summaryrefslogtreecommitdiff
path: root/servers/rendering/renderer_rd/shaders/gi.glsl
blob: 35522103df490794b973803bd16a0a720f8642c5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
#[compute]

#version 450

VERSION_DEFINES

layout(local_size_x = 8, local_size_y = 8, local_size_z = 1) in;

#define M_PI 3.141592

#define SDFGI_MAX_CASCADES 8

//set 0 for SDFGI and render buffers

layout(set = 0, binding = 1) uniform texture3D sdf_cascades[SDFGI_MAX_CASCADES];
layout(set = 0, binding = 2) uniform texture3D light_cascades[SDFGI_MAX_CASCADES];
layout(set = 0, binding = 3) uniform texture3D aniso0_cascades[SDFGI_MAX_CASCADES];
layout(set = 0, binding = 4) uniform texture3D aniso1_cascades[SDFGI_MAX_CASCADES];
layout(set = 0, binding = 5) uniform texture3D occlusion_texture;

layout(set = 0, binding = 6) uniform sampler linear_sampler;
layout(set = 0, binding = 7) uniform sampler linear_sampler_with_mipmaps;

struct ProbeCascadeData {
	vec3 position;
	float to_probe;
	ivec3 probe_world_offset;
	float to_cell; // 1/bounds * grid_size
};

layout(rgba16f, set = 0, binding = 9) uniform restrict writeonly image2D ambient_buffer;
layout(rgba16f, set = 0, binding = 10) uniform restrict writeonly image2D reflection_buffer;

layout(set = 0, binding = 11) uniform texture2DArray lightprobe_texture;

layout(set = 0, binding = 12) uniform texture2D depth_buffer;
layout(set = 0, binding = 13) uniform texture2D normal_roughness_buffer;
layout(set = 0, binding = 14) uniform utexture2D giprobe_buffer;

layout(set = 0, binding = 15, std140) uniform SDFGI {
	vec3 grid_size;
	uint max_cascades;

	bool use_occlusion;
	int probe_axis_size;
	float probe_to_uvw;
	float normal_bias;

	vec3 lightprobe_tex_pixel_size;
	float energy;

	vec3 lightprobe_uv_offset;
	float y_mult;

	vec3 occlusion_clamp;
	uint pad3;

	vec3 occlusion_renormalize;
	uint pad4;

	vec3 cascade_probe_size;
	uint pad5;

	ProbeCascadeData cascades[SDFGI_MAX_CASCADES];
}
sdfgi;

#define MAX_GI_PROBES 8

struct GIProbeData {
	mat4 xform;
	vec3 bounds;
	float dynamic_range;

	float bias;
	float normal_bias;
	bool blend_ambient;
	uint texture_slot;

	float anisotropy_strength;
	float ambient_occlusion;
	float ambient_occlusion_size;
	uint mipmaps;
};

layout(set = 0, binding = 16, std140) uniform GIProbes {
	GIProbeData data[MAX_GI_PROBES];
}
gi_probes;

layout(set = 0, binding = 17) uniform texture3D gi_probe_textures[MAX_GI_PROBES];

layout(push_constant, binding = 0, std430) uniform Params {
	ivec2 screen_size;
	float z_near;
	float z_far;

	vec4 proj_info;

	vec3 ao_color;
	uint max_giprobes;

	bool high_quality_vct;
	bool orthogonal;
	uint pad[2];

	mat3x4 cam_rotation;
}
params;

vec2 octahedron_wrap(vec2 v) {
	vec2 signVal;
	signVal.x = v.x >= 0.0 ? 1.0 : -1.0;
	signVal.y = v.y >= 0.0 ? 1.0 : -1.0;
	return (1.0 - abs(v.yx)) * signVal;
}

vec2 octahedron_encode(vec3 n) {
	// https://twitter.com/Stubbesaurus/status/937994790553227264
	n /= (abs(n.x) + abs(n.y) + abs(n.z));
	n.xy = n.z >= 0.0 ? n.xy : octahedron_wrap(n.xy);
	n.xy = n.xy * 0.5 + 0.5;
	return n.xy;
}

