data[idx].atlas_rect.xy;

			float blocker_count = 0.0;
			float blocker_average = 0.0;

			mat2 disk_rotation;
			{
				float r = quick_hash(gl_FragCoord.xy) * 2.0 * M_PI;
				float sr = sin(r);
				float cr = cos(r);
				disk_rotation = mat2(vec2(cr, -sr), vec2(sr, cr));
			}

			float uv_size = lights.data[idx].soft_shadow_size * z_norm * lights.data[idx].soft_shadow_scale;
			vec2 clamp_max = lights.data[idx].atlas_rect.xy + lights.data[idx].atlas_rect.zw;
			for (uint i = 0; i < scene_data.penumbra_shadow_samples; i++) {
				vec2 suv = shadow_uv + (disk_rotation * scene_data.penumbra_shadow_kernel[i].xy) * uv_size;
				suv = clamp(suv, lights.data[idx].atlas_rect.xy, clamp_max);
				float d = textureLod(sampler2D(shadow_atlas, material_samplers[SAMPLER_LINEAR_CLAMP]), suv, 0.0).r;
				if (d < z_norm) {
					blocker_average += d;
					blocker_count += 1.0;
				}
			}

			if (blocker_count > 0.0) {
				//blockers found, do soft shadow
				blocker_average /= blocker_count;
				float penumbra = (z_norm - blocker_average) / blocker_average;
				uv_size *= penumbra;

				shadow = 0.0;
				for (uint i = 0; i < scene_data.penumbra_shadow_samples; i++) {
					vec2 suv = shadow_uv + (disk_rotation * scene_data.penumbra_shadow_kernel[i].xy) * uv_size;
					suv = clamp(suv, lights.data[idx].atlas_rect.xy, clamp_max);
					shadow += textureProj(sampler2DShadow(shadow_atlas, shadow_sampler), vec4(suv, z_norm, 1.0));
				}

				shadow /= float(scene_data.penumbra_shadow_samples);

			} else {
				//no blockers found, so no shadow
				shadow = 1.0;
			}

		} else {
			//hard shadow
			vec4 shadow_uv = vec4(splane.xy * lights.data[idx].atlas_rect.zw + lights.data[idx].atlas_rect.xy, z_norm, 1.0);

			shadow = sample_pcf_shadow(shadow_atlas, lights.data[idx].soft_shadow_scale * scene_data.shadow_atlas_pixel_size, shadow_uv);
		}

		vec3 no_shadow = vec3(1.0);

		if (lights.data[idx].projector_rect != vec4(0.0)) {
			splane = (lights.data[idx].shadow_matrix * vec4(vertex, 1.0));
			splane /= splane.w;

			vec2 proj_uv = splane.xy * lights.data[idx].projector_rect.zw;

			//ensure we have proper mipmaps
			vec4 splane_ddx = (lights.data[idx].shadow_matrix * vec4(vertex + vertex_ddx, 1.0));
			splane_ddx /= splane_ddx.w;
			vec2 proj_uv_ddx = splane_ddx.xy * lights.data[idx].projector_rect.zw - proj_uv;

			vec4 splane_ddy = (lights.data[idx].shadow_matrix * vec4(vertex + vertex_ddy, 1.0));
			splane_ddy /= splane_ddy.w;
			vec2 proj_uv_ddy = splane_ddy.xy * lights.data[idx].projector_rect.zw - proj_uv;

			vec4 proj = textureGrad(sampler2D(decal_atlas_srgb, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), proj_uv + lights.data[idx].projector_rect.xy, proj_uv_ddx, proj_uv_ddy);
			no_shadow = mix(no_shadow, proj.rgb, proj.a);
		}

		shadow_attenuation = mix(shadow_color_enabled.rgb, no_shadow, shadow);

#ifdef LIGHT_TRANSMITTANCE_USED
		{
			splane = (lights.data[idx].shadow_matrix * vec4(vertex - normalize(normal_interp) * lights.data[idx].transmittance_bias, 1.0));
			splane /= splane.w;
			splane.xy = splane.xy * lights.data[idx].atlas_rect.zw + lights.data[idx].atlas_rect.xy;

			float shadow_z = textureLod(sampler2D(shadow_atlas, material_samplers[SAMPLER_LINEAR_CLAMP]), splane.xy, 0.0).r;
			//reconstruct depth
			shadow_z /= lights.data[idx].inv_radius;
			//distance to light plane
			float z = dot(spot_dir, -light_rel_vec);
			transmittance_z = z - shadow_z;
		}
#endif //LIGHT_TRANSMITTANCE_USED
	}

#endif //USE_NO_SHADOWS

	light_compute(normal, normalize(light_rel_vec), eye_vec, size_A, color_specular.rgb, light_attenuation, shadow_attenuation, albedo, roughness, metallic, specular, color_specular.a * p_blob_intensity,
#ifdef LIGHT_BACKLIGHT_USED
			backlight,
#endif
#ifdef LIGHT_TRANSMITTANCE_USED
			transmittance_color,
			transmittance_depth,
			transmittance_curve,
			transmittance_boost,
			transmittance_z,
#endif
#ifdef LIGHT_RIM_USED
			rim * spot_attenuation, rim_tint,
#endif
#ifdef LIGHT_CLEARCOAT_USED
			clearcoat, clearcoat_gloss,
#endif
#ifdef LIGHT_ANISOTROPY_USED
			binormal, tangent, anisotropy,
#endif
#ifdef USE_SHADOW_TO_OPACITY
			alpha,
#endif
			diffuse_light, specular_light);
}

void reflection_process(uint ref_index, vec3 vertex, vec3 normal, float roughness, vec3 ambient_light, vec3 specular_light, inout vec4 ambient_accum, inout vec4 reflection_accum) {
	vec3 box_extents = reflections.data[ref_index].box_extents;
	vec3 local_pos = (reflections.data[ref_index].local_matrix * vec4(vertex, 1.0)).xyz;

	if (any(greaterThan(abs(local_pos), box_extents))) { //out of the reflection box
		return;
	}

	vec3 ref_vec = normalize(reflect(vertex, normal));

	vec3 inner_pos = abs(local_pos / box_extents);
	float blend = max(inner_pos.x, max(inner_pos.y, inner_pos.z));
	//make blend more rounded
	blend = mix(length(inner_pos), blend, blend);
	blend *= blend;
	blend = max(0.0, 1.0 - blend);

	if (reflections.data[ref_index].params.x > 0.0) { // compute reflection

		vec3 local_ref_vec = (reflections.data[ref_index].local_matrix * vec4(ref_vec, 0.0)).xyz;

		if (reflections.data[ref_index].params.w > 0.5) { //box project

			vec3 nrdir = normalize(local_ref_vec);
			vec3 rbmax = (box_extents - local_pos) / nrdir;
			vec3 rbmin = (-box_extents - local_pos) / nrdir;

			vec3 rbminmax = mix(rbmin, rbmax, greaterThan(nrdir, vec3(0.0, 0.0, 0.0)));

			float fa = min(min(rbminmax.x, rbminmax.y), rbminmax.z);
			vec3 posonbox = local_pos + nrdir * fa;
			local_ref_vec = posonbox - reflections.data[ref_index].box_offset;
		}

		vec4 reflection;

		reflection.rgb = textureLod(samplerCubeArray(reflection_atlas, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), vec4(local_ref_vec, reflections.data[ref_index].index), roughness * MAX_ROUGHNESS_LOD).rgb;

		if (reflections.data[ref_index].params.z < 0.5) {
			reflection.rgb = mix(specular_light, reflection.rgb, blend);
		}

		reflection.rgb *= reflections.data[ref_index].params.x;
		reflection.a = blend;
		reflection.rgb *= reflection.a;

		reflection_accum += reflection;
	}

	switch (reflections.data[ref_index].ambient_mode) {
		case REFLECTION_AMBIENT_DISABLED: {
			//do nothing
		} break;
		case REFLECTION_AMBIENT_ENVIRONMENT: {
			//do nothing
			vec3 local_amb_vec = (reflections.data[ref_index].local_matrix * vec4(normal, 0.0)).xyz;

			vec4 ambient_out;

			ambient_out.rgb = textureLod(samplerCubeArray(reflection_atlas, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), vec4(local_amb_vec, reflections.data[ref_index].index), MAX_ROUGHNESS_LOD).rgb;
			ambient_out.a = blend;
			if (reflections.data[ref_index].params.z < 0.5) { //interior
				ambient_out.rgb = mix(ambient_light, ambient_out.rgb, blend);
			}

			ambient_out.rgb *= ambient_out.a;
			ambient_accum += ambient_out;
		} break;
		case REFLECTION_AMBIENT_COLOR: {
			vec4 ambient_out;
			ambient_out.a = blend;
			ambient_out.rgb = reflections.data[ref_index].ambient;
			if (reflections.data[ref_index].params.z < 0.5) {
				ambient_out.rgb = mix(ambient_light, ambient_out.rgb, blend);
			}
			ambient_out.rgb *= ambient_out.a;
			ambient_accum += ambient_out;
		} break;
	}
}

