1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
|
#[vertex]
#version 450
VERSION_DEFINES
layout(location = 0) out vec2 uv_interp;
void main() {
vec2 base_arr[4] = vec2[](vec2(0.0, 0.0), vec2(0.0, 1.0), vec2(1.0, 1.0), vec2(1.0, 0.0));
uv_interp = base_arr[gl_VertexIndex];
gl_Position = vec4(uv_interp * 2.0 - 1.0, 0.0, 1.0);
}
#[fragment]
#version 450
VERSION_DEFINES
layout(location = 0) in vec2 uv_interp;
layout(set = 0, binding = 0) uniform sampler2D source_color;
layout(set = 1, binding = 0) uniform sampler2D source_auto_exposure;
layout(set = 2, binding = 0) uniform sampler2D source_glow;
layout(set = 3, binding = 0) uniform sampler3D color_correction;
layout(push_constant, binding = 1, std430) uniform Params {
vec3 bcs;
bool use_bcs;
bool use_glow;
bool use_auto_exposure;
bool use_color_correction;
uint tonemapper;
uvec2 glow_texture_size;
float glow_intensity;
uint pad3;
uint glow_mode;
float glow_levels[7];
float exposure;
float white;
float auto_exposure_grey;
uint pad2;
vec2 pixel_size;
bool use_fxaa;
bool use_debanding;
}
params;
layout(location = 0) out vec4 frag_color;
#ifdef USE_GLOW_FILTER_BICUBIC
// w0, w1, w2, and w3 are the four cubic B-spline basis functions
float w0(float a) {
return (1.0f / 6.0f) * (a * (a * (-a + 3.0f) - 3.0f) + 1.0f);
}
float w1(float a) {
return (1.0f / 6.0f) * (a * a * (3.0f * a - 6.0f) + 4.0f);
}
float w2(float a) {
return (1.0f / 6.0f) * (a * (a * (-3.0f * a + 3.0f) + 3.0f) + 1.0f);
}
float w3(float a) {
return (1.0f / 6.0f) * (a * a * a);
}
// g0 and g1 are the two amplitude functions
float g0(float a) {
return w0(a) + w1(a);
}
float g1(float a) {
return w2(a) + w3(a);
}
// h0 and h1 are the two offset functions
float h0(float a) {
return -1.0f + w1(a) / (w0(a) + w1(a));
}
float h1(float a) {
return 1.0f + w3(a) / (w2(a) + w3(a));
}
vec4 texture2D_bicubic(sampler2D tex, vec2 uv, int p_lod) {
float lod = float(p_lod);
vec2 tex_size = vec2(params.glow_texture_size >> p_lod);
vec2 pixel_size = vec2(1.0f) / tex_size;
uv = uv * tex_size + vec2(0.5f);
vec2 iuv = floor(uv);
vec2 fuv = fract(uv);
float g0x = g0(fuv.x);
float g1x = g1(fuv.x);
float h0x = h0(fuv.x);
float h1x = h1(fuv.x);
float h0y = h0(fuv.y);
float h1y = h1(fuv.y);
vec2 p0 = (vec2(iuv.x + h0x, iuv.y + h0y) - vec2(0.5f)) * pixel_size;
vec2 p1 = (vec2(iuv.x + h1x, iuv.y + h0y) - vec2(0.5f)) * pixel_size;
vec2 p2 = (vec2(iuv.x + h0x, iuv.y + h1y) - vec2(0.5f)) * pixel_size;
vec2 p3 = (vec2(iuv.x + h1x, iuv.y + h1y) - vec2(0.5f)) * pixel_size;
return (g0(fuv.y) * (g0x * textureLod(tex, p0, lod) + g1x * textureLod(tex, p1, lod))) +
(g1(fuv.y) * (g0x * textureLod(tex, p2, lod) + g1x * textureLod(tex, p3, lod)));
}
#define GLOW_TEXTURE_SAMPLE(m_tex, m_uv, m_lod) texture2D_bicubic(m_tex, m_uv, m_lod)
#else
#define GLOW_TEXTURE_SAMPLE(m_tex, m_uv, m_lod) textureLod(m_tex, m_uv, float(m_lod))
#endif
vec3 tonemap_filmic(vec3 color, float white) {
// exposure bias: input scale (color *= bias, white *= bias) to make the brightness consistent with other tonemappers