vec4 blend_color(vec4 src, vec4 dst) {
	vec4 res;
	float sa = 1.0 - src.a;
	res.a = dst.a * sa + src.a;
	if (res.a == 0.0) {
		res.rgb = vec3(0);
	} else {
		res.rgb = (dst.rgb * dst.a * sa + src.rgb * src.a) / res.a;
	}
	return res;
}

vec3 reconstruct_position(ivec2 screen_pos) {
	vec3 pos;
	pos.z = texelFetch(sampler2D(depth_buffer, linear_sampler), screen_pos, 0).r;

	pos.z = pos.z * 2.0 - 1.0;
	if (params.orthogonal) {
		pos.z = ((pos.z + (params.z_far + params.z_near) / (params.z_far - params.z_near)) * (params.z_far - params.z_near)) / 2.0;
	} else {
		pos.z = 2.0 * params.z_near * params.z_far / (params.z_far + params.z_near - pos.z * (params.z_far - params.z_near));
	}
	pos.z = -pos.z;

	pos.xy = vec2(screen_pos) * params.proj_info.xy + params.proj_info.zw;
	if (!params.orthogonal) {
		pos.xy *= pos.z;
	}

	return pos;
}

void sdfgi_probe_process(uint cascade, vec3 cascade_pos, vec3 cam_pos, vec3 cam_normal, vec3 cam_specular_normal, float roughness, out vec3 diffuse_light, out vec3 specular_light) {
	cascade_pos += cam_normal * sdfgi.normal_bias;

	vec3 base_pos = floor(cascade_pos);
	//cascade_pos += mix(vec3(0.0),vec3(0.01),lessThan(abs(cascade_pos-base_pos),vec3(0.01))) * cam_normal;
	ivec3 probe_base_pos = ivec3(base_pos);

	vec4 diffuse_accum = vec4(0.0);
	vec3 specular_accum;

	ivec3 tex_pos = ivec3(probe_base_pos.xy, int(cascade));
	tex_pos.x += probe_base_pos.z * sdfgi.probe_axis_size;
	tex_pos.xy = tex_pos.xy * (SDFGI_OCT_SIZE + 2) + ivec2(1);

	vec3 diffuse_posf = (vec3(tex_pos) + vec3(octahedron_encode(cam_normal) * float(SDFGI_OCT_SIZE), 0.0)) * sdfgi.lightprobe_tex_pixel_size;

	vec3 specular_posf = (vec3(tex_pos) + vec3(octahedron_encode(cam_specular_normal) * float(SDFGI_OCT_SIZE), 0.0)) * sdfgi.lightprobe_tex_pixel_size;

	specular_accum = vec3(0.0);

	vec4 light_accum = vec4(0.0);
	float weight_accum = 0.0;

	for (uint j = 0; j < 8; j++) {
		ivec3 offset = (ivec3(j) >> ivec3(0, 1, 2)) & ivec3(1, 1, 1);
		ivec3 probe_posi = probe_base_pos;
		probe_posi += offset;

		// Compute weight

		vec3 probe_pos = vec3(probe_posi);
		vec3 probe_to_pos = cascade_pos - probe_pos;
		vec3 probe_dir = normalize(-probe_to_pos);

		vec3 trilinear = vec3(1.0) - abs(probe_to_pos);
		float weight = trilinear.x * trilinear.y * trilinear.z * max(0.005, dot(cam_normal, probe_dir));

