1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
|
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Copyright (c) 2016, Intel Corporation
// Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
// documentation files (the "Software"), to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to
// permit persons to whom the Software is furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included in all copies or substantial portions of
// the Software.
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
// THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
// TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// File changes (yyyy-mm-dd)
// 2016-09-07: filip.strugar@intel.com: first commit
// 2020-12-05: clayjohn: convert to Vulkan and Godot
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
#[compute]
#version 450
#VERSION_DEFINES
#define INTELSSAO_MAIN_DISK_SAMPLE_COUNT (32)
const vec4 sample_pattern[INTELSSAO_MAIN_DISK_SAMPLE_COUNT] = {
vec4(0.78488064, 0.56661671, 1.500000, -0.126083), vec4(0.26022232, -0.29575172, 1.500000, -1.064030), vec4(0.10459357, 0.08372527, 1.110000, -2.730563), vec4(-0.68286800, 0.04963045, 1.090000, -0.498827),
vec4(-0.13570161, -0.64190155, 1.250000, -0.532765), vec4(-0.26193795, -0.08205118, 0.670000, -1.783245), vec4(-0.61177456, 0.66664219, 0.710000, -0.044234), vec4(0.43675563, 0.25119025, 0.610000, -1.167283),
vec4(0.07884444, 0.86618668, 0.640000, -0.459002), vec4(-0.12790935, -0.29869005, 0.600000, -1.729424), vec4(-0.04031125, 0.02413622, 0.600000, -4.792042), vec4(0.16201244, -0.52851415, 0.790000, -1.067055),
vec4(-0.70991218, 0.47301072, 0.640000, -0.335236), vec4(0.03277707, -0.22349690, 0.600000, -1.982384), vec4(0.68921727, 0.36800742, 0.630000, -0.266718), vec4(0.29251814, 0.37775412, 0.610000, -1.422520),
vec4(-0.12224089, 0.96582592, 0.600000, -0.426142), vec4(0.11071457, -0.16131058, 0.600000, -2.165947), vec4(0.46562141, -0.59747696, 0.600000, -0.189760), vec4(-0.51548797, 0.11804193, 0.600000, -1.246800),
vec4(0.89141309, -0.42090443, 0.600000, 0.028192), vec4(-0.32402530, -0.01591529, 0.600000, -1.543018), vec4(0.60771245, 0.41635221, 0.600000, -0.605411), vec4(0.02379565, -0.08239821, 0.600000, -3.809046),
vec4(0.48951152, -0.23657045, 0.600000, -1.189011), vec4(-0.17611565, -0.81696892, 0.600000, -0.513724), vec4(-0.33930185, -0.20732205, 0.600000, -1.698047), vec4(-0.91974425, 0.05403209, 0.600000, 0.062246),
vec4(-0.15064627, -0.14949332, 0.600000, -1.896062), vec4(0.53180975, -0.35210401, 0.600000, -0.758838), vec4(0.41487166, 0.81442589, 0.600000, -0.505648), vec4(-0.24106961, -0.32721516, 0.600000, -1.665244)
};
// these values can be changed (up to SSAO_MAX_TAPS) with no changes required elsewhere; values for 4th and 5th preset are ignored but array needed to avoid compilation errors
// the actual number of texture samples is two times this value (each "tap" has two symmetrical depth texture samples)
const int num_taps[5] = { 3, 5, 12, 0, 0 };