// also useful to scale the input to the range that the tonemapper is designed for (some require very high input values)
// has no effect on the curve's general shape or visual properties
const float exposure_bias = 2.0f;
const float A = 0.22f * exposure_bias * exposure_bias; // bias baked into constants for performance
const float B = 0.30f * exposure_bias;
const float C = 0.10f;
const float D = 0.20f;
const float E = 0.01f;
const float F = 0.30f;
vec3 color_tonemapped = ((color * (A * color + C * B) + D * E) / (color * (A * color + B) + D * F)) - E / F;
float white_tonemapped = ((white * (A * white + C * B) + D * E) / (white * (A * white + B) + D * F)) - E / F;
return color_tonemapped / white_tonemapped;
}
vec3 tonemap_aces(vec3 color, float white) {
const float exposure_bias = 0.85f;
const float A = 2.51f * exposure_bias * exposure_bias;
const float B = 0.03f * exposure_bias;
const float C = 2.43f * exposure_bias * exposure_bias;
const float D = 0.59f * exposure_bias;
const float E = 0.14f;
vec3 color_tonemapped = (color * (A * color + B)) / (color * (C * color + D) + E);
float white_tonemapped = (white * (A * white + B)) / (white * (C * white + D) + E);
return color_tonemapped / white_tonemapped;
}
vec3 tonemap_reinhard(vec3 color, float white) {
// Ensure color values are positive.
// They can be negative in the case of negative lights, which leads to undesired behavior.
color = max(vec3(0.0), color);
return (white * color + color) / (color * white + white);
}
vec3 linear_to_srgb(vec3 color) {
//if going to srgb, clamp from 0 to 1.
color = clamp(color, vec3(0.0), vec3(1.0));
const vec3 a = vec3(0.055f);
return mix((vec3(1.0f) + a) * pow(color.rgb, vec3(1.0f / 2.4f)) - a, 12.92f * color.rgb, lessThan(color.rgb, vec3(0.0031308f)));
}
#define TONEMAPPER_LINEAR 0
#define TONEMAPPER_REINHARD 1
#define TONEMAPPER_FILMIC 2
#define TONEMAPPER_ACES 3
vec3 apply_tonemapping(vec3 color, float white) { // inputs are LINEAR, always outputs clamped [0;1] color
if (params.tonemapper == TONEMAPPER_LINEAR) {
return color;
} else if (params.tonemapper == TONEMAPPER_REINHARD) {
return tonemap_reinhard(color, white);
} else if (params.tonemapper == TONEMAPPER_FILMIC) {
return tonemap_filmic(color, white);
} else { //aces
return tonemap_aces(color, white);
}
}
vec3 gather_glow(sampler2D tex, vec2 uv) { // sample all selected glow levels
vec3 glow = vec3(0.0f);
if (params.glow_levels[0] > 0.0001) {
glow += GLOW_TEXTURE_SAMPLE(tex, uv, 0).rgb * params.glow_levels[0];
}
if (params.glow_levels[1] > 0.0001) {
glow += GLOW_TEXTURE_SAMPLE(tex, uv, 1).rgb * params.glow_levels[1];
}
if (params.glow_levels[2] > 0.0001) {
glow += GLOW_TEXTURE_SAMPLE(tex, uv, 2).rgb * params.glow_levels[2];
}
if (params.glow_levels[3] > 0.0001) {
glow += GLOW_TEXTURE_SAMPLE(tex, uv, 3).rgb * params.glow_levels[3];
}
if (params.glow_levels[4] > 0.0001) {
glow += GLOW_TEXTURE_SAMPLE(tex, uv, 4).rgb * params.glow_levels[4];