		// Compute lightprobe occlusion

		if (sdfgi.use_occlusion) {
			ivec3 occ_indexv = abs((sdfgi.cascades[cascade].probe_world_offset + probe_posi) & ivec3(1, 1, 1)) * ivec3(1, 2, 4);
			vec4 occ_mask = mix(vec4(0.0), vec4(1.0), equal(ivec4(occ_indexv.x | occ_indexv.y), ivec4(0, 1, 2, 3)));

			vec3 occ_pos = clamp(cascade_pos, probe_pos - sdfgi.occlusion_clamp, probe_pos + sdfgi.occlusion_clamp) * sdfgi.probe_to_uvw;
			occ_pos.z += float(cascade);
			if (occ_indexv.z != 0) { //z bit is on, means index is >=4, so make it switch to the other half of textures
				occ_pos.x += 1.0;
			}

			occ_pos *= sdfgi.occlusion_renormalize;
			float occlusion = dot(textureLod(sampler3D(occlusion_texture, linear_sampler), occ_pos, 0.0), occ_mask);

			weight *= max(occlusion, 0.01);
		}

		// Compute lightprobe texture position

		vec3 diffuse;
		vec3 pos_uvw = diffuse_posf;
		pos_uvw.xy += vec2(offset.xy) * sdfgi.lightprobe_uv_offset.xy;
		pos_uvw.x += float(offset.z) * sdfgi.lightprobe_uv_offset.z;
		diffuse = textureLod(sampler2DArray(lightprobe_texture, linear_sampler), pos_uvw, 0.0).rgb;

		diffuse_accum += vec4(diffuse * weight, weight);

		{
			vec3 specular = vec3(0.0);
			vec3 pos_uvw = specular_posf;
			pos_uvw.xy += vec2(offset.xy) * sdfgi.lightprobe_uv_offset.xy;
			pos_uvw.x += float(offset.z) * sdfgi.lightprobe_uv_offset.z;
			if (roughness < 0.99) {
				specular = textureLod(sampler2DArray(lightprobe_texture, linear_sampler), pos_uvw + vec3(0, 0, float(sdfgi.max_cascades)), 0.0).rgb;
			}
			if (roughness > 0.2) {
				specular = mix(specular, textureLod(sampler2DArray(lightprobe_texture, linear_sampler), pos_uvw, 0.0).rgb, (roughness - 0.2) * 1.25);
			}

			specular_accum += specular * weight;
		}
	}

	if (diffuse_accum.a > 0.0) {
		diffuse_accum.rgb /= diffuse_accum.a;
	}

	diffuse_light = diffuse_accum.rgb;

	if (diffuse_accum.a > 0.0) {
		specular_accum /= diffuse_accum.a;
	}

	specular_light = specular_accum;
}

void sdfgi_process(vec3 vertex, vec3 normal, vec3 reflection, float roughness, out vec4 ambient_light, out vec4 reflection_light) {
	//make vertex orientation the world one, but still align to camera
	vertex.y *= sdfgi.y_mult;
	normal.y *= sdfgi.y_mult;
	reflection.y *= sdfgi.y_mult;

	//renormalize
	normal = normalize(normal);
	reflection = normalize(reflection);

	vec3 cam_pos = vertex;
	vec3 cam_normal = normal;

	vec4 light_accum = vec4(0.0);
	float weight_accum = 0.0;

	vec4 light_blend_accum = vec4(0.0);
	float weight_blend_accum = 0.0;

	float blend = -1.0;

	// helper constants, compute once

	uint cascade = 0xFFFFFFFF;
	vec3 cascade_pos;
	vec3 cascade_normal;

	for (uint i = 0; i < sdfgi.max_cascades; i++) {
		cascade_pos = (cam_pos - sdfgi.cascades[i].position) * sdfgi.cascades[i].to_probe;

		if (any(lessThan(cascade_pos, vec3(0.0))) || any(greaterThanEqual(cascade_pos, sdfgi.cascade_probe_size))) {
			continue; //skip cascade
		}

		cascade = i;
		break;
	}

	if (cascade < SDFGI_MAX_CASCADES) {
		ambient_light = vec4(0, 0, 0, 1);
		reflection_light = vec4(0, 0, 0, 1);

		float blend;
		vec3 diffuse, specular;
		sdfgi_probe_process(cascade, cascade_pos, cam_pos, cam_normal, reflection, roughness, diffuse, specular);