#define SSAO_TILT_SAMPLES_ENABLE_AT_QUALITY_PRESET (99) // to disable simply set to 99 or similar
#define SSAO_TILT_SAMPLES_AMOUNT (0.4)
//
#define SSAO_HALOING_REDUCTION_ENABLE_AT_QUALITY_PRESET (1) // to disable simply set to 99 or similar
#define SSAO_HALOING_REDUCTION_AMOUNT (0.6) // values from 0.0 - 1.0, 1.0 means max weighting (will cause artifacts, 0.8 is more reasonable)
//
#define SSAO_NORMAL_BASED_EDGES_ENABLE_AT_QUALITY_PRESET (2) // to disable simply set to 99 or similar
#define SSAO_NORMAL_BASED_EDGES_DOT_THRESHOLD (0.5) // use 0-0.1 for super-sharp normal-based edges
//
#define SSAO_DETAIL_AO_ENABLE_AT_QUALITY_PRESET (1) // whether to use detail; to disable simply set to 99 or similar
//
#define SSAO_DEPTH_MIPS_ENABLE_AT_QUALITY_PRESET (2) // !!warning!! the MIP generation on the C++ side will be enabled on quality preset 2 regardless of this value, so if changing here, change the C++ side too
#define SSAO_DEPTH_MIPS_GLOBAL_OFFSET (-4.3) // best noise/quality/performance tradeoff, found empirically
//
// !!warning!! the edge handling is hard-coded to 'disabled' on quality level 0, and enabled above, on the C++ side; while toggling it here will work for
// testing purposes, it will not yield performance gains (or correct results)
#define SSAO_DEPTH_BASED_EDGES_ENABLE_AT_QUALITY_PRESET (1)
//
#define SSAO_REDUCE_RADIUS_NEAR_SCREEN_BORDER_ENABLE_AT_QUALITY_PRESET (1)
#define SSAO_MAX_TAPS 32
#define SSAO_ADAPTIVE_TAP_BASE_COUNT 5
#define SSAO_ADAPTIVE_TAP_FLEXIBLE_COUNT (SSAO_MAX_TAPS - SSAO_ADAPTIVE_TAP_BASE_COUNT)
#define SSAO_DEPTH_MIP_LEVELS 4
layout(local_size_x = 8, local_size_y = 8, local_size_z = 1) in;
layout(set = 0, binding = 0) uniform sampler2DArray source_depth_mipmaps;
layout(rgba8, set = 0, binding = 1) uniform restrict readonly image2D source_normal;
layout(set = 0, binding = 2) uniform Constants { //get into a lower set
vec4 rotation_matrices[20];
}
constants;
#ifdef ADAPTIVE
layout(rg8, set = 1, binding = 0) uniform restrict readonly image2DArray source_ssao;
layout(set = 1, binding = 1) uniform sampler2D source_importance;
layout(set = 1, binding = 2, std430) buffer Counter {
uint sum;
}
counter;
#endif
layout(rg8, set = 2, binding = 0) uniform restrict writeonly image2D dest_image;
// This push_constant is full - 128 bytes - if you need to add more data, consider adding to the uniform buffer instead
layout(push_constant, std430) uniform Params {
ivec2 screen_size;
int pass;
int quality;
vec2 half_screen_pixel_size;
int size_multiplier;
float detail_intensity;
vec2 NDC_to_view_mul;
vec2 NDC_to_view_add;
vec2 pad2;
vec2 half_screen_pixel_size_x025;
float radius;
float intensity;
float shadow_power;
float shadow_clamp;
float fade_out_mul;
float fade_out_add;
float horizon_angle_threshold;
float inv_radius_near_limit;
bool is_orthogonal;
float neg_inv_radius;
float load_counter_avg_div;
float adaptive_sample_limit;
ivec2 pass_coord_offset;
vec2 pass_uv_offset;
}
params;
// packing/unpacking for edges; 2 bits per edge mean 4 gradient values (0, 0.33, 0.66, 1) for smoother transitions!