}
if (params.glow_levels[5] > 0.0001) {
glow += GLOW_TEXTURE_SAMPLE(tex, uv, 5).rgb * params.glow_levels[5];
}
if (params.glow_levels[6] > 0.0001) {
glow += GLOW_TEXTURE_SAMPLE(tex, uv, 6).rgb * params.glow_levels[6];
}
return glow;
}
#define GLOW_MODE_ADD 0
#define GLOW_MODE_SCREEN 1
#define GLOW_MODE_SOFTLIGHT 2
#define GLOW_MODE_REPLACE 3
#define GLOW_MODE_MIX 4
vec3 apply_glow(vec3 color, vec3 glow) { // apply glow using the selected blending mode
if (params.glow_mode == GLOW_MODE_ADD) {
return color + glow;
} else if (params.glow_mode == GLOW_MODE_SCREEN) {
//need color clamping
return max((color + glow) - (color * glow), vec3(0.0));
} else if (params.glow_mode == GLOW_MODE_SOFTLIGHT) {
//need color clamping
glow = glow * vec3(0.5f) + vec3(0.5f);
color.r = (glow.r <= 0.5f) ? (color.r - (1.0f - 2.0f * glow.r) * color.r * (1.0f - color.r)) : (((glow.r > 0.5f) && (color.r <= 0.25f)) ? (color.r + (2.0f * glow.r - 1.0f) * (4.0f * color.r * (4.0f * color.r + 1.0f) * (color.r - 1.0f) + 7.0f * color.r)) : (color.r + (2.0f * glow.r - 1.0f) * (sqrt(color.r) - color.r)));
color.g = (glow.g <= 0.5f) ? (color.g - (1.0f - 2.0f * glow.g) * color.g * (1.0f - color.g)) : (((glow.g > 0.5f) && (color.g <= 0.25f)) ? (color.g + (2.0f * glow.g - 1.0f) * (4.0f * color.g * (4.0f * color.g + 1.0f) * (color.g - 1.0f) + 7.0f * color.g)) : (color.g + (2.0f * glow.g - 1.0f) * (sqrt(color.g) - color.g)));
color.b = (glow.b <= 0.5f) ? (color.b - (1.0f - 2.0f * glow.b) * color.b * (1.0f - color.b)) : (((glow.b > 0.5f) && (color.b <= 0.25f)) ? (color.b + (2.0f * glow.b - 1.0f) * (4.0f * color.b * (4.0f * color.b + 1.0f) * (color.b - 1.0f) + 7.0f * color.b)) : (color.b + (2.0f * glow.b - 1.0f) * (sqrt(color.b) - color.b)));
return color;
} else { //replace
return glow;
}
}
vec3 apply_bcs(vec3 color, vec3 bcs) {
color = mix(vec3(0.0f), color, bcs.x);
color = mix(vec3(0.5f), color, bcs.y);
color = mix(vec3(dot(vec3(1.0f), color) * 0.33333f), color, bcs.z);
return color;
}
vec3 apply_color_correction(vec3 color, sampler3D correction_tex) {
return texture(correction_tex, color).rgb;
}
vec3 do_fxaa(vec3 color, float exposure, vec2 uv_interp) {
const float FXAA_REDUCE_MIN = (1.0 / 128.0);
const float FXAA_REDUCE_MUL = (1.0 / 8.0);
const float FXAA_SPAN_MAX = 8.0;
vec3 rgbNW = textureLod(source_color, uv_interp + vec2(-1.0, -1.0) * params.pixel_size, 0.0).xyz * exposure;
vec3 rgbNE = textureLod(source_color, uv_interp + vec2(1.0, -1.0) * params.pixel_size, 0.0).xyz * exposure;
vec3 rgbSW = textureLod(source_color, uv_interp + vec2(-1.0, 1.0) * params.pixel_size, 0.0).xyz * exposure;
vec3 rgbSE = textureLod(source_color, uv_interp + vec2(1.0, 1.0) * params.pixel_size, 0.0).xyz * exposure;
vec3 rgbM = color;
vec3 luma = vec3(0.299, 0.587, 0.114);
float lumaNW = dot(rgbNW, luma);
float lumaNE = dot(rgbNE, luma);
float lumaSW = dot(rgbSW, luma);
float lumaSE = dot(rgbSE, luma);
float lumaM = dot(rgbM, luma);