		{
			//process blend
			float blend_from = (float(sdfgi.probe_axis_size - 1) / 2.0) - 2.5;
			float blend_to = blend_from + 2.0;

			vec3 inner_pos = cam_pos * sdfgi.cascades[cascade].to_probe;

			float len = length(inner_pos);

			inner_pos = abs(normalize(inner_pos));
			len *= max(inner_pos.x, max(inner_pos.y, inner_pos.z));

			if (len >= blend_from) {
				blend = smoothstep(blend_from, blend_to, len);
			} else {
				blend = 0.0;
			}
		}

		if (blend > 0.0) {
			//blend
			if (cascade == sdfgi.max_cascades - 1) {
				ambient_light.a = 1.0 - blend;
				reflection_light.a = 1.0 - blend;

			} else {
				vec3 diffuse2, specular2;
				cascade_pos = (cam_pos - sdfgi.cascades[cascade + 1].position) * sdfgi.cascades[cascade + 1].to_probe;
				sdfgi_probe_process(cascade + 1, cascade_pos, cam_pos, cam_normal, reflection, roughness, diffuse2, specular2);
				diffuse = mix(diffuse, diffuse2, blend);
				specular = mix(specular, specular2, blend);
			}
		}

		ambient_light.rgb = diffuse;

		if (roughness < 0.2) {
			vec3 pos_to_uvw = 1.0 / sdfgi.grid_size;
			vec4 light_accum = vec4(0.0);

			float blend_size = (sdfgi.grid_size.x / float(sdfgi.probe_axis_size - 1)) * 0.5;

			float radius_sizes[SDFGI_MAX_CASCADES];
			cascade = 0xFFFF;

			float base_distance = length(cam_pos);
			for (uint i = 0; i < sdfgi.max_cascades; i++) {
				radius_sizes[i] = (1.0 / sdfgi.cascades[i].to_cell) * (sdfgi.grid_size.x * 0.5 - blend_size);
				if (cascade == 0xFFFF && base_distance < radius_sizes[i]) {
					cascade = i;
				}
			}

			cascade = min(cascade, sdfgi.max_cascades - 1);

			float max_distance = radius_sizes[sdfgi.max_cascades - 1];
			vec3 ray_pos = cam_pos;
			vec3 ray_dir = reflection;

			{
				float prev_radius = cascade > 0 ? radius_sizes[cascade - 1] : 0.0;
				float base_blend = (base_distance - prev_radius) / (radius_sizes[cascade] - prev_radius);
				float bias = (1.0 + base_blend) * 1.1;
				vec3 abs_ray_dir = abs(ray_dir);
				//ray_pos += ray_dir * (bias / sdfgi.cascades[cascade].to_cell); //bias to avoid self occlusion
				ray_pos += (ray_dir * 1.0 / max(abs_ray_dir.x, max(abs_ray_dir.y, abs_ray_dir.z)) + cam_normal * 1.4) * bias / sdfgi.cascades[cascade].to_cell;
			}
			float softness = 0.2 + min(1.0, roughness * 5.0) * 4.0; //approximation to roughness so it does not seem like a hard fade
			while (length(ray_pos) < max_distance) {
				for (uint i = 0; i < sdfgi.max_cascades; i++) {
					if (i >= cascade && length(ray_pos) < radius_sizes[i]) {
						cascade = max(i, cascade); //never go down

						vec3 pos = ray_pos - sdfgi.cascades[i].position;
						pos *= sdfgi.cascades[i].to_cell * pos_to_uvw;

						float distance = texture(sampler3D(sdf_cascades[i], linear_sampler), pos).r * 255.0 - 1.1;

						vec4 hit_light = vec4(0.0);
						if (distance < softness) {
							hit_light.rgb = texture(sampler3D(light_cascades[i], linear_sampler), pos).rgb;
							hit_light.rgb *= 0.5; //approximation given value read is actually meant for anisotropy
							hit_light.a = clamp(1.0 - (distance / softness), 0.0, 1.0);
							hit_light.rgb *= hit_light.a;
						}