float pack_edges(vec4 p_edgesLRTB) {
p_edgesLRTB = round(clamp(p_edgesLRTB, 0.0, 1.0) * 3.05);
return dot(p_edgesLRTB, vec4(64.0 / 255.0, 16.0 / 255.0, 4.0 / 255.0, 1.0 / 255.0));
}
vec3 NDC_to_view_space(vec2 p_pos, float p_viewspace_depth) {
if (params.is_orthogonal) {
return vec3((params.NDC_to_view_mul * p_pos.xy + params.NDC_to_view_add), p_viewspace_depth);
} else {
return vec3((params.NDC_to_view_mul * p_pos.xy + params.NDC_to_view_add) * p_viewspace_depth, p_viewspace_depth);
}
}
// calculate effect radius and fit our screen sampling pattern inside it
void calculate_radius_parameters(const float p_pix_center_length, const vec2 p_pixel_size_at_center, out float r_lookup_radius, out float r_radius, out float r_fallof_sq) {
r_radius = params.radius;
// when too close, on-screen sampling disk will grow beyond screen size; limit this to avoid closeup temporal artifacts
const float too_close_limit = clamp(p_pix_center_length * params.inv_radius_near_limit, 0.0, 1.0) * 0.8 + 0.2;
r_radius *= too_close_limit;
// 0.85 is to reduce the radius to allow for more samples on a slope to still stay within influence
r_lookup_radius = (0.85 * r_radius) / p_pixel_size_at_center.x;
// used to calculate falloff (both for AO samples and per-sample weights)
r_fallof_sq = -1.0 / (r_radius * r_radius);
}
vec4 calculate_edges(const float p_center_z, const float p_left_z, const float p_right_z, const float p_top_z, const float p_bottom_z) {
// slope-sensitive depth-based edge detection
vec4 edgesLRTB = vec4(p_left_z, p_right_z, p_top_z, p_bottom_z) - p_center_z;
vec4 edgesLRTB_slope_adjusted = edgesLRTB + edgesLRTB.yxwz;
edgesLRTB = min(abs(edgesLRTB), abs(edgesLRTB_slope_adjusted));
return clamp((1.3 - edgesLRTB / (p_center_z * 0.040)), 0.0, 1.0);
}
vec3 decode_normal(vec3 p_encoded_normal) {
vec3 normal = p_encoded_normal * 2.0 - 1.0;
return normal;
}
vec3 load_normal(ivec2 p_pos) {
vec3 encoded_normal = imageLoad(source_normal, p_pos).xyz;
encoded_normal.z = 1.0 - encoded_normal.z;
return decode_normal(encoded_normal);
}
vec3 load_normal(ivec2 p_pos, ivec2 p_offset) {
vec3 encoded_normal = imageLoad(source_normal, p_pos + p_offset).xyz;
encoded_normal.z = 1.0 - encoded_normal.z;
return decode_normal(encoded_normal);
}
// all vectors in viewspace
float calculate_pixel_obscurance(vec3 p_pixel_normal, vec3 p_hit_delta, float p_fallof_sq) {
float length_sq = dot(p_hit_delta, p_hit_delta);
float NdotD = dot(p_pixel_normal, p_hit_delta) / sqrt(length_sq);
float falloff_mult = max(0.0, length_sq * p_fallof_sq + 1.0);
return max(0, NdotD - params.horizon_angle_threshold) * falloff_mult;
}
void SSAO_tap_inner(const int p_quality_level, inout float r_obscurance_sum, inout float r_weight_sum, const vec2 p_sampling_uv, const float p_mip_level, const vec3 p_pix_center_pos, vec3 p_pixel_normal, const float p_fallof_sq, const float p_weight_mod) {
// get depth at sample
float viewspace_sample_z = textureLod(source_depth_mipmaps, vec3(p_sampling_uv, params.pass), p_mip_level).x;
// convert to viewspace
vec3 hit_pos = NDC_to_view_space(p_sampling_uv.xy, viewspace_sample_z).xyz;
vec3 hit_delta = hit_pos - p_pix_center_pos;
float obscurance = calculate_pixel_obscurance(p_pixel_normal, hit_delta, p_fallof_sq);
float weight = 1.0;
if (p_quality_level >= SSAO_HALOING_REDUCTION_ENABLE_AT_QUALITY_PRESET) {
float reduct = max(0, -hit_delta.z);
reduct = clamp(reduct * params.neg_inv_radius + 2.0, 0.0, 1.0);
weight = SSAO_HALOING_REDUCTION_AMOUNT * reduct + (1.0 - SSAO_HALOING_REDUCTION_AMOUNT);
}
weight *= p_weight_mod;
r_obscurance_sum += obscurance * weight;
r_weight_sum += weight;
}
void SSAOTap(const int p_quality_level, inout float r_obscurance_sum, inout float r_weight_sum, const int p_tap_index, const mat2 p_rot_scale, const vec3 p_pix_center_pos, vec3 p_pixel_normal, const vec2 p_normalized_screen_pos, const float p_mip_offset, const float p_fallof_sq, float p_weight_mod, vec2 p_norm_xy, float p_norm_xy_length) {
vec2 sample_offset;
float sample_pow_2_len;
// patterns
{
vec4 new_sample = sample_pattern[p_tap_index];
sample_offset = new_sample.xy * p_rot_scale;
sample_pow_2_len = new_sample.w; // precalculated, same as: sample_pow_2_len = log2( length( new_sample.xy ) );
p_weight_mod *= new_sample.z;
}
// snap to pixel center (more correct obscurance math, avoids artifacts)
sample_offset = round(sample_offset);
// calculate MIP based on the sample distance from the centre, similar to as described
// in http://graphics.cs.williams.edu/papers/SAOHPG12/.