#ifdef USE_FORWARD_GI

//standard voxel cone trace
vec4 voxel_cone_trace(texture3D probe, vec3 cell_size, vec3 pos, vec3 direction, float tan_half_angle, float max_distance, float p_bias) {
	float dist = p_bias;
	vec4 color = vec4(0.0);

	while (dist < max_distance && color.a < 0.95) {
		float diameter = max(1.0, 2.0 * tan_half_angle * dist);
		vec3 uvw_pos = (pos + dist * direction) * cell_size;
		float half_diameter = diameter * 0.5;
		//check if outside, then break
		if (any(greaterThan(abs(uvw_pos - 0.5), vec3(0.5f + half_diameter * cell_size)))) {
			break;
		}
		vec4 scolor = textureLod(sampler3D(probe, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), uvw_pos, log2(diameter));
		float a = (1.0 - color.a);
		color += a * scolor;
		dist += half_diameter;
	}

	return color;
}

vec4 voxel_cone_trace_45_degrees(texture3D probe, vec3 cell_size, vec3 pos, vec3 direction, float tan_half_angle, float max_distance, float p_bias) {
	float dist = p_bias;
	vec4 color = vec4(0.0);
	float radius = max(0.5, tan_half_angle * dist);
	float lod_level = log2(radius * 2.0);

	while (dist < max_distance && color.a < 0.95) {
		vec3 uvw_pos = (pos + dist * direction) * cell_size;

		//check if outside, then break
		if (any(greaterThan(abs(uvw_pos - 0.5), vec3(0.5f + radius * cell_size)))) {
			break;
		}
		vec4 scolor = textureLod(sampler3D(probe, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), uvw_pos, lod_level);
		lod_level += 1.0;

		float a = (1.0 - color.a);
		scolor *= a;
		color += scolor;
		dist += radius;
		radius = max(0.5, tan_half_angle * dist);
	}

	return color;
}

void gi_probe_compute(uint index, vec3 position, vec3 normal, vec3 ref_vec, mat3 normal_xform, float roughness, vec3 ambient, vec3 environment, inout vec4 out_spec, inout vec4 out_diff) {
	position = (gi_probes.data[index].xform * vec4(position, 1.0)).xyz;
	ref_vec = normalize((gi_probes.data[index].xform * vec4(ref_vec, 0.0)).xyz);
	normal = normalize((gi_probes.data[index].xform * vec4(normal, 0.0)).xyz);

	position += normal * gi_probes.data[index].normal_bias;

	//this causes corrupted pixels, i have no idea why..
	if (any(bvec2(any(lessThan(position, vec3(0.0))), any(greaterThan(position, gi_probes.data[index].bounds))))) {
		return;
	}

	vec3 blendv = abs(position / gi_probes.data[index].bounds * 2.0 - 1.0);
	float blend = clamp(1.0 - max(blendv.x, max(blendv.y, blendv.z)), 0.0, 1.0);
	//float blend=1.0;

	float max_distance = length(gi_probes.data[index].bounds);
	vec3 cell_size = 1.0 / gi_probes.data[index].bounds;

	//radiance

#define MAX_CONE_DIRS 4

	vec3 cone_dirs[MAX_CONE_DIRS] = vec3[](
			vec3(0.707107, 0.0, 0.707107),
			vec3(0.0, 0.707107, 0.707107),
			vec3(-0.707107, 0.0, 0.707107),
			vec3(0.0, -0.707107, 0.707107));

	float cone_weights[MAX_CONE_DIRS] = float[](0.25, 0.25, 0.25, 0.25);
	float cone_angle_tan = 0.98269;

	vec3 light = vec3(0.0);

	for (int i = 0; i < MAX_CONE_DIRS; i++) {
		vec3 dir = normalize((gi_probes.data[index].xform * vec4(normal_xform * cone_dirs[i], 0.0)).xyz);

		vec4 cone_light = voxel_cone_trace_45_degrees(gi_probe_textures[index], cell_size, position, dir, cone_angle_tan, max_distance, gi_probes.data[index].bias);

		if (gi_probes.data[index].blend_ambient) {
			cone_light.rgb = mix(ambient, cone_light.rgb, min(1.0, cone_light.a / 0.95));
		}

		light += cone_weights[i] * cone_light.rgb;
	}

	light *= gi_probes.data[index].dynamic_range;
	out_diff += vec4(light * blend, blend);

	//irradiance
	vec4 irr_light = voxel_cone_trace(gi_probe_textures[index], cell_size, position, ref_vec, tan(roughness * 0.5 * M_PI * 0.99), max_distance, gi_probes.data[index].bias);
	if (gi_probes.data[index].blend_ambient) {
		irr_light.rgb = mix(environment, irr_light.rgb, min(1.0, irr_light.a / 0.95));
	}
	irr_light.rgb *= gi_probes.data[index].dynamic_range;
	//irr_light=vec3(0.0);

	out_spec += vec4(irr_light.rgb * blend, blend);
}

vec2 octahedron_wrap(vec2 v) {
	vec2 signVal;
	signVal.x = v.x >= 0.0 ? 1.0 : -1.0;
	signVal.y = v.y >= 0.0 ? 1.0 : -1.0;
	return (1.0 - abs(v.yx)) * signVal;
}

vec2 octahedron_encode(vec3 n) {
	// https://twitter.com/Stubbesaurus/status/937994790553227264
	n /= (abs(n.x) + abs(n.y) + abs(n.z));
	n.xy = n.z >= 0.0 ? n.xy : octahedron_wrap(n.xy);
	n.xy = n.xy * 0.5 + 0.5;
	return n.xy;
}

void sdfgi_process(uint cascade, vec3 cascade_pos, vec3 cam_pos, vec3 cam_normal, vec3 cam_specular_normal, bool use_specular, float roughness, out vec3 diffuse_light, out vec3 specular_light, out float blend) {
	cascade_pos += cam_normal * sdfgi.normal_bias;

	vec3 base_pos = floor(cascade_pos);
	//cascade_pos += mix(vec3(0.0),vec3(0.01),lessThan(abs(cascade_pos-base_pos),vec3(0.01))) * cam_normal;
	ivec3 probe_base_pos = ivec3(base_pos);

	vec4 diffuse_accum = vec4(0.0);
	vec3 specular_accum;

	ivec3 tex_pos = ivec3(probe_base_pos.xy, int(cascade));
	tex_pos.x += probe_base_pos.z * sdfgi.probe_axis_size;
	tex_pos.xy = tex_pos.xy * (SDFGI_OCT_SIZE + 2) + ivec2(1);

	vec3 diffuse_posf = (vec3(tex_pos) + vec3(octahedron_encode(cam_normal) * float(SDFGI_OCT_SIZE), 0.0)) * sdfgi.lightprobe_tex_pixel_size;

	vec3 specular_posf;

	if (use_specular) {
		specular_accum = vec3(0.0);
		specular_posf = (vec3(tex_pos) + vec3(octahedron_encode(cam_specular_normal) * float(SDFGI_OCT_SIZE), 0.0)) * sdfgi.lightprobe_tex_pixel_size;
	}

	vec4 light_accum = vec4(0.0);
	float weight_accum = 0.0;

	for (uint j = 0; j < 8; j++) {
		ivec3 offset = (ivec3(j) >> ivec3(0, 1, 2)) & ivec3(1, 1, 1);
		ivec3 probe_posi = probe_base_pos;
		probe_posi += offset;

		// Compute weight

		vec3 probe_pos = vec3(probe_posi);
		vec3 probe_to_pos = cascade_pos - probe_pos;
		vec3 probe_dir = normalize(-probe_to_pos);

		vec3 trilinear = vec3(1.0) - abs(probe_to_pos);
		float weight = trilinear.x * trilinear.y * trilinear.z * max(0.005, dot(cam_normal, probe_dir));

		// Compute lightprobe occlusion

		if (sdfgi.use_occlusion) {
			ivec3 occ_indexv = abs((sdfgi.cascades[cascade].probe_world_offset + probe_posi) & ivec3(1, 1, 1)) * ivec3(1, 2, 4);
			vec4 occ_mask = mix(vec4(0.0), vec4(1.0), equal(ivec4(occ_indexv.x | occ_indexv.y), ivec4(0, 1, 2, 3)));

			vec3 occ_pos = clamp(cascade_pos, probe_pos - sdfgi.occlusion_clamp, probe_pos + sdfgi.occlusion_clamp) * sdfgi.probe_to_uvw;
			occ_pos.z += float(cascade);
			if (occ_indexv.z != 0) { //z bit is on, means index is >=4, so make it switch to the other half of textures
				occ_pos.x += 1.0;
			}

			occ_pos *= sdfgi.occlusion_renormalize;
			float occlusion = dot(textureLod(sampler3D(sdfgi_occlusion_cascades, material_samplers[SAMPLER_LINEAR_CLAMP]), occ_pos, 0.0), occ_mask);

			weight *= max(occlusion, 0.01);
		}

		// Compute lightprobe texture position

		vec3 diffuse;
		vec3 pos_uvw = diffuse_posf;
		pos_uvw.xy += vec2(offset.xy) * sdfgi.lightprobe_uv_offset.xy;
		pos_uvw.x += float(offset.z) * sdfgi.lightprobe_uv_offset.z;
		diffuse = textureLod(sampler2DArray(sdfgi_lightprobe_texture, material_samplers[SAMPLER_LINEAR_CLAMP]), pos_uvw, 0.0).rgb;

		diffuse_accum += vec4(diffuse * weight, weight);

		if (use_specular) {
			vec3 specular = vec3(0.0);
			vec3 pos_uvw = specular_posf;
			pos_uvw.xy += vec2(offset.xy) * sdfgi.lightprobe_uv_offset.xy;
			pos_uvw.x += float(offset.z) * sdfgi.lightprobe_uv_offset.z;
			if (roughness < 0.99) {
				specular = textureLod(sampler2DArray(sdfgi_lightprobe_texture, material_samplers[SAMPLER_LINEAR_CLAMP]), pos_uvw + vec3(0, 0, float(sdfgi.max_cascades)), 0.0).rgb;
			}
			if (roughness > 0.5) {
				specular = mix(specular, textureLod(sampler2DArray(sdfgi_lightprobe_texture, material_samplers[SAMPLER_LINEAR_CLAMP]), pos_uvw, 0.0).rgb, (roughness - 0.5) * 2.0);
			}

			specular_accum += specular * weight;
		}
	}

	if (diffuse_accum.a > 0.0) {
		diffuse_accum.rgb /= diffuse_accum.a;
	}

	diffuse_light = diffuse_accum.rgb;

	if (use_specular) {
		if (diffuse_accum.a > 0.0) {
			specular_accum /= diffuse_accum.a;
		}

		specular_light = specular_accum;
	}

	{
		//process blend
		float blend_from = (float(sdfgi.probe_axis_size - 1) / 2.0) - 2.5;
		float blend_to = blend_from + 2.0;

		vec3 inner_pos = cam_pos * sdfgi.cascades[cascade].to_probe;

		float len = length(inner_pos);

		inner_pos = abs(normalize(inner_pos));
		len *= max(inner_pos.x, max(inner_pos.y, inner_pos.z));

		if (len >= blend_from) {
			blend = smoothstep(blend_from, blend_to, len);
		} else {
			blend = 0.0;
		}
	}
}