						distance /= sdfgi.cascades[i].to_cell;

						if (i < (sdfgi.max_cascades - 1)) {
							pos = ray_pos - sdfgi.cascades[i + 1].position;
							pos *= sdfgi.cascades[i + 1].to_cell * pos_to_uvw;

							float distance2 = texture(sampler3D(sdf_cascades[i + 1], linear_sampler), pos).r * 255.0 - 1.1;

							vec4 hit_light2 = vec4(0.0);
							if (distance2 < softness) {
								hit_light2.rgb = texture(sampler3D(light_cascades[i + 1], linear_sampler), pos).rgb;
								hit_light2.rgb *= 0.5; //approximation given value read is actually meant for anisotropy
								hit_light2.a = clamp(1.0 - (distance2 / softness), 0.0, 1.0);
								hit_light2.rgb *= hit_light2.a;
							}

							float prev_radius = i == 0 ? 0.0 : radius_sizes[i - 1];
							float blend = clamp((length(ray_pos) - prev_radius) / (radius_sizes[i] - prev_radius), 0.0, 1.0);

							distance2 /= sdfgi.cascades[i + 1].to_cell;

							hit_light = mix(hit_light, hit_light2, blend);
							distance = mix(distance, distance2, blend);
						}

						light_accum += hit_light;
						ray_pos += ray_dir * distance;
						break;
					}
				}

				if (light_accum.a > 0.99) {
					break;
				}
			}

			vec3 light = light_accum.rgb / max(light_accum.a, 0.00001);
			float alpha = min(1.0, light_accum.a);

			float b = min(1.0, roughness * 5.0);

			float sa = 1.0 - b;

			reflection_light.a = alpha * sa + b;
			if (reflection_light.a == 0) {
				specular = vec3(0.0);
			} else {
				specular = (light * alpha * sa + specular * b) / reflection_light.a;
			}
		}

		reflection_light.rgb = specular;

		ambient_light.rgb *= sdfgi.energy;
		reflection_light.rgb *= sdfgi.energy;
	} else {
		ambient_light = vec4(0);
		reflection_light = vec4(0);
	}
}

//standard voxel cone trace
vec4 voxel_cone_trace(texture3D probe, vec3 cell_size, vec3 pos, vec3 direction, float tan_half_angle, float max_distance, float p_bias) {
	float dist = p_bias;
	vec4 color = vec4(0.0);

	while (dist < max_distance && color.a < 0.95) {
		float diameter = max(1.0, 2.0 * tan_half_angle * dist);
		vec3 uvw_pos = (pos + dist * direction) * cell_size;
		float half_diameter = diameter * 0.5;
		//check if outside, then break
		if (any(greaterThan(abs(uvw_pos - 0.5), vec3(0.5f + half_diameter * cell_size)))) {
			break;
		}
		vec4 scolor = textureLod(sampler3D(probe, linear_sampler_with_mipmaps), uvw_pos, log2(diameter));
		float a = (1.0 - color.a);
		color += a * scolor;
		dist += half_diameter;
	}

	return color;
}

vec4 voxel_cone_trace_45_degrees(texture3D probe, vec3 cell_size, vec3 pos, vec3 direction, float max_distance, float p_bias) {
	float dist = p_bias;
	vec4 color = vec4(0.0);
	float radius = max(0.5, dist);
	float lod_level = log2(radius * 2.0);

	while (dist < max_distance && color.a < 0.95) {
		vec3 uvw_pos = (pos + dist * direction) * cell_size;

