summaryrefslogtreecommitdiff
path: root/servers/rendering/renderer_rd/shaders/giprobe_write.glsl
blob: a6d65bffeb6b45caae722fec5d6a9982f7937b25 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
#[compute]

#version 450

#VERSION_DEFINES

layout(local_size_x = 64, local_size_y = 1, local_size_z = 1) in;

#define NO_CHILDREN 0xFFFFFFFF

struct CellChildren {
	uint children[8];
};

layout(set = 0, binding = 1, std430) buffer CellChildrenBuffer {
	CellChildren data[];
}
cell_children;

struct CellData {
	uint position; // xyz 10 bits
	uint albedo; //rgb albedo
	uint emission; //rgb normalized with e as multiplier
	uint normal; //RGB normal encoded
};

layout(set = 0, binding = 2, std430) buffer CellDataBuffer {
	CellData data[];
}
cell_data;

#define LIGHT_TYPE_DIRECTIONAL 0
#define LIGHT_TYPE_OMNI 1
#define LIGHT_TYPE_SPOT 2

#ifdef MODE_COMPUTE_LIGHT

struct Light {
	uint type;
	float energy;
	float radius;
	float attenuation;

	vec3 color;
	float cos_spot_angle;

	vec3 position;
	float inv_spot_attenuation;

	vec3 direction;
	bool has_shadow;
};

layout(set = 0, binding = 3, std140) uniform Lights {
	Light data[MAX_LIGHTS];
}
lights;

#endif

layout(push_constant, binding = 0, std430) uniform Params {
	ivec3 limits;
	uint stack_size;

	float emission_scale;
	float propagation;
	float dynamic_range;

	uint light_count;
	uint cell_offset;
	uint cell_count;
	uint pad[2];
}
params;

layout(set = 0, binding = 4, std140) uniform Outputs {
	vec4 data[];
}
output;

#ifdef MODE_COMPUTE_LIGHT

uint raymarch(float distance, float distance_adv, vec3 from, vec3 direction) {
	uint result = NO_CHILDREN;

	ivec3 size = ivec3(max(max(params.limits.x, params.limits.y), params.limits.z));

	while (distance > -distance_adv) { //use this to avoid precision errors
		uint cell = 0;

		ivec3 pos = ivec3(from);

		if (all(greaterThanEqual(pos, ivec3(0))) && all(lessThan(pos, size))) {
			ivec3 ofs = ivec3(0);
			ivec3 half_size = size / 2;

			for (int i = 0; i < params.stack_size - 1; i++) {
				bvec3 greater = greaterThanEqual(pos, ofs + half_size);

				ofs += mix(ivec3(0), half_size, greater);

				uint child = 0; //wonder if this can be done faster
				if (greater.x) {
					child |= 1;
				}
				if (greater.y) {
					child |= 2;
				}
				if (greater.z) {
					child |= 4;
				}

				cell = cell_children.data[cell].children[child];
				if (cell == NO_CHILDREN) {
					break;
				}

				half_size >>= ivec3(1);
			}

			if (cell != NO_CHILDREN) {
				return cell; //found cell!
			}
		}

		from += direction * distance_adv;
		distance -= distance_adv;
	}

	return NO_CHILDREN;
}

bool compute_light_vector(uint light, uint cell, vec3 pos, out float attenuation, out vec3 light_pos) {
	if (lights.data[light].type == LIGHT_TYPE_DIRECTIONAL) {
		light_pos = pos - lights.data[light].direction * length(vec3(params.limits));
		attenuation = 1.0;
	} else {
		light_pos = lights.data[light].position;
		float distance = length(pos - light_pos);
		if (distance >= lights.data[light].radius) {
			return false;
		}

		attenuation = pow(clamp(1.0 - distance / lights.data[light].radius, 0.0001, 1.0), lights.data[light].attenuation);

		if (lights.data[light].type == LIGHT_TYPE_SPOT) {
			vec3 rel = normalize(pos - light_pos);
			float cos_spot_angle = lights.data[light].cos_spot_angle;
			float cos_angle = dot(rel, lights.data[light].direction);
			if (cos_angle < cos_spot_angle) {
				return false;
			}