#endif //USE_FORWARD_GI

#endif //!defined(MODE_RENDER_DEPTH) && !defined(MODE_UNSHADED)

#ifndef MODE_RENDER_DEPTH

#ifndef LOW_END_MODE

vec4 volumetric_fog_process(vec2 screen_uv, float z) {
	vec3 fog_pos = vec3(screen_uv, z * scene_data.volumetric_fog_inv_length);
	if (fog_pos.z < 0.0) {
		return vec4(0.0);
	} else if (fog_pos.z < 1.0) {
		fog_pos.z = pow(fog_pos.z, scene_data.volumetric_fog_detail_spread);
	}

	return texture(sampler3D(volumetric_fog_texture, material_samplers[SAMPLER_LINEAR_CLAMP]), fog_pos);
}
#endif

vec4 fog_process(vec3 vertex) {
	vec3 fog_color = scene_data.fog_light_color;

	if (scene_data.fog_aerial_perspective > 0.0) {
		vec3 sky_fog_color = vec3(0.0);
		vec3 cube_view = scene_data.radiance_inverse_xform * vertex;
		// mip_level always reads from the second mipmap and higher so the fog is always slightly blurred
		float mip_level = mix(1.0 / MAX_ROUGHNESS_LOD, 1.0, 1.0 - (abs(vertex.z) - scene_data.z_near) / (scene_data.z_far - scene_data.z_near));
#ifdef USE_RADIANCE_CUBEMAP_ARRAY
		float lod, blend;
		blend = modf(mip_level * MAX_ROUGHNESS_LOD, lod);
		sky_fog_color = texture(samplerCubeArray(radiance_cubemap, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), vec4(cube_view, lod)).rgb;
		sky_fog_color = mix(sky_fog_color, texture(samplerCubeArray(radiance_cubemap, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), vec4(cube_view, lod + 1)).rgb, blend);
#else
		sky_fog_color = textureLod(samplerCube(radiance_cubemap, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), cube_view, mip_level * MAX_ROUGHNESS_LOD).rgb;
#endif //USE_RADIANCE_CUBEMAP_ARRAY
		fog_color = mix(fog_color, sky_fog_color, scene_data.fog_aerial_perspective);
	}

	if (scene_data.fog_sun_scatter > 0.001) {
		vec4 sun_scatter = vec4(0.0);
		float sun_total = 0.0;
		vec3 view = normalize(vertex);

		for (uint i = 0; i < scene_data.directional_light_count; i++) {
			vec3 light_color = directional_lights.data[i].color * directional_lights.data[i].energy;
			float light_amount = pow(max(dot(view, directional_lights.data[i].direction), 0.0), 8.0);
			fog_color += light_color * light_amount * scene_data.fog_sun_scatter;
		}
	}

	float fog_amount = 1.0 - exp(vertex.z * scene_data.fog_density);

	if (abs(scene_data.fog_height_density) > 0.001) {
		float y = (scene_data.camera_matrix * vec4(vertex, 1.0)).y;

		float y_dist = scene_data.fog_height - y;

		float vfog_amount = clamp(exp(y_dist * scene_data.fog_height_density), 0.0, 1.0);

		fog_amount = max(vfog_amount, fog_amount);
	}

	return vec4(fog_color, fog_amount);
}

#endif

void main() {
#ifdef MODE_DUAL_PARABOLOID

	if (dp_clip > 0.0)
		discard;
#endif

	//lay out everything, whathever is unused is optimized away anyway
	vec3 vertex = vertex_interp;
	vec3 view = -normalize(vertex_interp);
	vec3 albedo = vec3(1.0);
	vec3 backlight = vec3(0.0);
	vec4 transmittance_color = vec4(0.0);
	float transmittance_depth = 0.0;
	float transmittance_curve = 1.0;
	float transmittance_boost = 0.0;
	float metallic = 0.0;
	float specular = 0.5;
	vec3 emission = vec3(0.0);
	float roughness = 1.0;
	float rim = 0.0;
	float rim_tint = 0.0;
	float clearcoat = 0.0;
	float clearcoat_gloss = 0.0;
	float anisotropy = 0.0;
	vec2 anisotropy_flow = vec2(1.0, 0.0);
#if defined(CUSTOM_FOG_USED)
	vec4 custom_fog = vec4(0.0);
#endif
#if defined(CUSTOM_RADIANCE_USED)
	vec4 custom_radiance = vec4(0.0);
#endif
#if defined(CUSTOM_IRRADIANCE_USED)
	vec4 custom_irradiance = vec4(0.0);
#endif

#if defined(AO_USED)
	float ao = 1.0;
	float ao_light_affect = 0.0;
#endif

	float alpha = 1.0;

#if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED)
	vec3 binormal = normalize(binormal_interp);
	vec3 tangent = normalize(tangent_interp);
#else
	vec3 binormal = vec3(0.0);
	vec3 tangent = vec3(0.0);
#endif

#ifdef NORMAL_USED
	vec3 normal = normalize(normal_interp);

#if defined(DO_SIDE_CHECK)
	if (!gl_FrontFacing) {
		normal = -normal;
	}
#endif

#endif //NORMAL_USED

#ifdef UV_USED
	vec2 uv = uv_interp;
#endif

#if defined(UV2_USED) || defined(USE_LIGHTMAP)
	vec2 uv2 = uv2_interp;
#endif

#if defined(COLOR_USED)
	vec4 color = color_interp;
#endif

#if defined(NORMAL_MAP_USED)

	vec3 normal_map = vec3(0.5);
#endif

	float normal_map_depth = 1.0;

	vec2 screen_uv = gl_FragCoord.xy * scene_data.screen_pixel_size + scene_data.screen_pixel_size * 0.5; //account for center

	float sss_strength = 0.0;

#ifdef ALPHA_SCISSOR_USED
	float alpha_scissor_threshold = 1.0;
#endif // ALPHA_SCISSOR_USED

#ifdef ALPHA_HASH_USED
	float alpha_hash_scale = 1.0;
#endif // ALPHA_HASH_USED

#ifdef ALPHA_ANTIALIASING_EDGE_USED
	float alpha_antialiasing_edge = 0.0;
	vec2 alpha_texture_coordinate = vec2(0.0, 0.0);
#endif // ALPHA_ANTIALIASING_EDGE_USED

	{
		/* clang-format off */

FRAGMENT_SHADER_CODE

		/* clang-format on */
	}

#ifdef LIGHT_TRANSMITTANCE_USED
#ifdef SSS_MODE_SKIN
	transmittance_color.a = sss_strength;
#else
	transmittance_color.a *= sss_strength;
#endif
#endif

#ifndef USE_SHADOW_TO_OPACITY

#ifdef ALPHA_SCISSOR_USED
	if (alpha < alpha_scissor_threshold) {
		discard;
	}
#endif // ALPHA_SCISSOR_USED

// alpha hash can be used in unison with alpha antialiasing
#ifdef ALPHA_HASH_USED
	if (alpha < compute_alpha_hash_threshold(vertex, alpha_hash_scale)) {
		discard;
	}
#endif // ALPHA_HASH_USED

// If we are not edge antialiasing, we need to remove the output alpha channel from scissor and hash
#if (defined(ALPHA_SCISSOR_USED) || defined(ALPHA_HASH_USED)) && !defined(ALPHA_ANTIALIASING_EDGE_USED)
	alpha = 1.0;
#endif

#ifdef ALPHA_ANTIALIASING_EDGE_USED
// If alpha scissor is used, we must further the edge threshold, otherwise we wont get any edge feather
#ifdef ALPHA_SCISSOR_USED
	alpha_antialiasing_edge = clamp(alpha_scissor_threshold + alpha_antialiasing_edge, 0.0, 1.0);
#endif
	alpha = compute_alpha_antialiasing_edge(alpha, alpha_texture_coordinate, alpha_antialiasing_edge);
#endif // ALPHA_ANTIALIASING_EDGE_USED

#ifdef USE_OPAQUE_PREPASS
	if (alpha < opaque_prepass_threshold) {
		discard;
	}
#endif // USE_OPAQUE_PREPASS

#endif // !USE_SHADOW_TO_OPACITY

#ifdef NORMAL_MAP_USED

	normal_map.xy = normal_map.xy * 2.0 - 1.0;
	normal_map.z = sqrt(max(0.0, 1.0 - dot(normal_map.xy, normal_map.xy))); //always ignore Z, as it can be RG packed, Z may be pos/neg, etc.

	normal = normalize(mix(normal, tangent * normal_map.x + binormal * normal_map.y + normal * normal_map.z, normal_map_depth));

#endif

#ifdef LIGHT_ANISOTROPY_USED

	if (anisotropy > 0.01) {
		//rotation matrix
		mat3 rot = mat3(tangent, binormal, normal);
		//make local to space
		tangent = normalize(rot * vec3(anisotropy_flow.x, anisotropy_flow.y, 0.0));
		binormal = normalize(rot * vec3(-anisotropy_flow.y, anisotropy_flow.x, 0.0));
	}