float mip_level = (p_quality_level < SSAO_DEPTH_MIPS_ENABLE_AT_QUALITY_PRESET) ? (0) : (sample_pow_2_len + p_mip_offset);
vec2 sampling_uv = sample_offset * params.half_screen_pixel_size + p_normalized_screen_pos;
SSAO_tap_inner(p_quality_level, r_obscurance_sum, r_weight_sum, sampling_uv, mip_level, p_pix_center_pos, p_pixel_normal, p_fallof_sq, p_weight_mod);
// for the second tap, just use the mirrored offset
vec2 sample_offset_mirrored_uv = -sample_offset;
// tilt the second set of samples so that the disk is effectively rotated by the normal
// effective at removing one set of artifacts, but too expensive for lower quality settings
if (p_quality_level >= SSAO_TILT_SAMPLES_ENABLE_AT_QUALITY_PRESET) {
float dot_norm = dot(sample_offset_mirrored_uv, p_norm_xy);
sample_offset_mirrored_uv -= dot_norm * p_norm_xy_length * p_norm_xy;
sample_offset_mirrored_uv = round(sample_offset_mirrored_uv);
}
// snap to pixel center (more correct obscurance math, avoids artifacts)
vec2 sampling_mirrored_uv = sample_offset_mirrored_uv * params.half_screen_pixel_size + p_normalized_screen_pos;
SSAO_tap_inner(p_quality_level, r_obscurance_sum, r_weight_sum, sampling_mirrored_uv, mip_level, p_pix_center_pos, p_pixel_normal, p_fallof_sq, p_weight_mod);
}
void generate_SSAO_shadows_internal(out float r_shadow_term, out vec4 r_edges, out float r_weight, const vec2 p_pos, int p_quality_level, bool p_adaptive_base) {
vec2 pos_rounded = trunc(p_pos);
uvec2 upos = uvec2(pos_rounded);
const int number_of_taps = (p_adaptive_base) ? (SSAO_ADAPTIVE_TAP_BASE_COUNT) : (num_taps[p_quality_level]);
float pix_z, pix_left_z, pix_top_z, pix_right_z, pix_bottom_z;
vec4 valuesUL = textureGather(source_depth_mipmaps, vec3(pos_rounded * params.half_screen_pixel_size, params.pass));
vec4 valuesBR = textureGather(source_depth_mipmaps, vec3((pos_rounded + vec2(1.0)) * params.half_screen_pixel_size, params.pass));
// get this pixel's viewspace depth
pix_z = valuesUL.y;
// get left right top bottom neighbouring pixels for edge detection (gets compiled out on quality_level == 0)
pix_left_z = valuesUL.x;
pix_top_z = valuesUL.z;
pix_right_z = valuesBR.z;
pix_bottom_z = valuesBR.x;
vec2 normalized_screen_pos = pos_rounded * params.half_screen_pixel_size + params.half_screen_pixel_size_x025;
vec3 pix_center_pos = NDC_to_view_space(normalized_screen_pos, pix_z);
// Load this pixel's viewspace normal
uvec2 full_res_coord = upos * 2 * params.size_multiplier + params.pass_coord_offset.xy;
vec3 pixel_normal = load_normal(ivec2(full_res_coord));
const vec2 pixel_size_at_center = NDC_to_view_space(normalized_screen_pos.xy + params.half_screen_pixel_size, pix_center_pos.z).xy - pix_center_pos.xy;
float pixel_lookup_radius;
float fallof_sq;
// calculate effect radius and fit our screen sampling pattern inside it
float viewspace_radius;
calculate_radius_parameters(length(pix_center_pos), pixel_size_at_center, pixel_lookup_radius, viewspace_radius, fallof_sq);
// calculate samples rotation/scaling
mat2 rot_scale_matrix;
uint pseudo_random_index;
{
vec4 rotation_scale;
// reduce effect radius near the screen edges slightly; ideally, one would render a larger depth buffer (5% on each side) instead
