summaryrefslogtreecommitdiff
path: root/servers/rendering/rasterizer_rd/shaders/sdfgi_direct_light.glsl
blob: c4b29216d53d693f763708728b1b616f0c8c4974 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
#[compute]

#version 450

VERSION_DEFINES

layout(local_size_x = 64, local_size_y = 1, local_size_z = 1) in;

#define MAX_CASCADES 8

layout(set = 0, binding = 1) uniform texture3D sdf_cascades[MAX_CASCADES];
layout(set = 0, binding = 2) uniform sampler linear_sampler;

layout(set = 0, binding = 3, std430) restrict readonly buffer DispatchData {
	uint x;
	uint y;
	uint z;
	uint total_count;
}
dispatch_data;

struct ProcessVoxel {
	uint position; //xyz 7 bit packed, extra 11 bits for neigbours
	uint albedo; //rgb bits 0-15 albedo, bits 16-21 are normal bits (set if geometry exists toward that side), extra 11 bits for neibhbours
	uint light; //rgbe8985 encoded total saved light, extra 2 bits for neighbous
	uint light_aniso; //55555 light anisotropy, extra 2 bits for neighbours
	//total neighbours: 26
};

#ifdef MODE_PROCESS_STATIC
layout(set = 0, binding = 4, std430) restrict buffer ProcessVoxels {
#else
layout(set = 0, binding = 4, std430) restrict buffer readonly ProcessVoxels {
#endif
	ProcessVoxel data[];
}
process_voxels;

layout(r32ui, set = 0, binding = 5) uniform restrict uimage3D dst_light;
layout(rgba8, set = 0, binding = 6) uniform restrict image3D dst_aniso0;
layout(rg8, set = 0, binding = 7) uniform restrict image3D dst_aniso1;

struct CascadeData {
	vec3 offset; //offset of (0,0,0) in world coordinates
	float to_cell; // 1/bounds * grid_size
	ivec3 probe_world_offset;
	uint pad;
};

layout(set = 0, binding = 8, std140) uniform Cascades {
	CascadeData data[MAX_CASCADES];
}
cascades;

#define LIGHT_TYPE_DIRECTIONAL 0
#define LIGHT_TYPE_OMNI 1
#define LIGHT_TYPE_SPOT 2

struct Light {
	vec3 color;
	float energy;

	vec3 direction;
	bool has_shadow;

	vec3 position;
	float attenuation;

	uint type;
	float spot_angle;
	float spot_attenuation;
	float radius;

	vec4 shadow_color;
};

layout(set = 0, binding = 9, std140) buffer restrict readonly Lights {
	Light data[];
}
lights;

layout(set = 0, binding = 10) uniform texture2DArray lightprobe_texture;

layout(push_constant, binding = 0, std430) uniform Params {
	vec3 grid_size;
	uint max_cascades;

	uint cascade;
	uint light_count;
	uint process_offset;
	uint process_increment;

	int probe_axis_size;
	bool multibounce;
	float y_mult;
	uint pad;
}
params;

vec2 octahedron_wrap(vec2 v) {
	vec2 signVal;
	signVal.x = v.x >= 0.0 ? 1.0 : -1.0;
	signVal.y = v.y >= 0.0 ? 1.0 : -1.0;
	return (1.0 - abs(v.yx)) * signVal;
}

vec2 octahedron_encode(vec3 n) {
	// https://twitter.com/Stubbesaurus/status/937994790553227264
	n /= (abs(n.x) + abs(n.y) + abs(n.z));
	n.xy = n.z >= 0.0 ? n.xy : octahedron_wrap(n.xy);
	n.xy = n.xy * 0.5 + 0.5;
	return n.xy;
}

void main() {
	uint voxel_index = uint(gl_GlobalInvocationID.x);

	//used for skipping voxels every N frames
	voxel_index = params.process_offset + voxel_index * params.process_increment;

	if (voxel_index >= dispatch_data.total_count) {
		return;
	}

	uint voxel_position = process_voxels.data[voxel_index].position;

	//keep for storing to texture
	ivec3 positioni = ivec3((uvec3(voxel_position, voxel_position, voxel_position) >> uvec3(0, 7, 14)) & uvec3(0x7F));

	vec3 position = vec3(positioni) + vec3(0.5);
	position /= cascades.data[params.cascade].to_cell;
	position += cascades.data[params.cascade].offset;

	uint voxel_albedo = process_voxels.data[voxel_index].albedo;

	vec3 albedo = vec3(uvec3(voxel_albedo >> 10, voxel_albedo >> 5, voxel_albedo) & uvec3(0x1F)) / float(0x1F);
	vec3 light_accum[6];

	uint valid_aniso = (voxel_albedo >> 15) & 0x3F;