#endif

#ifdef ENABLE_CLIP_ALPHA
	if (albedo.a < 0.99) {
		//used for doublepass and shadowmapping
		discard;
	}
#endif
	/////////////////////// DECALS ////////////////////////////////

#ifndef MODE_RENDER_DEPTH

	uvec4 cluster_cell = texture(usampler3D(cluster_texture, material_samplers[SAMPLER_NEAREST_CLAMP]), vec3(screen_uv, (abs(vertex.z) - scene_data.z_near) / (scene_data.z_far - scene_data.z_near)));
	//used for interpolating anything cluster related
	vec3 vertex_ddx = dFdx(vertex);
	vec3 vertex_ddy = dFdy(vertex);

	{ // process decals

		uint decal_count = cluster_cell.w >> CLUSTER_COUNTER_SHIFT;
		uint decal_pointer = cluster_cell.w & CLUSTER_POINTER_MASK;

		//do outside for performance and avoiding arctifacts

		for (uint i = 0; i < decal_count; i++) {
			uint decal_index = cluster_data.indices[decal_pointer + i];
			if (!bool(decals.data[decal_index].mask & instances.data[instance_index].layer_mask)) {
				continue; //not masked
			}

			vec3 uv_local = (decals.data[decal_index].xform * vec4(vertex, 1.0)).xyz;
			if (any(lessThan(uv_local, vec3(0.0, -1.0, 0.0))) || any(greaterThan(uv_local, vec3(1.0)))) {
				continue; //out of decal
			}

			//we need ddx/ddy for mipmaps, so simulate them
			vec2 ddx = (decals.data[decal_index].xform * vec4(vertex_ddx, 0.0)).xz;
			vec2 ddy = (decals.data[decal_index].xform * vec4(vertex_ddy, 0.0)).xz;

			float fade = pow(1.0 - (uv_local.y > 0.0 ? uv_local.y : -uv_local.y), uv_local.y > 0.0 ? decals.data[decal_index].upper_fade : decals.data[decal_index].lower_fade);

			if (decals.data[decal_index].normal_fade > 0.0) {
				fade *= smoothstep(decals.data[decal_index].normal_fade, 1.0, dot(normal_interp, decals.data[decal_index].normal) * 0.5 + 0.5);
			}

			if (decals.data[decal_index].albedo_rect != vec4(0.0)) {
				//has albedo
				vec4 decal_albedo = textureGrad(sampler2D(decal_atlas_srgb, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), uv_local.xz * decals.data[decal_index].albedo_rect.zw + decals.data[decal_index].albedo_rect.xy, ddx * decals.data[decal_index].albedo_rect.zw, ddy * decals.data[decal_index].albedo_rect.zw);
				decal_albedo *= decals.data[decal_index].modulate;
				decal_albedo.a *= fade;
				albedo = mix(albedo, decal_albedo.rgb, decal_albedo.a * decals.data[decal_index].albedo_mix);

				if (decals.data[decal_index].normal_rect != vec4(0.0)) {
					vec3 decal_normal = textureGrad(sampler2D(decal_atlas, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), uv_local.xz * decals.data[decal_index].normal_rect.zw + decals.data[decal_index].normal_rect.xy, ddx * decals.data[decal_index].normal_rect.zw, ddy * decals.data[decal_index].normal_rect.zw).xyz;
					decal_normal.xy = decal_normal.xy * vec2(2.0, -2.0) - vec2(1.0, -1.0); //users prefer flipped y normal maps in most authoring software
					decal_normal.z = sqrt(max(0.0, 1.0 - dot(decal_normal.xy, decal_normal.xy)));
					//convert to view space, use xzy because y is up
					decal_normal = (decals.data[decal_index].normal_xform * decal_normal.xzy).xyz;

					normal = normalize(mix(normal, decal_normal, decal_albedo.a));
				}

				if (decals.data[decal_index].orm_rect != vec4(0.0)) {
					vec3 decal_orm = textureGrad(sampler2D(decal_atlas, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), uv_local.xz * decals.data[decal_index].orm_rect.zw + decals.data[decal_index].orm_rect.xy, ddx * decals.data[decal_index].orm_rect.zw, ddy * decals.data[decal_index].orm_rect.zw).xyz;
#if defined(AO_USED)
					ao = mix(ao, decal_orm.r, decal_albedo.a);
#endif
					roughness = mix(roughness, decal_orm.g, decal_albedo.a);
					metallic = mix(metallic, decal_orm.b, decal_albedo.a);
				}
			}

			if (decals.data[decal_index].emission_rect != vec4(0.0)) {
				//emission is additive, so its independent from albedo
				emission += textureGrad(sampler2D(decal_atlas_srgb, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), uv_local.xz * decals.data[decal_index].emission_rect.zw + decals.data[decal_index].emission_rect.xy, ddx * decals.data[decal_index].emission_rect.zw, ddy * decals.data[decal_index].emission_rect.zw).xyz * decals.data[decal_index].emission_energy * fade;
			}
		}
	}

#endif //not render depth
	/////////////////////// LIGHTING //////////////////////////////

#ifdef NORMAL_USED
	if (scene_data.roughness_limiter_enabled) {
		//http://www.jp.square-enix.com/tech/library/pdf/ImprovedGeometricSpecularAA.pdf
		float roughness2 = roughness * roughness;
		vec3 dndu = dFdx(normal), dndv = dFdx(normal);
		float variance = scene_data.roughness_limiter_amount * (dot(dndu, dndu) + dot(dndv, dndv));
		float kernelRoughness2 = min(2.0 * variance, scene_data.roughness_limiter_limit); //limit effect
		float filteredRoughness2 = min(1.0, roughness2 + kernelRoughness2);
		roughness = sqrt(filteredRoughness2);
	}
#endif
	//apply energy conservation

	vec3 specular_light = vec3(0.0, 0.0, 0.0);
	vec3 diffuse_light = vec3(0.0, 0.0, 0.0);
	vec3 ambient_light = vec3(0.0, 0.0, 0.0);

#if !defined(MODE_RENDER_DEPTH) && !defined(MODE_UNSHADED)

	if (scene_data.use_reflection_cubemap) {
		vec3 ref_vec = reflect(-view, normal);
		ref_vec = scene_data.radiance_inverse_xform * ref_vec;
#ifdef USE_RADIANCE_CUBEMAP_ARRAY

		float lod, blend;
		blend = modf(roughness * MAX_ROUGHNESS_LOD, lod);
		specular_light = texture(samplerCubeArray(radiance_cubemap, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), vec4(ref_vec, lod)).rgb;
		specular_light = mix(specular_light, texture(samplerCubeArray(radiance_cubemap, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), vec4(ref_vec, lod + 1)).rgb, blend);

#else
		specular_light = textureLod(samplerCube(radiance_cubemap, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), ref_vec, roughness * MAX_ROUGHNESS_LOD).rgb;

#endif //USE_RADIANCE_CUBEMAP_ARRAY
		specular_light *= scene_data.ambient_light_color_energy.a;
	}

#if defined(CUSTOM_RADIANCE_USED)
	specular_light = mix(specular_light, custom_radiance.rgb, custom_radiance.a);
#endif

#ifndef USE_LIGHTMAP
	//lightmap overrides everything
	if (scene_data.use_ambient_light) {
		ambient_light = scene_data.ambient_light_color_energy.rgb;

		if (scene_data.use_ambient_cubemap) {
			vec3 ambient_dir = scene_data.radiance_inverse_xform * normal;
#ifdef USE_RADIANCE_CUBEMAP_ARRAY
			vec3 cubemap_ambient = texture(samplerCubeArray(radiance_cubemap, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), vec4(ambient_dir, MAX_ROUGHNESS_LOD)).rgb;
#else
			vec3 cubemap_ambient = textureLod(samplerCube(radiance_cubemap, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), ambient_dir, MAX_ROUGHNESS_LOD).rgb;
#endif //USE_RADIANCE_CUBEMAP_ARRAY

			ambient_light = mix(ambient_light, cubemap_ambient * scene_data.ambient_light_color_energy.a, scene_data.ambient_color_sky_mix);
		}
	}
#endif // USE_LIGHTMAP
#if defined(CUSTOM_IRRADIANCE_USED)
	ambient_light = mix(specular_light, custom_irradiance.rgb, custom_irradiance.a);
#endif
#endif //!defined(MODE_RENDER_DEPTH) && !defined(MODE_UNSHADED)

	//radiance

	float specular_blob_intensity = 1.0;

#if defined(SPECULAR_TOON)
	specular_blob_intensity *= specular * 2.0;
#endif

#if !defined(MODE_RENDER_DEPTH) && !defined(MODE_UNSHADED)

#ifdef USE_LIGHTMAP

	//lightmap
	if (bool(instances.data[instance_index].flags & INSTANCE_FLAGS_USE_LIGHTMAP_CAPTURE)) { //has lightmap capture
		uint index = instances.data[instance_index].gi_offset;

		vec3 wnormal = mat3(scene_data.camera_matrix) * normal;
		const float c1 = 0.429043;
		const float c2 = 0.511664;
		const float c3 = 0.743125;
		const float c4 = 0.886227;
		const float c5 = 0.247708;
		ambient_light += (c1 * lightmap_captures.data[index].sh[8].rgb * (wnormal.x * wnormal.x - wnormal.y * wnormal.y) +
						  c3 * lightmap_captures.data[index].sh[6].rgb * wnormal.z * wnormal.z +
						  c4 * lightmap_captures.data[index].sh[0].rgb -
						  c5 * lightmap_captures.data[index].sh[6].rgb +
						  2.0 * c1 * lightmap_captures.data[index].sh[4].rgb * wnormal.x * wnormal.y +
						  2.0 * c1 * lightmap_captures.data[index].sh[7].rgb * wnormal.x * wnormal.z +
						  2.0 * c1 * lightmap_captures.data[index].sh[5].rgb * wnormal.y * wnormal.z +
						  2.0 * c2 * lightmap_captures.data[index].sh[3].rgb * wnormal.x +
						  2.0 * c2 * lightmap_captures.data[index].sh[1].rgb * wnormal.y +
						  2.0 * c2 * lightmap_captures.data[index].sh[2].rgb * wnormal.z);