if (!p_adaptive_base && (p_quality_level >= SSAO_REDUCE_RADIUS_NEAR_SCREEN_BORDER_ENABLE_AT_QUALITY_PRESET)) {
float near_screen_border = min(min(normalized_screen_pos.x, 1.0 - normalized_screen_pos.x), min(normalized_screen_pos.y, 1.0 - normalized_screen_pos.y));
near_screen_border = clamp(10.0 * near_screen_border + 0.6, 0.0, 1.0);
pixel_lookup_radius *= near_screen_border;
}
// load & update pseudo-random rotation matrix
pseudo_random_index = uint(pos_rounded.y * 2 + pos_rounded.x) % 5;
rotation_scale = constants.rotation_matrices[params.pass * 5 + pseudo_random_index];
rot_scale_matrix = mat2(rotation_scale.x * pixel_lookup_radius, rotation_scale.y * pixel_lookup_radius, rotation_scale.z * pixel_lookup_radius, rotation_scale.w * pixel_lookup_radius);
}
// the main obscurance & sample weight storage
float obscurance_sum = 0.0;
float weight_sum = 0.0;
// edge mask for between this and left/right/top/bottom neighbour pixels - not used in quality level 0 so initialize to "no edge" (1 is no edge, 0 is edge)
vec4 edgesLRTB = vec4(1.0, 1.0, 1.0, 1.0);
// Move center pixel slightly towards camera to avoid imprecision artifacts due to using of 16bit depth buffer; a lot smaller offsets needed when using 32bit floats
pix_center_pos *= 0.9992;
if (!p_adaptive_base && (p_quality_level >= SSAO_DEPTH_BASED_EDGES_ENABLE_AT_QUALITY_PRESET)) {
edgesLRTB = calculate_edges(pix_z, pix_left_z, pix_right_z, pix_top_z, pix_bottom_z);
}
// adds a more high definition sharp effect, which gets blurred out (reuses left/right/top/bottom samples that we used for edge detection)
if (!p_adaptive_base && (p_quality_level >= SSAO_DETAIL_AO_ENABLE_AT_QUALITY_PRESET)) {
// disable in case of quality level 4 (reference)
if (p_quality_level != 4) {
//approximate neighbouring pixels positions (actually just deltas or "positions - pix_center_pos" )
vec3 normalized_viewspace_dir = vec3(pix_center_pos.xy / pix_center_pos.zz, 1.0);
vec3 pixel_left_delta = vec3(-pixel_size_at_center.x, 0.0, 0.0) + normalized_viewspace_dir * (pix_left_z - pix_center_pos.z);
vec3 pixel_right_delta = vec3(+pixel_size_at_center.x, 0.0, 0.0) + normalized_viewspace_dir * (pix_right_z - pix_center_pos.z);
vec3 pixel_top_delta = vec3(0.0, -pixel_size_at_center.y, 0.0) + normalized_viewspace_dir * (pix_top_z - pix_center_pos.z);
vec3 pixel_bottom_delta = vec3(0.0, +pixel_size_at_center.y, 0.0) + normalized_viewspace_dir * (pix_bottom_z - pix_center_pos.z);
const float range_reduction = 4.0f; // this is to avoid various artifacts
const float modified_fallof_sq = range_reduction * fallof_sq;
vec4 additional_obscurance;
additional_obscurance.x = calculate_pixel_obscurance(pixel_normal, pixel_left_delta, modified_fallof_sq);
additional_obscurance.y = calculate_pixel_obscurance(pixel_normal, pixel_right_delta, modified_fallof_sq);
additional_obscurance.z = calculate_pixel_obscurance(pixel_normal, pixel_top_delta, modified_fallof_sq);
additional_obscurance.w = calculate_pixel_obscurance(pixel_normal, pixel_bottom_delta, modified_fallof_sq);
obscurance_sum += params.detail_intensity * dot(additional_obscurance, edgesLRTB);