float lumaMin = min(lumaM, min(min(lumaNW, lumaNE), min(lumaSW, lumaSE)));
float lumaMax = max(lumaM, max(max(lumaNW, lumaNE), max(lumaSW, lumaSE)));
vec2 dir;
dir.x = -((lumaNW + lumaNE) - (lumaSW + lumaSE));
dir.y = ((lumaNW + lumaSW) - (lumaNE + lumaSE));
float dirReduce = max((lumaNW + lumaNE + lumaSW + lumaSE) *
(0.25 * FXAA_REDUCE_MUL),
FXAA_REDUCE_MIN);
float rcpDirMin = 1.0 / (min(abs(dir.x), abs(dir.y)) + dirReduce);
dir = min(vec2(FXAA_SPAN_MAX, FXAA_SPAN_MAX),
max(vec2(-FXAA_SPAN_MAX, -FXAA_SPAN_MAX),
dir * rcpDirMin)) *
params.pixel_size;
vec3 rgbA = 0.5 * (textureLod(source_color, uv_interp + dir * (1.0 / 3.0 - 0.5), 0.0).xyz * exposure + textureLod(source_color, uv_interp + dir * (2.0 / 3.0 - 0.5), 0.0).xyz) * exposure;
vec3 rgbB = rgbA * 0.5 + 0.25 * (textureLod(source_color, uv_interp + dir * -0.5, 0.0).xyz * exposure +
textureLod(source_color, uv_interp + dir * 0.5, 0.0).xyz * exposure);
float lumaB = dot(rgbB, luma);
if ((lumaB < lumaMin) || (lumaB > lumaMax)) {
return rgbA;
} else {
return rgbB;
}
}
// From http://alex.vlachos.com/graphics/Alex_Vlachos_Advanced_VR_Rendering_GDC2015.pdf
// and https://www.shadertoy.com/view/MslGR8 (5th one starting from the bottom)
// NOTE: `frag_coord` is in pixels (i.e. not normalized UV).
vec3 screen_space_dither(vec2 frag_coord) {
// Iestyn's RGB dither (7 asm instructions) from Portal 2 X360, slightly modified for VR.
vec3 dither = vec3(dot(vec2(171.0, 231.0), frag_coord));
dither.rgb = fract(dither.rgb / vec3(103.0, 71.0, 97.0));
// Subtract 0.5 to avoid slightly brightening the whole viewport.
return (dither.rgb - 0.5) / 255.0;
}
void main() {
vec3 color = textureLod(source_color, uv_interp, 0.0f).rgb;
// Exposure
float exposure = params.exposure;
if (params.use_auto_exposure) {
exposure *= 1.0 / (texelFetch(source_auto_exposure, ivec2(0, 0), 0).r / params.auto_exposure_grey);
}
color *= exposure;
// Early Tonemap & SRGB Conversion
if (params.use_glow && params.glow_mode == GLOW_MODE_MIX) {
vec3 glow = gather_glow(source_glow, uv_interp);
color.rgb = mix(color.rgb, glow, params.glow_intensity);
}
if (params.use_fxaa) {
color = do_fxaa(color, exposure, uv_interp);
}
if (params.use_debanding) {
// For best results, debanding should be done before tonemapping.
// Otherwise, we're adding noise to an already-quantized image.
color += screen_space_dither(gl_FragCoord.xy);
}
color = apply_tonemapping(color, params.white);
color = linear_to_srgb(color); // regular linear -> SRGB conversion
// Glow
if (params.use_glow && params.glow_mode != GLOW_MODE_MIX) {
vec3 glow = gather_glow(source_glow, uv_interp) * params.glow_intensity;
// high dynamic range -> SRGB
glow = apply_tonemapping(glow, params.white);
glow = linear_to_srgb(glow);
color = apply_glow(color, glow);
}
// Additional effects
if (params.use_bcs) {
color = apply_bcs(color, params.bcs);
}
if (params.use_color_correction) {
color = apply_color_correction(color, color_correction);
}
frag_color = vec4(color, 1.0f);
}
|