	} else if (bool(instances.data[instance_index].flags & INSTANCE_FLAGS_USE_LIGHTMAP)) { // has actual lightmap
		bool uses_sh = bool(instances.data[instance_index].flags & INSTANCE_FLAGS_USE_SH_LIGHTMAP);
		uint ofs = instances.data[instance_index].gi_offset & 0xFFF;
		vec3 uvw;
		uvw.xy = uv2 * instances.data[instance_index].lightmap_uv_scale.zw + instances.data[instance_index].lightmap_uv_scale.xy;
		uvw.z = float((instances.data[instance_index].gi_offset >> 12) & 0xFF);

		if (uses_sh) {
			uvw.z *= 4.0; //SH textures use 4 times more data
			vec3 lm_light_l0 = textureLod(sampler2DArray(lightmap_textures[ofs], material_samplers[SAMPLER_LINEAR_CLAMP]), uvw + vec3(0.0, 0.0, 0.0), 0.0).rgb;
			vec3 lm_light_l1n1 = textureLod(sampler2DArray(lightmap_textures[ofs], material_samplers[SAMPLER_LINEAR_CLAMP]), uvw + vec3(0.0, 0.0, 1.0), 0.0).rgb;
			vec3 lm_light_l1_0 = textureLod(sampler2DArray(lightmap_textures[ofs], material_samplers[SAMPLER_LINEAR_CLAMP]), uvw + vec3(0.0, 0.0, 2.0), 0.0).rgb;
			vec3 lm_light_l1p1 = textureLod(sampler2DArray(lightmap_textures[ofs], material_samplers[SAMPLER_LINEAR_CLAMP]), uvw + vec3(0.0, 0.0, 3.0), 0.0).rgb;

			uint idx = instances.data[instance_index].gi_offset >> 20;
			vec3 n = normalize(lightmaps.data[idx].normal_xform * normal);

			ambient_light += lm_light_l0 * 0.282095f;
			ambient_light += lm_light_l1n1 * 0.32573 * n.y;
			ambient_light += lm_light_l1_0 * 0.32573 * n.z;
			ambient_light += lm_light_l1p1 * 0.32573 * n.x;
			if (metallic > 0.01) { // since the more direct bounced light is lost, we can kind of fake it with this trick
				vec3 r = reflect(normalize(-vertex), normal);
				specular_light += lm_light_l1n1 * 0.32573 * r.y;
				specular_light += lm_light_l1_0 * 0.32573 * r.z;
				specular_light += lm_light_l1p1 * 0.32573 * r.x;
			}

		} else {
			ambient_light += textureLod(sampler2DArray(lightmap_textures[ofs], material_samplers[SAMPLER_LINEAR_CLAMP]), uvw, 0.0).rgb;
		}
	}
#elif defined(USE_FORWARD_GI)

	if (bool(instances.data[instance_index].flags & INSTANCE_FLAGS_USE_SDFGI)) { //has lightmap capture

		//make vertex orientation the world one, but still align to camera
		vec3 cam_pos = mat3(scene_data.camera_matrix) * vertex;
		vec3 cam_normal = mat3(scene_data.camera_matrix) * normal;
		vec3 cam_reflection = mat3(scene_data.camera_matrix) * reflect(-view, normal);

		//apply y-mult
		cam_pos.y *= sdfgi.y_mult;
		cam_normal.y *= sdfgi.y_mult;
		cam_normal = normalize(cam_normal);
		cam_reflection.y *= sdfgi.y_mult;
		cam_normal = normalize(cam_normal);
		cam_reflection = normalize(cam_reflection);

		vec4 light_accum = vec4(0.0);
		float weight_accum = 0.0;

		vec4 light_blend_accum = vec4(0.0);
		float weight_blend_accum = 0.0;

		float blend = -1.0;

		// helper constants, compute once

		uint cascade = 0xFFFFFFFF;
		vec3 cascade_pos;
		vec3 cascade_normal;

		for (uint i = 0; i < sdfgi.max_cascades; i++) {
			cascade_pos = (cam_pos - sdfgi.cascades[i].position) * sdfgi.cascades[i].to_probe;

			if (any(lessThan(cascade_pos, vec3(0.0))) || any(greaterThanEqual(cascade_pos, sdfgi.cascade_probe_size))) {
				continue; //skip cascade
			}

			cascade = i;
			break;
		}

		if (cascade < SDFGI_MAX_CASCADES) {
			bool use_specular = true;
			float blend;
			vec3 diffuse, specular;
			sdfgi_process(cascade, cascade_pos, cam_pos, cam_normal, cam_reflection, use_specular, roughness, diffuse, specular, blend);

			if (blend > 0.0) {
				//blend
				if (cascade == sdfgi.max_cascades - 1) {
					diffuse = mix(diffuse, ambient_light, blend);
					if (use_specular) {
						specular = mix(specular, specular_light, blend);
					}
				} else {
					vec3 diffuse2, specular2;
					float blend2;
					cascade_pos = (cam_pos - sdfgi.cascades[cascade + 1].position) * sdfgi.cascades[cascade + 1].to_probe;
					sdfgi_process(cascade + 1, cascade_pos, cam_pos, cam_normal, cam_reflection, use_specular, roughness, diffuse2, specular2, blend2);
					diffuse = mix(diffuse, diffuse2, blend);
					if (use_specular) {
						specular = mix(specular, specular2, blend);
					}
				}
			}

			ambient_light = diffuse;
			if (use_specular) {
				specular_light = specular;
			}
		}
	}

	if (bool(instances.data[instance_index].flags & INSTANCE_FLAGS_USE_GIPROBE)) { // process giprobes

		uint index1 = instances.data[instance_index].gi_offset & 0xFFFF;
		vec3 ref_vec = normalize(reflect(normalize(vertex), normal));
		//find arbitrary tangent and bitangent, then build a matrix
		vec3 v0 = abs(normal.z) < 0.999 ? vec3(0.0, 0.0, 1.0) : vec3(0.0, 1.0, 0.0);
		vec3 tangent = normalize(cross(v0, normal));
		vec3 bitangent = normalize(cross(tangent, normal));
		mat3 normal_mat = mat3(tangent, bitangent, normal);

		vec4 amb_accum = vec4(0.0);
		vec4 spec_accum = vec4(0.0);
		gi_probe_compute(index1, vertex, normal, ref_vec, normal_mat, roughness * roughness, ambient_light, specular_light, spec_accum, amb_accum);

		uint index2 = instances.data[instance_index].gi_offset >> 16;

		if (index2 != 0xFFFF) {
			gi_probe_compute(index2, vertex, normal, ref_vec, normal_mat, roughness * roughness, ambient_light, specular_light, spec_accum, amb_accum);
		}

		if (amb_accum.a > 0.0) {
			amb_accum.rgb /= amb_accum.a;
		}

		if (spec_accum.a > 0.0) {
			spec_accum.rgb /= spec_accum.a;
		}

		specular_light = spec_accum.rgb;
		ambient_light = amb_accum.rgb;
	}
#elif !defined(LOW_END_MODE)

	if (bool(instances.data[instance_index].flags & INSTANCE_FLAGS_USE_GI_BUFFERS)) { //use GI buffers

		ivec2 coord;

		if (scene_data.gi_upscale_for_msaa) {
			ivec2 base_coord = ivec2(gl_FragCoord.xy);
			ivec2 closest_coord = base_coord;
			float closest_ang = dot(normal, texelFetch(sampler2D(normal_roughness_buffer, material_samplers[SAMPLER_LINEAR_CLAMP]), base_coord, 0).xyz * 2.0 - 1.0);

			for (int i = 0; i < 4; i++) {
				const ivec2 neighbours[4] = ivec2[](ivec2(-1, 0), ivec2(1, 0), ivec2(0, -1), ivec2(0, 1));
				ivec2 neighbour_coord = base_coord + neighbours[i];
				float neighbour_ang = dot(normal, texelFetch(sampler2D(normal_roughness_buffer, material_samplers[SAMPLER_LINEAR_CLAMP]), neighbour_coord, 0).xyz * 2.0 - 1.0);
				if (neighbour_ang > closest_ang) {
					closest_ang = neighbour_ang;
					closest_coord = neighbour_coord;
				}
			}

			coord = closest_coord;

		} else {
			coord = ivec2(gl_FragCoord.xy);
		}

		vec4 buffer_ambient = texelFetch(sampler2D(ambient_buffer, material_samplers[SAMPLER_LINEAR_CLAMP]), coord, 0);
		vec4 buffer_reflection = texelFetch(sampler2D(reflection_buffer, material_samplers[SAMPLER_LINEAR_CLAMP]), coord, 0);

		ambient_light = mix(ambient_light, buffer_ambient.rgb, buffer_ambient.a);
		specular_light = mix(specular_light, buffer_reflection.rgb, buffer_reflection.a);
	}
#endif