}
}
// Sharp normals also create edges - but this adds to the cost as well
if (!p_adaptive_base && (p_quality_level >= SSAO_NORMAL_BASED_EDGES_ENABLE_AT_QUALITY_PRESET)) {
vec3 neighbour_normal_left = load_normal(ivec2(full_res_coord), ivec2(-2, 0));
vec3 neighbour_normal_right = load_normal(ivec2(full_res_coord), ivec2(2, 0));
vec3 neighbour_normal_top = load_normal(ivec2(full_res_coord), ivec2(0, -2));
vec3 neighbour_normal_bottom = load_normal(ivec2(full_res_coord), ivec2(0, 2));
const float dot_threshold = SSAO_NORMAL_BASED_EDGES_DOT_THRESHOLD;
vec4 normal_edgesLRTB;
normal_edgesLRTB.x = clamp((dot(pixel_normal, neighbour_normal_left) + dot_threshold), 0.0, 1.0);
normal_edgesLRTB.y = clamp((dot(pixel_normal, neighbour_normal_right) + dot_threshold), 0.0, 1.0);
normal_edgesLRTB.z = clamp((dot(pixel_normal, neighbour_normal_top) + dot_threshold), 0.0, 1.0);
normal_edgesLRTB.w = clamp((dot(pixel_normal, neighbour_normal_bottom) + dot_threshold), 0.0, 1.0);
edgesLRTB *= normal_edgesLRTB;
}
const float global_mip_offset = SSAO_DEPTH_MIPS_GLOBAL_OFFSET;
float mip_offset = (p_quality_level < SSAO_DEPTH_MIPS_ENABLE_AT_QUALITY_PRESET) ? (0) : (log2(pixel_lookup_radius) + global_mip_offset);
// Used to tilt the second set of samples so that the disk is effectively rotated by the normal
// effective at removing one set of artifacts, but too expensive for lower quality settings
vec2 norm_xy = vec2(pixel_normal.x, pixel_normal.y);
float norm_xy_length = length(norm_xy);
norm_xy /= vec2(norm_xy_length, -norm_xy_length);
norm_xy_length *= SSAO_TILT_SAMPLES_AMOUNT;
// standard, non-adaptive approach
if ((p_quality_level != 3) || p_adaptive_base) {
for (int i = 0; i < number_of_taps; i++) {
SSAOTap(p_quality_level, obscurance_sum, weight_sum, i, rot_scale_matrix, pix_center_pos, pixel_normal, normalized_screen_pos, mip_offset, fallof_sq, 1.0, norm_xy, norm_xy_length);
}
}
#ifdef ADAPTIVE
else {
// add new ones if needed
vec2 full_res_uv = normalized_screen_pos + params.pass_uv_offset.xy;
float importance = textureLod(source_importance, full_res_uv, 0.0).x;
// this is to normalize SSAO_DETAIL_AO_AMOUNT across all pixel regardless of importance
obscurance_sum *= (SSAO_ADAPTIVE_TAP_BASE_COUNT / float(SSAO_MAX_TAPS)) + (importance * SSAO_ADAPTIVE_TAP_FLEXIBLE_COUNT / float(SSAO_MAX_TAPS));
// load existing base values
vec2 base_values = imageLoad(source_ssao, ivec3(upos, params.pass)).xy;
weight_sum += base_values.y * float(SSAO_ADAPTIVE_TAP_BASE_COUNT * 4.0);
obscurance_sum += (base_values.x) * weight_sum;
// increase importance around edges
float edge_count = dot(1.0 - edgesLRTB, vec4(1.0, 1.0, 1.0, 1.0));
float avg_total_importance = float(counter.sum) * params.load_counter_avg_div;
float importance_limiter = clamp(params.adaptive_sample_limit / avg_total_importance, 0.0, 1.0);
importance *= importance_limiter;
float additional_sample_count = SSAO_ADAPTIVE_TAP_FLEXIBLE_COUNT * importance;
const float blend_range = 3.0;
const float blend_range_inv = 1.0 / blend_range;
additional_sample_count += 0.5;
uint additional_samples = uint(additional_sample_count);
