summaryrefslogtreecommitdiff
path: root/servers/physics_3d/godot_collision_solver_3d.cpp
blob: fb5a67c0088987d2508aa9ca3e4d038478db34da (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
/**************************************************************************/
/*  godot_collision_solver_3d.cpp                                         */
/**************************************************************************/
/*                         This file is part of:                          */
/*                             GODOT ENGINE                               */
/*                        https://godotengine.org                         */
/**************************************************************************/
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur.                  */
/*                                                                        */
/* Permission is hereby granted, free of charge, to any person obtaining  */
/* a copy of this software and associated documentation files (the        */
/* "Software"), to deal in the Software without restriction, including    */
/* without limitation the rights to use, copy, modify, merge, publish,    */
/* distribute, sublicense, and/or sell copies of the Software, and to     */
/* permit persons to whom the Software is furnished to do so, subject to  */
/* the following conditions:                                              */
/*                                                                        */
/* The above copyright notice and this permission notice shall be         */
/* included in all copies or substantial portions of the Software.        */
/*                                                                        */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,        */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF     */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY   */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,   */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE      */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.                 */
/**************************************************************************/

#include "godot_collision_solver_3d.h"

#include "godot_collision_solver_3d_sat.h"
#include "godot_soft_body_3d.h"

#include "gjk_epa.h"

#define collision_solver sat_calculate_penetration
//#define collision_solver gjk_epa_calculate_penetration

bool GodotCollisionSolver3D::solve_static_world_boundary(const GodotShape3D *p_shape_A, const Transform3D &p_transform_A, const GodotShape3D *p_shape_B, const Transform3D &p_transform_B, CallbackResult p_result_callback, void *p_userdata, bool p_swap_result, real_t p_margin) {
	const GodotWorldBoundaryShape3D *world_boundary = static_cast<const GodotWorldBoundaryShape3D *>(p_shape_A);
	if (p_shape_B->get_type() == PhysicsServer3D::SHAPE_WORLD_BOUNDARY) {
		return false;
	}
	Plane p = p_transform_A.xform(world_boundary->get_plane());

	static const int max_supports = 16;
	Vector3 supports[max_supports];
	int support_count;
	GodotShape3D::FeatureType support_type = GodotShape3D::FeatureType::FEATURE_POINT;
	p_shape_B->get_supports(p_transform_B.basis.xform_inv(-p.normal).normalized(), max_supports, supports, support_count, support_type);

	if (support_type == GodotShape3D::FEATURE_CIRCLE) {
		ERR_FAIL_COND_V(support_count != 3, false);

		Vector3 circle_pos = supports[0];
		Vector3 circle_axis_1 = supports[1] - circle_pos;
		Vector3 circle_axis_2 = supports[2] - circle_pos;

		// Use 3 equidistant points on the circle.
		for (int i = 0; i < 3; ++i) {
			Vector3 vertex_pos = circle_pos;
			vertex_pos += circle_axis_1 * Math::cos(2.0 * Math_PI * i / 3.0);
			vertex_pos += circle_axis_2 * Math::sin(2.0 * Math_PI * i / 3.0);
			supports[i] = vertex_pos;
		}
	}

	bool found = false;

	for (int i = 0; i < support_count; i++) {
		supports[i] += p_margin * supports[i].normalized();
		supports[i] = p_transform_B.xform(supports[i]);
		if (p.distance_to(supports[i]) >= 0) {
			continue;
		}
		found = true;

		Vector3 support_A = p.project(supports[i]);

		if (p_result_callback) {
			if (p_swap_result) {
				Vector3 normal = (support_A - supports[i]).normalized();
				p_result_callback(supports[i], 0, support_A, 0, normal, p_userdata);
			} else {
				Vector3 normal = (supports[i] - support_A).normalized();
				p_result_callback(support_A, 0, supports[i], 0, normal, p_userdata);
			}
		}
	}

	return found;
}

bool GodotCollisionSolver3D::solve_separation_ray(const GodotShape3D *p_shape_A, const Transform3D &p_transform_A, const GodotShape3D *p_shape_B, const Transform3D &p_transform_B, CallbackResult p_result_callback, void *p_userdata, bool p_swap_result, real_t p_margin) {
	const GodotSeparationRayShape3D *ray = static_cast<const GodotSeparationRayShape3D *>(p_shape_A);

	Vector3 from = p_transform_A.origin;
	Vector3 to = from + p_transform_A.basis.get_column(2) * (ray->get_length() + p_margin);
	Vector3 support_A = to;