	{ // process reflections

		vec4 reflection_accum = vec4(0.0, 0.0, 0.0, 0.0);
		vec4 ambient_accum = vec4(0.0, 0.0, 0.0, 0.0);

		uint reflection_probe_count = cluster_cell.z >> CLUSTER_COUNTER_SHIFT;
		uint reflection_probe_pointer = cluster_cell.z & CLUSTER_POINTER_MASK;

		for (uint i = 0; i < reflection_probe_count; i++) {
			uint ref_index = cluster_data.indices[reflection_probe_pointer + i];
			reflection_process(ref_index, vertex, normal, roughness, ambient_light, specular_light, ambient_accum, reflection_accum);
		}

		if (reflection_accum.a > 0.0) {
			specular_light = reflection_accum.rgb / reflection_accum.a;
		}

#if !defined(USE_LIGHTMAP)
		if (ambient_accum.a > 0.0) {
			ambient_light = ambient_accum.rgb / ambient_accum.a;
		}
#endif
	}

	{
#if defined(DIFFUSE_TOON)
		//simplify for toon, as
		specular_light *= specular * metallic * albedo * 2.0;
#else

		// scales the specular reflections, needs to be be computed before lighting happens,
		// but after environment, GI, and reflection probes are added
		// Environment brdf approximation (Lazarov 2013)
		// see https://www.unrealengine.com/en-US/blog/physically-based-shading-on-mobile
		const vec4 c0 = vec4(-1.0, -0.0275, -0.572, 0.022);
		const vec4 c1 = vec4(1.0, 0.0425, 1.04, -0.04);
		vec4 r = roughness * c0 + c1;
		float ndotv = clamp(dot(normal, view), 0.0, 1.0);
		float a004 = min(r.x * r.x, exp2(-9.28 * ndotv)) * r.x + r.y;
		vec2 env = vec2(-1.04, 1.04) * a004 + r.zw;

		vec3 f0 = F0(metallic, specular, albedo);
		specular_light *= env.x * f0 + env.y;
#endif
	}

	{ //directional light

		for (uint i = 0; i < scene_data.directional_light_count; i++) {
			if (!bool(directional_lights.data[i].mask & instances.data[instance_index].layer_mask)) {
				continue; //not masked
			}

			vec3 shadow_attenuation = vec3(1.0);

#ifdef LIGHT_TRANSMITTANCE_USED
			float transmittance_z = transmittance_depth;
#endif

			if (directional_lights.data[i].shadow_enabled) {
				float depth_z = -vertex.z;

				vec4 pssm_coord;
				vec3 shadow_color = vec3(0.0);
				vec3 light_dir = directional_lights.data[i].direction;

#define BIAS_FUNC(m_var, m_idx)                                                                                                                                       \
	m_var.xyz += light_dir * directional_lights.data[i].shadow_bias[m_idx];                                                                                           \
	vec3 normal_bias = normalize(normal_interp) * (1.0 - max(0.0, dot(light_dir, -normalize(normal_interp)))) * directional_lights.data[i].shadow_normal_bias[m_idx]; \
	normal_bias -= light_dir * dot(light_dir, normal_bias);                                                                                                           \
	m_var.xyz += normal_bias;

				float shadow = 0.0;

				if (depth_z < directional_lights.data[i].shadow_split_offsets.x) {
					vec4 v = vec4(vertex, 1.0);

					BIAS_FUNC(v, 0)

					pssm_coord = (directional_lights.data[i].shadow_matrix1 * v);
					pssm_coord /= pssm_coord.w;

					if (directional_lights.data[i].softshadow_angle > 0) {
						float range_pos = dot(directional_lights.data[i].direction, v.xyz);
						float range_begin = directional_lights.data[i].shadow_range_begin.x;
						float test_radius = (range_pos - range_begin) * directional_lights.data[i].softshadow_angle;
						vec2 tex_scale = directional_lights.data[i].uv_scale1 * test_radius;
						shadow = sample_directional_soft_shadow(directional_shadow_atlas, pssm_coord.xyz, tex_scale * directional_lights.data[i].soft_shadow_scale);
					} else {
						shadow = sample_directional_pcf_shadow(directional_shadow_atlas, scene_data.directional_shadow_pixel_size * directional_lights.data[i].soft_shadow_scale, pssm_coord);
					}

					shadow_color = directional_lights.data[i].shadow_color1.rgb;

#ifdef LIGHT_TRANSMITTANCE_USED
					{
						vec4 trans_vertex = vec4(vertex - normalize(normal_interp) * directional_lights.data[i].shadow_transmittance_bias.x, 1.0);
						vec4 trans_coord = directional_lights.data[i].shadow_matrix1 * trans_vertex;
						trans_coord /= trans_coord.w;

						float shadow_z = textureLod(sampler2D(directional_shadow_atlas, material_samplers[SAMPLER_LINEAR_CLAMP]), trans_coord.xy, 0.0).r;
						shadow_z *= directional_lights.data[i].shadow_z_range.x;
						float z = trans_coord.z * directional_lights.data[i].shadow_z_range.x;

						transmittance_z = z - shadow_z;
					}
#endif
				} else if (depth_z < directional_lights.data[i].shadow_split_offsets.y) {
					vec4 v = vec4(vertex, 1.0);

					BIAS_FUNC(v, 1)

					pssm_coord = (directional_lights.data[i].shadow_matrix2 * v);
					pssm_coord /= pssm_coord.w;

					if (directional_lights.data[i].softshadow_angle > 0) {
						float range_pos = dot(directional_lights.data[i].direction, v.xyz);
						float range_begin = directional_lights.data[i].shadow_range_begin.y;
						float test_radius = (range_pos - range_begin) * directional_lights.data[i].softshadow_angle;
						vec2 tex_scale = directional_lights.data[i].uv_scale2 * test_radius;
						shadow = sample_directional_soft_shadow(directional_shadow_atlas, pssm_coord.xyz, tex_scale * directional_lights.data[i].soft_shadow_scale);
					} else {
						shadow = sample_directional_pcf_shadow(directional_shadow_atlas, scene_data.directional_shadow_pixel_size * directional_lights.data[i].soft_shadow_scale, pssm_coord);
					}

					shadow_color = directional_lights.data[i].shadow_color2.rgb;
#ifdef LIGHT_TRANSMITTANCE_USED
					{
						vec4 trans_vertex = vec4(vertex - normalize(normal_interp) * directional_lights.data[i].shadow_transmittance_bias.y, 1.0);
						vec4 trans_coord = directional_lights.data[i].shadow_matrix2 * trans_vertex;
						trans_coord /= trans_coord.w;

						float shadow_z = textureLod(sampler2D(directional_shadow_atlas, material_samplers[SAMPLER_LINEAR_CLAMP]), trans_coord.xy, 0.0).r;
						shadow_z *= directional_lights.data[i].shadow_z_range.y;
						float z = trans_coord.z * directional_lights.data[i].shadow_z_range.y;

						transmittance_z = z - shadow_z;
					}
#endif
				} else if (depth_z < directional_lights.data[i].shadow_split_offsets.z) {
					vec4 v = vec4(vertex, 1.0);

					BIAS_FUNC(v, 2)

					pssm_coord = (directional_lights.data[i].shadow_matrix3 * v);
					pssm_coord /= pssm_coord.w;

					if (directional_lights.data[i].softshadow_angle > 0) {
						float range_pos = dot(directional_lights.data[i].direction, v.xyz);
						float range_begin = directional_lights.data[i].shadow_range_begin.z;
						float test_radius = (range_pos - range_begin) * directional_lights.data[i].softshadow_angle;
						vec2 tex_scale = directional_lights.data[i].uv_scale3 * test_radius;
						shadow = sample_directional_soft_shadow(directional_shadow_atlas, pssm_coord.xyz, tex_scale * directional_lights.data[i].soft_shadow_scale);
					} else {
						shadow = sample_directional_pcf_shadow(directional_shadow_atlas, scene_data.directional_shadow_pixel_size * directional_lights.data[i].soft_shadow_scale, pssm_coord);
					}

					shadow_color = directional_lights.data[i].shadow_color3.rgb;
#ifdef LIGHT_TRANSMITTANCE_USED
					{
						vec4 trans_vertex = vec4(vertex - normalize(normal_interp) * directional_lights.data[i].shadow_transmittance_bias.z, 1.0);
						vec4 trans_coord = directional_lights.data[i].shadow_matrix3 * trans_vertex;
						trans_coord /= trans_coord.w;

						float shadow_z = textureLod(sampler2D(directional_shadow_atlas, material_samplers[SAMPLER_LINEAR_CLAMP]), trans_coord.xy, 0.0).r;
						shadow_z *= directional_lights.data[i].shadow_z_range.z;
						float z = trans_coord.z * directional_lights.data[i].shadow_z_range.z;

						transmittance_z = z - shadow_z;
					}
#endif

				} else {
					vec4 v = vec4(vertex, 1.0);

					BIAS_FUNC(v, 3)

					pssm_coord = (directional_lights.data[i].shadow_matrix4 * v);
					pssm_coord /= pssm_coord.w;

					if (directional_lights.data[i].softshadow_angle > 0) {
						float range_pos = dot(directional_lights.data[i].direction, v.xyz);
						float range_begin = directional_lights.data[i].shadow_range_begin.w;
						float test_radius = (range_pos - range_begin) * directional_lights.data[i].softshadow_angle;
						vec2 tex_scale = directional_lights.data[i].uv_scale4 * test_radius;
						shadow = sample_directional_soft_shadow(directional_shadow_atlas, pssm_coord.xyz, tex_scale * directional_lights.data[i].soft_shadow_scale);
					} else {
						shadow = sample_directional_pcf_shadow(directional_shadow_atlas, scene_data.directional_shadow_pixel_size * directional_lights.data[i].soft_shadow_scale, pssm_coord);
					}

					shadow_color = directional_lights.data[i].shadow_color4.rgb;