	{
		uint rgbe = process_voxels.data[voxel_index].light;

		//read rgbe8985
		float r = float((rgbe & 0xff) << 1);
		float g = float((rgbe >> 8) & 0x1ff);
		float b = float(((rgbe >> 17) & 0xff) << 1);
		float e = float((rgbe >> 25) & 0x1F);
		float m = pow(2.0, e - 15.0 - 9.0);

		vec3 l = vec3(r, g, b) * m;

		uint aniso = process_voxels.data[voxel_index].light_aniso;
		for (uint i = 0; i < 6; i++) {
			float strength = ((aniso >> (i * 5)) & 0x1F) / float(0x1F);
			light_accum[i] = l * strength;
		}
	}

	const vec3 aniso_dir[6] = vec3[](
			vec3(1, 0, 0),
			vec3(0, 1, 0),
			vec3(0, 0, 1),
			vec3(-1, 0, 0),
			vec3(0, -1, 0),
			vec3(0, 0, -1));

	// Raytrace light

	vec3 pos_to_uvw = 1.0 / params.grid_size;
	vec3 uvw_ofs = pos_to_uvw * 0.5;

	for (uint i = 0; i < params.light_count; i++) {
		float attenuation = 1.0;
		vec3 direction;
		float light_distance = 1e20;

		switch (lights.data[i].type) {
			case LIGHT_TYPE_DIRECTIONAL: {
				direction = -lights.data[i].direction;
			} break;
			case LIGHT_TYPE_OMNI: {
				vec3 rel_vec = lights.data[i].position - position;
				direction = normalize(rel_vec);
				light_distance = length(rel_vec);
				rel_vec.y /= params.y_mult;
				attenuation = pow(clamp(1.0 - length(rel_vec) / lights.data[i].radius, 0.0, 1.0), lights.data[i].attenuation);
			} break;
			case LIGHT_TYPE_SPOT: {
				vec3 rel_vec = lights.data[i].position - position;
				direction = normalize(rel_vec);
				light_distance = length(rel_vec);
				rel_vec.y /= params.y_mult;
				attenuation = pow(clamp(1.0 - length(rel_vec) / lights.data[i].radius, 0.0, 1.0), lights.data[i].attenuation);

				float angle = acos(dot(normalize(rel_vec), -lights.data[i].direction));
				if (angle > lights.data[i].spot_angle) {
					attenuation = 0.0;
				} else {
					float d = clamp(angle / lights.data[i].spot_angle, 0, 1);
					attenuation *= pow(1.0 - d, lights.data[i].spot_attenuation);
				}
			} break;
		}

		if (attenuation < 0.001) {
			continue;
		}

		bool hit = false;

		vec3 ray_pos = position;
		vec3 ray_dir = direction;
		vec3 inv_dir = 1.0 / ray_dir;

		//this is how to properly bias outgoing rays
		float cell_size = 1.0 / cascades.data[params.cascade].to_cell;
		ray_pos += sign(direction) * cell_size * 0.48; // go almost to the box edge but remain inside
		ray_pos += ray_dir * 0.4 * cell_size; //apply a small bias from there

		for (uint j = params.cascade; j < params.max_cascades; j++) {
			//convert to local bounds
			vec3 pos = ray_pos - cascades.data[j].offset;
			pos *= cascades.data[j].to_cell;
			float local_distance = light_distance * cascades.data[j].to_cell;

			if (any(lessThan(pos, vec3(0.0))) || any(greaterThanEqual(pos, params.grid_size))) {
				continue; //already past bounds for this cascade, goto next
			}

			//find maximum advance distance (until reaching bounds)
			vec3 t0 = -pos * inv_dir;
			vec3 t1 = (params.grid_size - pos) * inv_dir;
			vec3 tmax = max(t0, t1);
			float max_advance = min(tmax.x, min(tmax.y, tmax.z));

			max_advance = min(local_distance, max_advance);

			float advance = 0.0;
			float occlusion = 1.0;

			while (advance < max_advance) {
				//read how much to advance from SDF
				vec3 uvw = (pos + ray_dir * advance) * pos_to_uvw;

				float distance = texture(sampler3D(sdf_cascades[j], linear_sampler), uvw).r * 255.0 - 1.0;
				if (distance < 0.001) {
					//consider hit
					hit = true;
					break;
				}