		//check if outside, then break
		if (any(greaterThan(abs(uvw_pos - 0.5), vec3(0.5f + radius * cell_size)))) {
			break;
		}
		vec4 scolor = textureLod(sampler3D(probe, linear_sampler_with_mipmaps), uvw_pos, lod_level);
		lod_level += 1.0;

		float a = (1.0 - color.a);
		scolor *= a;
		color += scolor;
		dist += radius;
		radius = max(0.5, dist);
	}
	return color;
}

void gi_probe_compute(uint index, vec3 position, vec3 normal, vec3 ref_vec, mat3 normal_xform, float roughness, inout vec4 out_spec, inout vec4 out_diff, inout float out_blend) {
	position = (gi_probes.data[index].xform * vec4(position, 1.0)).xyz;
	ref_vec = normalize((gi_probes.data[index].xform * vec4(ref_vec, 0.0)).xyz);
	normal = normalize((gi_probes.data[index].xform * vec4(normal, 0.0)).xyz);

	position += normal * gi_probes.data[index].normal_bias;

	//this causes corrupted pixels, i have no idea why..
	if (any(bvec2(any(lessThan(position, vec3(0.0))), any(greaterThan(position, gi_probes.data[index].bounds))))) {
		return;
	}

	mat3 dir_xform = mat3(gi_probes.data[index].xform) * normal_xform;

	vec3 blendv = abs(position / gi_probes.data[index].bounds * 2.0 - 1.0);
	float blend = clamp(1.0 - max(blendv.x, max(blendv.y, blendv.z)), 0.0, 1.0);
	//float blend=1.0;

	float max_distance = length(gi_probes.data[index].bounds);
	vec3 cell_size = 1.0 / gi_probes.data[index].bounds;

	//irradiance

	vec4 light = vec4(0.0);

	if (params.high_quality_vct) {
		const uint cone_dir_count = 6;
		vec3 cone_dirs[cone_dir_count] = vec3[](
				vec3(0.0, 0.0, 1.0),
				vec3(0.866025, 0.0, 0.5),
				vec3(0.267617, 0.823639, 0.5),
				vec3(-0.700629, 0.509037, 0.5),
				vec3(-0.700629, -0.509037, 0.5),
				vec3(0.267617, -0.823639, 0.5));

		float cone_weights[cone_dir_count] = float[](0.25, 0.15, 0.15, 0.15, 0.15, 0.15);
		float cone_angle_tan = 0.577;

		for (uint i = 0; i < cone_dir_count; i++) {
			vec3 dir = normalize(dir_xform * cone_dirs[i]);
			light += cone_weights[i] * voxel_cone_trace(gi_probe_textures[index], cell_size, position, dir, cone_angle_tan, max_distance, gi_probes.data[index].bias);
		}
	} else {
		const uint cone_dir_count = 4;
		vec3 cone_dirs[cone_dir_count] = vec3[](
				vec3(0.707107, 0.0, 0.707107),
				vec3(0.0, 0.707107, 0.707107),
				vec3(-0.707107, 0.0, 0.707107),
				vec3(0.0, -0.707107, 0.707107));

		float cone_weights[cone_dir_count] = float[](0.25, 0.25, 0.25, 0.25);
		for (int i = 0; i < cone_dir_count; i++) {
			vec3 dir = normalize(dir_xform * cone_dirs[i]);
			light += cone_weights[i] * voxel_cone_trace_45_degrees(gi_probe_textures[index], cell_size, position, dir, max_distance, gi_probes.data[index].bias);
		}
	}

	if (gi_probes.data[index].ambient_occlusion > 0.001) {
		float size = 1.0 + gi_probes.data[index].ambient_occlusion_size * 7.0;

		float taps, blend;
		blend = modf(size, taps);
		float ao = 0.0;
		for (float i = 1.0; i <= taps; i++) {
			vec3 ofs = (position + normal * (i * 0.5 + 1.0)) * cell_size;
			ao += textureLod(sampler3D(gi_probe_textures[index], linear_sampler_with_mipmaps), ofs, i - 1.0).a * i;
		}

		if (blend > 0.001) {
			vec3 ofs = (position + normal * ((taps + 1.0) * 0.5 + 1.0)) * cell_size;
			ao += textureLod(sampler3D(gi_probe_textures[index], linear_sampler_with_mipmaps), ofs, taps).a * (taps + 1.0) * blend;
		}

		ao = 1.0 - min(1.0, ao);

		light.rgb = mix(params.ao_color, light.rgb, mix(1.0, ao, gi_probes.data[index].ambient_occlusion));
	}

	light.rgb *= gi_probes.data[index].dynamic_range;
	if (!gi_probes.data[index].blend_ambient) {
		light.a = 1.0;
	}

	out_diff += light * blend;