#ifdef LIGHT_TRANSMITTANCE_USED
					{
						vec4 trans_vertex = vec4(vertex - normalize(normal_interp) * directional_lights.data[i].shadow_transmittance_bias.w, 1.0);
						vec4 trans_coord = directional_lights.data[i].shadow_matrix4 * trans_vertex;
						trans_coord /= trans_coord.w;

						float shadow_z = textureLod(sampler2D(directional_shadow_atlas, material_samplers[SAMPLER_LINEAR_CLAMP]), trans_coord.xy, 0.0).r;
						shadow_z *= directional_lights.data[i].shadow_z_range.w;
						float z = trans_coord.z * directional_lights.data[i].shadow_z_range.w;

						transmittance_z = z - shadow_z;
					}
#endif
				}

				if (directional_lights.data[i].blend_splits) {
					vec3 shadow_color_blend = vec3(0.0);
					float pssm_blend;
					float shadow2;

					if (depth_z < directional_lights.data[i].shadow_split_offsets.x) {
						vec4 v = vec4(vertex, 1.0);
						BIAS_FUNC(v, 1)
						pssm_coord = (directional_lights.data[i].shadow_matrix2 * v);
						pssm_coord /= pssm_coord.w;

						if (directional_lights.data[i].softshadow_angle > 0) {
							float range_pos = dot(directional_lights.data[i].direction, v.xyz);
							float range_begin = directional_lights.data[i].shadow_range_begin.y;
							float test_radius = (range_pos - range_begin) * directional_lights.data[i].softshadow_angle;
							vec2 tex_scale = directional_lights.data[i].uv_scale2 * test_radius;
							shadow2 = sample_directional_soft_shadow(directional_shadow_atlas, pssm_coord.xyz, tex_scale * directional_lights.data[i].soft_shadow_scale);
						} else {
							shadow2 = sample_directional_pcf_shadow(directional_shadow_atlas, scene_data.directional_shadow_pixel_size * directional_lights.data[i].soft_shadow_scale, pssm_coord);
						}

						pssm_blend = smoothstep(0.0, directional_lights.data[i].shadow_split_offsets.x, depth_z);
						shadow_color_blend = directional_lights.data[i].shadow_color2.rgb;
					} else if (depth_z < directional_lights.data[i].shadow_split_offsets.y) {
						vec4 v = vec4(vertex, 1.0);
						BIAS_FUNC(v, 2)
						pssm_coord = (directional_lights.data[i].shadow_matrix3 * v);
						pssm_coord /= pssm_coord.w;

						if (directional_lights.data[i].softshadow_angle > 0) {
							float range_pos = dot(directional_lights.data[i].direction, v.xyz);
							float range_begin = directional_lights.data[i].shadow_range_begin.z;
							float test_radius = (range_pos - range_begin) * directional_lights.data[i].softshadow_angle;
							vec2 tex_scale = directional_lights.data[i].uv_scale3 * test_radius;
							shadow2 = sample_directional_soft_shadow(directional_shadow_atlas, pssm_coord.xyz, tex_scale * directional_lights.data[i].soft_shadow_scale);
						} else {
							shadow2 = sample_directional_pcf_shadow(directional_shadow_atlas, scene_data.directional_shadow_pixel_size * directional_lights.data[i].soft_shadow_scale, pssm_coord);
						}

						pssm_blend = smoothstep(directional_lights.data[i].shadow_split_offsets.x, directional_lights.data[i].shadow_split_offsets.y, depth_z);

						shadow_color_blend = directional_lights.data[i].shadow_color3.rgb;
					} else if (depth_z < directional_lights.data[i].shadow_split_offsets.z) {
						vec4 v = vec4(vertex, 1.0);
						BIAS_FUNC(v, 3)
						pssm_coord = (directional_lights.data[i].shadow_matrix4 * v);
						pssm_coord /= pssm_coord.w;
						if (directional_lights.data[i].softshadow_angle > 0) {
							float range_pos = dot(directional_lights.data[i].direction, v.xyz);
							float range_begin = directional_lights.data[i].shadow_range_begin.w;
							float test_radius = (range_pos - range_begin) * directional_lights.data[i].softshadow_angle;
							vec2 tex_scale = directional_lights.data[i].uv_scale4 * test_radius;
							shadow2 = sample_directional_soft_shadow(directional_shadow_atlas, pssm_coord.xyz, tex_scale * directional_lights.data[i].soft_shadow_scale);
						} else {
							shadow2 = sample_directional_pcf_shadow(directional_shadow_atlas, scene_data.directional_shadow_pixel_size * directional_lights.data[i].soft_shadow_scale, pssm_coord);
						}

						pssm_blend = smoothstep(directional_lights.data[i].shadow_split_offsets.y, directional_lights.data[i].shadow_split_offsets.z, depth_z);
						shadow_color_blend = directional_lights.data[i].shadow_color4.rgb;
					} else {
						pssm_blend = 0.0; //if no blend, same coord will be used (divide by z will result in same value, and already cached)
					}

					pssm_blend = sqrt(pssm_blend);

					shadow = mix(shadow, shadow2, pssm_blend);
					shadow_color = mix(shadow_color, shadow_color_blend, pssm_blend);
				}

				shadow = mix(shadow, 1.0, smoothstep(directional_lights.data[i].fade_from, directional_lights.data[i].fade_to, vertex.z)); //done with negative values for performance

				shadow_attenuation = mix(shadow_color, vec3(1.0), shadow);

#undef BIAS_FUNC
			}

			light_compute(normal, directional_lights.data[i].direction, normalize(view), directional_lights.data[i].size, directional_lights.data[i].color * directional_lights.data[i].energy, 1.0, shadow_attenuation, albedo, roughness, metallic, specular, directional_lights.data[i].specular * specular_blob_intensity,
#ifdef LIGHT_BACKLIGHT_USED
					backlight,
#endif
#ifdef LIGHT_TRANSMITTANCE_USED
					transmittance_color,
					transmittance_depth,
					transmittance_curve,
					transmittance_boost,
					transmittance_z,
#endif
#ifdef LIGHT_RIM_USED
					rim, rim_tint,
#endif
#ifdef LIGHT_CLEARCOAT_USED
					clearcoat, clearcoat_gloss,
#endif
#ifdef LIGHT_ANISOTROPY_USED
					binormal, tangent, anisotropy,
#endif
#ifdef USE_SHADOW_TO_OPACITY
					alpha,
#endif
					diffuse_light,
					specular_light);
		}
	}

	{ //omni lights

		uint omni_light_count = cluster_cell.x >> CLUSTER_COUNTER_SHIFT;
		uint omni_light_pointer = cluster_cell.x & CLUSTER_POINTER_MASK;

		for (uint i = 0; i < omni_light_count; i++) {
			uint light_index = cluster_data.indices[omni_light_pointer + i];

			if (!bool(lights.data[light_index].mask & instances.data[instance_index].layer_mask)) {
				continue; //not masked
			}

			light_process_omni(light_index, vertex, view, normal, vertex_ddx, vertex_ddy, albedo, roughness, metallic, specular, specular_blob_intensity,
#ifdef LIGHT_BACKLIGHT_USED
					backlight,
#endif
#ifdef LIGHT_TRANSMITTANCE_USED
					transmittance_color,
					transmittance_depth,
					transmittance_curve,
					transmittance_boost,
#endif
#ifdef LIGHT_RIM_USED
					rim,
					rim_tint,
#endif
#ifdef LIGHT_CLEARCOAT_USED
					clearcoat, clearcoat_gloss,
#endif
#ifdef LIGHT_ANISOTROPY_USED
					tangent, binormal, anisotropy,
#endif
#ifdef USE_SHADOW_TO_OPACITY
					alpha,
#endif
					diffuse_light, specular_light);
		}
	}

	{ //spot lights
		uint spot_light_count = cluster_cell.y >> CLUSTER_COUNTER_SHIFT;
		uint spot_light_pointer = cluster_cell.y & CLUSTER_POINTER_MASK;

		for (uint i = 0; i < spot_light_count; i++) {
			uint light_index = cluster_data.indices[spot_light_pointer + i];

			if (!bool(lights.data[light_index].mask & instances.data[instance_index].layer_mask)) {
				continue; //not masked
			}

			light_process_spot(light_index, vertex, view, normal, vertex_ddx, vertex_ddy, albedo, roughness, metallic, specular, specular_blob_intensity,
#ifdef LIGHT_BACKLIGHT_USED
					backlight,
#endif
#ifdef LIGHT_TRANSMITTANCE_USED
					transmittance_color,
					transmittance_depth,
					transmittance_curve,
					transmittance_boost,
#endif
#ifdef LIGHT_RIM_USED
					rim,
					rim_tint,
#endif
#ifdef LIGHT_CLEARCOAT_USED
					clearcoat, clearcoat_gloss,
#endif
#ifdef LIGHT_ANISOTROPY_USED
					tangent, binormal, anisotropy,
#endif
#ifdef USE_SHADOW_TO_OPACITY
					alpha,
#endif
					diffuse_light, specular_light);
		}
	}

#ifdef USE_SHADOW_TO_OPACITY
	alpha = min(alpha, clamp(length(ambient_light), 0.0, 1.0));

#if defined(ALPHA_SCISSOR_USED)
	if (alpha < alpha_scissor) {
		discard;
	}
#endif // ALPHA_SCISSOR_USED

#ifdef USE_OPAQUE_PREPASS

	if (alpha < opaque_prepass_threshold) {
		discard;
	}

#endif // USE_OPAQUE_PREPASS

#endif // USE_SHADOW_TO_OPACITY

#endif //!defined(MODE_RENDER_DEPTH) && !defined(MODE_UNSHADED)