uint additional_samples_to = min(SSAO_MAX_TAPS, additional_samples + SSAO_ADAPTIVE_TAP_BASE_COUNT);
for (uint i = SSAO_ADAPTIVE_TAP_BASE_COUNT; i < additional_samples_to; i++) {
additional_sample_count -= 1.0f;
float weight_mod = clamp(additional_sample_count * blend_range_inv, 0.0, 1.0);
SSAOTap(p_quality_level, obscurance_sum, weight_sum, int(i), rot_scale_matrix, pix_center_pos, pixel_normal, normalized_screen_pos, mip_offset, fallof_sq, weight_mod, norm_xy, norm_xy_length);
}
}
#endif
// early out for adaptive base - just output weight (used for the next pass)
if (p_adaptive_base) {
float obscurance = obscurance_sum / weight_sum;
r_shadow_term = obscurance;
r_edges = vec4(0.0);
r_weight = weight_sum;
return;
}
// calculate weighted average
float obscurance = obscurance_sum / weight_sum;
// calculate fadeout (1 close, gradient, 0 far)
float fade_out = clamp(pix_center_pos.z * params.fade_out_mul + params.fade_out_add, 0.0, 1.0);
// Reduce the SSAO shadowing if we're on the edge to remove artifacts on edges (we don't care for the lower quality one)
if (!p_adaptive_base && (p_quality_level >= SSAO_DEPTH_BASED_EDGES_ENABLE_AT_QUALITY_PRESET)) {
// when there's more than 2 opposite edges, start fading out the occlusion to reduce aliasing artifacts
float edge_fadeout_factor = clamp((1.0 - edgesLRTB.x - edgesLRTB.y) * 0.35, 0.0, 1.0) + clamp((1.0 - edgesLRTB.z - edgesLRTB.w) * 0.35, 0.0, 1.0);
fade_out *= clamp(1.0 - edge_fadeout_factor, 0.0, 1.0);
}
// strength
obscurance = params.intensity * obscurance;
// clamp
obscurance = min(obscurance, params.shadow_clamp);
// fadeout
obscurance *= fade_out;
// conceptually switch to occlusion with the meaning being visibility (grows with visibility, occlusion == 1 implies full visibility),
// to be in line with what is more commonly used.
float occlusion = 1.0 - obscurance;
// modify the gradient
// note: this cannot be moved to a later pass because of loss of precision after storing in the render target
occlusion = pow(clamp(occlusion, 0.0, 1.0), params.shadow_power);
// outputs!
r_shadow_term = occlusion; // Our final 'occlusion' term (0 means fully occluded, 1 means fully lit)
r_edges = edgesLRTB; // These are used to prevent blurring across edges, 1 means no edge, 0 means edge, 0.5 means half way there, etc.
r_weight = weight_sum;
}
void main() {
float out_shadow_term;
float out_weight;
vec4 out_edges;
ivec2 ssC = ivec2(gl_GlobalInvocationID.xy);
if (any(greaterThanEqual(ssC, params.screen_size))) { //too large, do nothing
return;
}
vec2 uv = vec2(gl_GlobalInvocationID) + vec2(0.5);
#ifdef SSAO_BASE
generate_SSAO_shadows_internal(out_shadow_term, out_edges, out_weight, uv, params.quality, true);
imageStore(dest_image, ivec2(gl_GlobalInvocationID.xy), vec4(out_shadow_term, out_weight / (float(SSAO_ADAPTIVE_TAP_BASE_COUNT) * 4.0), 0.0, 0.0));
#else
generate_SSAO_shadows_internal(out_shadow_term, out_edges, out_weight, uv, params.quality, false); // pass in quality levels
if (params.quality == 0) {
out_edges = vec4(1.0);
}
imageStore(dest_image, ivec2(gl_GlobalInvocationID.xy), vec4(out_shadow_term, pack_edges(out_edges), 0.0, 0.0));
#endif
}
|