				occlusion = min(occlusion, distance);

				advance += distance;
			}

			if (hit) {
				attenuation *= occlusion;
				break;
			}

			if (advance >= local_distance) {
				break; //past light distance, abandon search
			}
			//change ray origin to collision with bounds
			pos += ray_dir * max_advance;
			pos /= cascades.data[j].to_cell;
			pos += cascades.data[j].offset;
			light_distance -= max_advance / cascades.data[j].to_cell;
			ray_pos = pos;
		}

		if (!hit) {
			vec3 light = albedo * lights.data[i].color.rgb * lights.data[i].energy * attenuation;

			for (int j = 0; j < 6; j++) {
				if (bool(valid_aniso & (1 << j))) {
					light_accum[j] += max(0.0, dot(aniso_dir[j], direction)) * light;
				}
			}
		}
	}

	// Add indirect light

	if (params.multibounce) {
		vec3 pos = (vec3(positioni) + vec3(0.5)) * float(params.probe_axis_size - 1) / params.grid_size;
		ivec3 probe_base_pos = ivec3(pos);

		vec4 probe_accum[6] = vec4[](vec4(0.0), vec4(0.0), vec4(0.0), vec4(0.0), vec4(0.0), vec4(0.0));
		float weight_accum[6] = float[](0, 0, 0, 0, 0, 0);

		ivec3 tex_pos = ivec3(probe_base_pos.xy, int(params.cascade));
		tex_pos.x += probe_base_pos.z * int(params.probe_axis_size);

		tex_pos.xy = tex_pos.xy * (OCT_SIZE + 2) + ivec2(1);

		vec3 base_tex_posf = vec3(tex_pos);
		vec2 tex_pixel_size = 1.0 / vec2(ivec2((OCT_SIZE + 2) * params.probe_axis_size * params.probe_axis_size, (OCT_SIZE + 2) * params.probe_axis_size));
		vec3 probe_uv_offset = (ivec3(OCT_SIZE + 2, OCT_SIZE + 2, (OCT_SIZE + 2) * params.probe_axis_size)) * tex_pixel_size.xyx;

		for (uint j = 0; j < 8; j++) {
			ivec3 offset = (ivec3(j) >> ivec3(0, 1, 2)) & ivec3(1, 1, 1);
			ivec3 probe_posi = probe_base_pos;
			probe_posi += offset;

			// Compute weight

			vec3 probe_pos = vec3(probe_posi);
			vec3 probe_to_pos = pos - probe_pos;
			vec3 probe_dir = normalize(-probe_to_pos);

			// Compute lightprobe texture position

			vec3 trilinear = vec3(1.0) - abs(probe_to_pos);

			for (uint k = 0; k < 6; k++) {
				if (bool(valid_aniso & (1 << k))) {
					vec3 n = aniso_dir[k];
					float weight = trilinear.x * trilinear.y * trilinear.z * max(0.005, dot(n, probe_dir));

					vec3 tex_posf = base_tex_posf + vec3(octahedron_encode(n) * float(OCT_SIZE), 0.0);
					tex_posf.xy *= tex_pixel_size;

					vec3 pos_uvw = tex_posf;
					pos_uvw.xy += vec2(offset.xy) * probe_uv_offset.xy;
					pos_uvw.x += float(offset.z) * probe_uv_offset.z;
					vec4 indirect_light = textureLod(sampler2DArray(lightprobe_texture, linear_sampler), pos_uvw, 0.0);

					probe_accum[k] += indirect_light * weight;
					weight_accum[k] += weight;
				}
			}
		}

		for (uint k = 0; k < 6; k++) {
			if (weight_accum[k] > 0.0) {
				light_accum[k] += probe_accum[k].rgb * albedo / weight_accum[k];
			}
		}
	}

	// Store the light in the light texture

	float lumas[6];
	vec3 light_total = vec3(0);

	for (int i = 0; i < 6; i++) {
		light_total += light_accum[i];
		lumas[i] = max(light_accum[i].r, max(light_accum[i].g, light_accum[i].b));
	}

	float luma_total = max(light_total.r, max(light_total.g, light_total.b));

	uint light_total_rgbe;