#ifdef MODE_RENDER_DEPTH

#ifdef MODE_RENDER_SDF

	{
		vec3 local_pos = (scene_data.sdf_to_bounds * vec4(vertex, 1.0)).xyz;
		ivec3 grid_pos = scene_data.sdf_offset + ivec3(local_pos * vec3(scene_data.sdf_size));

		uint albedo16 = 0x1; //solid flag
		albedo16 |= clamp(uint(albedo.r * 31.0), 0, 31) << 11;
		albedo16 |= clamp(uint(albedo.g * 31.0), 0, 31) << 6;
		albedo16 |= clamp(uint(albedo.b * 31.0), 0, 31) << 1;

		imageStore(albedo_volume_grid, grid_pos, uvec4(albedo16));

		uint facing_bits = 0;
		const vec3 aniso_dir[6] = vec3[](
				vec3(1, 0, 0),
				vec3(0, 1, 0),
				vec3(0, 0, 1),
				vec3(-1, 0, 0),
				vec3(0, -1, 0),
				vec3(0, 0, -1));

		vec3 cam_normal = mat3(scene_data.camera_matrix) * normalize(normal_interp);

		float closest_dist = -1e20;

		for (uint i = 0; i < 6; i++) {
			float d = dot(cam_normal, aniso_dir[i]);
			if (d > closest_dist) {
				closest_dist = d;
				facing_bits = (1 << i);
			}
		}

		imageAtomicOr(geom_facing_grid, grid_pos, facing_bits); //store facing bits

		if (length(emission) > 0.001) {
			float lumas[6];
			vec3 light_total = vec3(0);

			for (int i = 0; i < 6; i++) {
				float strength = max(0.0, dot(cam_normal, aniso_dir[i]));
				vec3 light = emission * strength;
				light_total += light;
				lumas[i] = max(light.r, max(light.g, light.b));
			}

			float luma_total = max(light_total.r, max(light_total.g, light_total.b));

			uint light_aniso = 0;

			for (int i = 0; i < 6; i++) {
				light_aniso |= min(31, uint((lumas[i] / luma_total) * 31.0)) << (i * 5);
			}

			//compress to RGBE9995 to save space

			const float pow2to9 = 512.0f;
			const float B = 15.0f;
			const float N = 9.0f;
			const float LN2 = 0.6931471805599453094172321215;

			float cRed = clamp(light_total.r, 0.0, 65408.0);
			float cGreen = clamp(light_total.g, 0.0, 65408.0);
			float cBlue = clamp(light_total.b, 0.0, 65408.0);

			float cMax = max(cRed, max(cGreen, cBlue));

			float expp = max(-B - 1.0f, floor(log(cMax) / LN2)) + 1.0f + B;

			float sMax = floor((cMax / pow(2.0f, expp - B - N)) + 0.5f);

			float exps = expp + 1.0f;

			if (0.0 <= sMax && sMax < pow2to9) {
				exps = expp;
			}

			float sRed = floor((cRed / pow(2.0f, exps - B - N)) + 0.5f);
			float sGreen = floor((cGreen / pow(2.0f, exps - B - N)) + 0.5f);
			float sBlue = floor((cBlue / pow(2.0f, exps - B - N)) + 0.5f);
			//store as 8985 to have 2 extra neighbour bits
			uint light_rgbe = ((uint(sRed) & 0x1FF) >> 1) | ((uint(sGreen) & 0x1FF) << 8) | (((uint(sBlue) & 0x1FF) >> 1) << 17) | ((uint(exps) & 0x1F) << 25);

			imageStore(emission_grid, grid_pos, uvec4(light_rgbe));
			imageStore(emission_aniso_grid, grid_pos, uvec4(light_aniso));
		}
	}

#endif

#ifdef MODE_RENDER_MATERIAL

	albedo_output_buffer.rgb = albedo;
	albedo_output_buffer.a = alpha;

	normal_output_buffer.rgb = normal * 0.5 + 0.5;
	normal_output_buffer.a = 0.0;
	depth_output_buffer.r = -vertex.z;

#if defined(AO_USED)
	orm_output_buffer.r = ao;
#else
	orm_output_buffer.r = 0.0;
#endif
	orm_output_buffer.g = roughness;
	orm_output_buffer.b = metallic;
	orm_output_buffer.a = sss_strength;

	emission_output_buffer.rgb = emission;
	emission_output_buffer.a = 0.0;
#endif

#ifdef MODE_RENDER_NORMAL_ROUGHNESS
	normal_roughness_output_buffer = vec4(normal * 0.5 + 0.5, roughness);

#ifdef MODE_RENDER_GIPROBE
	if (bool(instances.data[instance_index].flags & INSTANCE_FLAGS_USE_GIPROBE)) { // process giprobes
		uint index1 = instances.data[instance_index].gi_offset & 0xFFFF;
		uint index2 = instances.data[instance_index].gi_offset >> 16;
		giprobe_buffer.x = index1 & 0xFF;
		giprobe_buffer.y = index2 & 0xFF;
	} else {
		giprobe_buffer.x = 0xFF;
		giprobe_buffer.y = 0xFF;
	}
#endif

#endif //MODE_RENDER_NORMAL

//nothing happens, so a tree-ssa optimizer will result in no fragment shader :)
#else

	specular_light *= scene_data.reflection_multiplier;
	ambient_light *= albedo; //ambient must be multiplied by albedo at the end

//ambient occlusion
#if defined(AO_USED)

#ifndef LOW_END_MODE
	if (scene_data.ssao_enabled && scene_data.ssao_ao_affect > 0.0) {
		float ssao = texture(sampler2D(ao_buffer, material_samplers[SAMPLER_LINEAR_CLAMP]), screen_uv).r;
		ao = mix(ao, min(ao, ssao), scene_data.ssao_ao_affect);
		ao_light_affect = mix(ao_light_affect, max(ao_light_affect, scene_data.ssao_light_affect), scene_data.ssao_ao_affect);
	}
#endif //LOW_END_MODE

	ambient_light = mix(scene_data.ao_color.rgb, ambient_light, ao);
	ao_light_affect = mix(1.0, ao, ao_light_affect);
	specular_light = mix(scene_data.ao_color.rgb, specular_light, ao_light_affect);
	diffuse_light = mix(scene_data.ao_color.rgb, diffuse_light, ao_light_affect);
#else

#ifndef LOW_END_MODE
	if (scene_data.ssao_enabled) {
		float ao = texture(sampler2D(ao_buffer, material_samplers[SAMPLER_LINEAR_CLAMP]), screen_uv).r;
		ambient_light = mix(scene_data.ao_color.rgb, ambient_light, ao);
		float ao_light_affect = mix(1.0, ao, scene_data.ssao_light_affect);
		specular_light = mix(scene_data.ao_color.rgb, specular_light, ao_light_affect);
		diffuse_light = mix(scene_data.ao_color.rgb, diffuse_light, ao_light_affect);
	}
#endif //LOW_END_MODE

#endif // AO_USED

	// base color remapping
	diffuse_light *= 1.0 - metallic; // TODO: avoid all diffuse and ambient light calculations when metallic == 1 up to this point
	ambient_light *= 1.0 - metallic;

#ifdef MODE_MULTIPLE_RENDER_TARGETS

#ifdef MODE_UNSHADED
	diffuse_buffer = vec4(albedo.rgb, 0.0);
	specular_buffer = vec4(0.0);

#else

#ifdef SSS_MODE_SKIN
	sss_strength = -sss_strength;
#endif
	diffuse_buffer = vec4(emission + diffuse_light + ambient_light, sss_strength);
	specular_buffer = vec4(specular_light, metallic);
#endif

	// Draw "fixed" fog before volumetric fog to ensure volumetric fog can appear in front of the sky.
	if (scene_data.fog_enabled) {
		vec4 fog = fog_process(vertex);
		diffuse_buffer.rgb = mix(diffuse_buffer.rgb, fog.rgb, fog.a);
		specular_buffer.rgb = mix(specular_buffer.rgb, vec3(0.0), fog.a);
	}

#ifndef LOW_END_MODE
	if (scene_data.volumetric_fog_enabled) {
		vec4 fog = volumetric_fog_process(screen_uv, -vertex.z);
		diffuse_buffer.rgb = mix(diffuse_buffer.rgb, fog.rgb, fog.a);
		specular_buffer.rgb = mix(specular_buffer.rgb, vec3(0.0), fog.a);
	}
#endif // LOW_END_MODE

#if defined(CUSTOM_FOG_USED)
	diffuse_buffer.rgb = mix(diffuse_buffer.rgb, custom_fog.rgb, custom_fog.a);
	specular_buffer.rgb = mix(specular_buffer.rgb, vec3(0.0), custom_fog.a);
#endif //CUSTOM_FOG_USED

#else //MODE_MULTIPLE_RENDER_TARGETS

#ifdef MODE_UNSHADED
	frag_color = vec4(albedo, alpha);
#else
	frag_color = vec4(emission + ambient_light + diffuse_light + specular_light, alpha);
	//frag_color = vec4(1.0);
#endif //USE_NO_SHADING

	// Draw "fixed" fog before volumetric fog to ensure volumetric fog can appear in front of the sky.
	if (scene_data.fog_enabled) {
		vec4 fog = fog_process(vertex);
		frag_color.rgb = mix(frag_color.rgb, fog.rgb, fog.a);
	}
#ifndef LOW_END_MODE
	if (scene_data.volumetric_fog_enabled) {
		vec4 fog = volumetric_fog_process(screen_uv, -vertex.z);
		frag_color.rgb = mix(frag_color.rgb, fog.rgb, fog.a);
	}
#endif

#if defined(CUSTOM_FOG_USED)
	frag_color.rgb = mix(frag_color.rgb, custom_fog.rgb, custom_fog.a);
#endif //CUSTOM_FOG_USED

#endif //MODE_MULTIPLE_RENDER_TARGETS

#endif //MODE_RENDER_DEPTH
}