	//radiance
	vec4 irr_light = voxel_cone_trace(gi_probe_textures[index], cell_size, position, ref_vec, tan(roughness * 0.5 * M_PI * 0.99), max_distance, gi_probes.data[index].bias);
	irr_light.rgb *= gi_probes.data[index].dynamic_range;
	if (!gi_probes.data[index].blend_ambient) {
		irr_light.a = 1.0;
	}

	out_spec += irr_light * blend;

	out_blend += blend;
}

vec4 fetch_normal_and_roughness(ivec2 pos) {
	vec4 normal_roughness = texelFetch(sampler2D(normal_roughness_buffer, linear_sampler), pos, 0);

	normal_roughness.xyz = normalize(normal_roughness.xyz * 2.0 - 1.0);
	return normal_roughness;
}

void process_gi(ivec2 pos, vec3 vertex, inout vec4 ambient_light, inout vec4 reflection_light) {
	vec4 normal_roughness = fetch_normal_and_roughness(pos);

	vec3 normal = normal_roughness.xyz;

	if (normal.length() > 0.5) {
		//valid normal, can do GI
		float roughness = normal_roughness.w;
		vertex = mat3(params.cam_rotation) * vertex;
		normal = normalize(mat3(params.cam_rotation) * normal);
		vec3 reflection = normalize(reflect(normalize(vertex), normal));

#ifdef USE_SDFGI
		sdfgi_process(vertex, normal, reflection, roughness, ambient_light, reflection_light);
#endif

#ifdef USE_GIPROBES
		{
			uvec2 giprobe_tex = texelFetch(usampler2D(giprobe_buffer, linear_sampler), pos, 0).rg;
			roughness *= roughness;
			//find arbitrary tangent and bitangent, then build a matrix
			vec3 v0 = abs(normal.z) < 0.999 ? vec3(0.0, 0.0, 1.0) : vec3(0.0, 1.0, 0.0);
			vec3 tangent = normalize(cross(v0, normal));
			vec3 bitangent = normalize(cross(tangent, normal));
			mat3 normal_mat = mat3(tangent, bitangent, normal);

			vec4 amb_accum = vec4(0.0);
			vec4 spec_accum = vec4(0.0);
			float blend_accum = 0.0;

			for (uint i = 0; i < params.max_giprobes; i++) {
				if (any(equal(uvec2(i), giprobe_tex))) {
					gi_probe_compute(i, vertex, normal, reflection, normal_mat, roughness, spec_accum, amb_accum, blend_accum);
				}
			}
			if (blend_accum > 0.0) {
				amb_accum /= blend_accum;
				spec_accum /= blend_accum;
			}

#ifdef USE_SDFGI
			reflection_light = blend_color(spec_accum, reflection_light);
			ambient_light = blend_color(amb_accum, ambient_light);
#else
			reflection_light = spec_accum;
			ambient_light = amb_accum;
#endif
		}
#endif
	}
}

void main() {
	ivec2 pos = ivec2(gl_GlobalInvocationID.xy);

#ifdef MODE_HALF_RES
	pos <<= 1;
#endif
	if (any(greaterThanEqual(pos, params.screen_size))) { //too large, do nothing
		return;
	}

	vec4 ambient_light = vec4(0.0);
	vec4 reflection_light = vec4(0.0);

	vec3 vertex = reconstruct_position(pos);
	vertex.y = -vertex.y;

	process_gi(pos, vertex, ambient_light, reflection_light);

#ifdef MODE_HALF_RES
	pos >>= 1;
#endif

	imageStore(ambient_buffer, pos, ambient_light);
	imageStore(reflection_buffer, pos, reflection_light);
}