			float scos = max(cos_angle, cos_spot_angle);
			float spot_rim = max(0.0001, (1.0 - scos) / (1.0 - cos_spot_angle));
			attenuation *= 1.0 - pow(spot_rim, lights.data[light].inv_spot_attenuation);
		}
	}

	return true;
}

float get_normal_advance(vec3 p_normal) {
	vec3 normal = p_normal;
	vec3 unorm = abs(normal);

	if ((unorm.x >= unorm.y) && (unorm.x >= unorm.z)) {
		// x code
		unorm = normal.x > 0.0 ? vec3(1.0, 0.0, 0.0) : vec3(-1.0, 0.0, 0.0);
	} else if ((unorm.y > unorm.x) && (unorm.y >= unorm.z)) {
		// y code
		unorm = normal.y > 0.0 ? vec3(0.0, 1.0, 0.0) : vec3(0.0, -1.0, 0.0);
	} else if ((unorm.z > unorm.x) && (unorm.z > unorm.y)) {
		// z code
		unorm = normal.z > 0.0 ? vec3(0.0, 0.0, 1.0) : vec3(0.0, 0.0, -1.0);
	} else {
		// oh-no we messed up code
		// has to be
		unorm = vec3(1.0, 0.0, 0.0);
	}

	return 1.0 / dot(normal, unorm);
}

#endif

void main() {
	uint cell_index = gl_GlobalInvocationID.x;
	if (cell_index >= params.cell_count) {
		return;
	}
	cell_index += params.cell_offset;

	uvec3 posu = uvec3(cell_data.data[cell_index].position & 0x7FF, (cell_data.data[cell_index].position >> 11) & 0x3FF, cell_data.data[cell_index].position >> 21);
	vec4 albedo = unpackUnorm4x8(cell_data.data[cell_index].albedo);

#ifdef MODE_COMPUTE_LIGHT

	vec3 pos = vec3(posu) + vec3(0.5);

	vec3 emission = vec3(ivec3(cell_data.data[cell_index].emission & 0x3FF, (cell_data.data[cell_index].emission >> 10) & 0x7FF, cell_data.data[cell_index].emission >> 21)) * params.emission_scale;
	vec4 normal = unpackSnorm4x8(cell_data.data[cell_index].normal);

	vec3 accum = vec3(0.0);

	for (uint i = 0; i < params.light_count; i++) {
		float attenuation;
		vec3 light_pos;

		if (!compute_light_vector(i, cell_index, pos, attenuation, light_pos)) {
			continue;
		}

		vec3 light_dir = pos - light_pos;
		float distance = length(light_dir);
		light_dir = normalize(light_dir);

		if (length(normal.xyz) > 0.2 && dot(normal.xyz, light_dir) >= 0) {
			continue; //not facing the light
		}

		if (lights.data[i].has_shadow) {
			float distance_adv = get_normal_advance(light_dir);

			distance += distance_adv - mod(distance, distance_adv); //make it reach the center of the box always

			vec3 from = pos - light_dir * distance; //approximate
			from -= sign(light_dir) * 0.45; //go near the edge towards the light direction to avoid self occlusion

			uint result = raymarch(distance, distance_adv, from, light_dir);

			if (result != cell_index) {
				continue; //was occluded
			}
		}

		vec3 light = lights.data[i].color * albedo.rgb * attenuation * lights.data[i].energy;

		if (length(normal.xyz) > 0.2) {
			accum += max(0.0, dot(normal.xyz, -light_dir)) * light + emission;
		} else {
			//all directions
			accum += light + emission;
		}
	}

	output.data[cell_index] = vec4(accum, 0.0);

#endif //MODE_COMPUTE_LIGHT

#ifdef MODE_UPDATE_MIPMAPS

	{
		vec3 light_accum = vec3(0.0);
		float count = 0.0;
		for (uint i = 0; i < 8; i++) {
			uint child_index = cell_children.data[cell_index].children[i];
			if (child_index == NO_CHILDREN) {
				continue;
			}
			light_accum += output.data[child_index].rgb;

			count += 1.0;
		}

		float divisor = mix(8.0, count, params.propagation);
		output.data[cell_index] = vec4(light_accum / divisor, 0.0);
	}
#endif

#ifdef MODE_WRITE_TEXTURE
	{
	}
#endif
}