	{
		//compress to RGBE9995 to save space

		const float pow2to9 = 512.0f;
		const float B = 15.0f;
		const float N = 9.0f;
		const float LN2 = 0.6931471805599453094172321215;

		float cRed = clamp(light_total.r, 0.0, 65408.0);
		float cGreen = clamp(light_total.g, 0.0, 65408.0);
		float cBlue = clamp(light_total.b, 0.0, 65408.0);

		float cMax = max(cRed, max(cGreen, cBlue));

		float expp = max(-B - 1.0f, floor(log(cMax) / LN2)) + 1.0f + B;

		float sMax = floor((cMax / pow(2.0f, expp - B - N)) + 0.5f);

		float exps = expp + 1.0f;

		if (0.0 <= sMax && sMax < pow2to9) {
			exps = expp;
		}

		float sRed = floor((cRed / pow(2.0f, exps - B - N)) + 0.5f);
		float sGreen = floor((cGreen / pow(2.0f, exps - B - N)) + 0.5f);
		float sBlue = floor((cBlue / pow(2.0f, exps - B - N)) + 0.5f);
#ifdef MODE_PROCESS_STATIC
		//since its self-save, use RGBE8985
		light_total_rgbe = ((uint(sRed) & 0x1FF) >> 1) | ((uint(sGreen) & 0x1FF) << 8) | (((uint(sBlue) & 0x1FF) >> 1) << 17) | ((uint(exps) & 0x1F) << 25);

#else
		light_total_rgbe = (uint(sRed) & 0x1FF) | ((uint(sGreen) & 0x1FF) << 9) | ((uint(sBlue) & 0x1FF) << 18) | ((uint(exps) & 0x1F) << 27);
#endif
	}

#ifdef MODE_PROCESS_DYNAMIC

	vec4 aniso0;
	aniso0.r = lumas[0] / luma_total;
	aniso0.g = lumas[1] / luma_total;
	aniso0.b = lumas[2] / luma_total;
	aniso0.a = lumas[3] / luma_total;

	vec2 aniso1;
	aniso1.r = lumas[4] / luma_total;
	aniso1.g = lumas[5] / luma_total;

	//save to 3D textures
	imageStore(dst_aniso0, positioni, aniso0);
	imageStore(dst_aniso1, positioni, vec4(aniso1, 0.0, 0.0));
	imageStore(dst_light, positioni, uvec4(light_total_rgbe));

	//also fill neighbours, so light interpolation during the indirect pass works

	//recover the neighbour list from the leftover bits
	uint neighbours = (voxel_albedo >> 21) | ((voxel_position >> 21) << 11) | ((process_voxels.data[voxel_index].light >> 30) << 22) | ((process_voxels.data[voxel_index].light_aniso >> 30) << 24);

	const uint max_neighbours = 26;
	const ivec3 neighbour_positions[max_neighbours] = ivec3[](
			ivec3(-1, -1, -1),
			ivec3(-1, -1, 0),
			ivec3(-1, -1, 1),
			ivec3(-1, 0, -1),
			ivec3(-1, 0, 0),
			ivec3(-1, 0, 1),
			ivec3(-1, 1, -1),
			ivec3(-1, 1, 0),
			ivec3(-1, 1, 1),
			ivec3(0, -1, -1),
			ivec3(0, -1, 0),
			ivec3(0, -1, 1),
			ivec3(0, 0, -1),
			ivec3(0, 0, 1),
			ivec3(0, 1, -1),
			ivec3(0, 1, 0),
			ivec3(0, 1, 1),
			ivec3(1, -1, -1),
			ivec3(1, -1, 0),
			ivec3(1, -1, 1),
			ivec3(1, 0, -1),
			ivec3(1, 0, 0),
			ivec3(1, 0, 1),
			ivec3(1, 1, -1),
			ivec3(1, 1, 0),
			ivec3(1, 1, 1));

	for (uint i = 0; i < max_neighbours; i++) {
		if (bool(neighbours & (1 << i))) {
			ivec3 neighbour_pos = positioni + neighbour_positions[i];
			imageStore(dst_light, neighbour_pos, uvec4(light_total_rgbe));
			imageStore(dst_aniso0, neighbour_pos, aniso0);
			imageStore(dst_aniso1, neighbour_pos, vec4(aniso1, 0.0, 0.0));
		}
	}

#endif

#ifdef MODE_PROCESS_STATIC

	//save back the anisotropic

	uint light = process_voxels.data[voxel_index].light & (3 << 30);
	light |= light_total_rgbe;
	process_voxels.data[voxel_index].light = light; //replace

	uint light_aniso = process_voxels.data[voxel_index].light_aniso & (3 << 30);
	for (int i = 0; i < 6; i++) {
		light_aniso |= min(31, uint((lumas[i] / luma_total) * 31.0)) << (i * 5);
	}

	process_voxels.data[voxel_index].light_aniso = light_aniso;

#endif
}