	Transform3D ai = p_transform_B.affine_inverse();

	from = ai.xform(from);
	to = ai.xform(to);

	Vector3 p, n;
	if (!p_shape_B->intersect_segment(from, to, p, n, true)) {
		return false;
	}

	// Discard contacts when the ray is fully contained inside the shape.
	if (n == Vector3()) {
		return false;
	}

	// Discard contacts in the wrong direction.
	if (n.dot(from - to) < CMP_EPSILON) {
		return false;
	}

	Vector3 support_B = p_transform_B.xform(p);
	if (ray->get_slide_on_slope()) {
		Vector3 global_n = ai.basis.xform_inv(n).normalized();
		support_B = support_A + (support_B - support_A).length() * global_n;
	}

	if (p_result_callback) {
		if (p_swap_result) {
			Vector3 normal = (support_B - support_A).normalized();
			p_result_callback(support_B, 0, support_A, 0, normal, p_userdata);
		} else {
			Vector3 normal = (support_A - support_B).normalized();
			p_result_callback(support_A, 0, support_B, 0, normal, p_userdata);
		}
	}
	return true;
}

struct _SoftBodyContactCollisionInfo {
	int node_index = 0;
	GodotCollisionSolver3D::CallbackResult result_callback = nullptr;
	void *userdata = nullptr;
	bool swap_result = false;
	int contact_count = 0;
};

void GodotCollisionSolver3D::soft_body_contact_callback(const Vector3 &p_point_A, int p_index_A, const Vector3 &p_point_B, int p_index_B, const Vector3 &normal, void *p_userdata) {
	_SoftBodyContactCollisionInfo &cinfo = *(static_cast<_SoftBodyContactCollisionInfo *>(p_userdata));

	++cinfo.contact_count;

	if (!cinfo.result_callback) {
		return;
	}

	if (cinfo.swap_result) {
		cinfo.result_callback(p_point_B, cinfo.node_index, p_point_A, p_index_A, -normal, cinfo.userdata);
	} else {
		cinfo.result_callback(p_point_A, p_index_A, p_point_B, cinfo.node_index, normal, cinfo.userdata);
	}
}

struct _SoftBodyQueryInfo {
	GodotSoftBody3D *soft_body = nullptr;
	const GodotShape3D *shape_A = nullptr;
	const GodotShape3D *shape_B = nullptr;
	Transform3D transform_A;
	Transform3D node_transform;
	_SoftBodyContactCollisionInfo contact_info;
#ifdef DEBUG_ENABLED
	int node_query_count = 0;
	int convex_query_count = 0;
#endif
};

bool GodotCollisionSolver3D::soft_body_query_callback(uint32_t p_node_index, void *p_userdata) {
	_SoftBodyQueryInfo &query_cinfo = *(static_cast<_SoftBodyQueryInfo *>(p_userdata));

	Vector3 node_position = query_cinfo.soft_body->get_node_position(p_node_index);

	Transform3D transform_B;
	transform_B.origin = query_cinfo.node_transform.xform(node_position);

	query_cinfo.contact_info.node_index = p_node_index;
	bool collided = solve_static(query_cinfo.shape_A, query_cinfo.transform_A, query_cinfo.shape_B, transform_B, soft_body_contact_callback, &query_cinfo.contact_info);

#ifdef DEBUG_ENABLED
	++query_cinfo.node_query_count;
#endif

	// Stop at first collision if contacts are not needed.
	return (collided && !query_cinfo.contact_info.result_callback);
}

bool GodotCollisionSolver3D::soft_body_concave_callback(void *p_userdata, GodotShape3D *p_convex) {
	_SoftBodyQueryInfo &query_cinfo = *(static_cast<_SoftBodyQueryInfo *>(p_userdata));

	query_cinfo.shape_A = p_convex;

	// Calculate AABB for internal soft body query (in world space).
	AABB shape_aabb;
	for (int i = 0; i < 3; i++) {
		Vector3 axis;
		axis[i] = 1.0;

		real_t smin, smax;
		p_convex->project_range(axis, query_cinfo.transform_A, smin, smax);

		shape_aabb.position[i] = smin;
		shape_aabb.size[i] = smax - smin;
	}

	shape_aabb.grow_by(query_cinfo.soft_body->get_collision_margin());

	query_cinfo.soft_body->query_aabb(shape_aabb, soft_body_query_callback, &query_cinfo);

	bool collided = (query_cinfo.contact_info.contact_count > 0);

#ifdef DEBUG_ENABLED
	++query_cinfo.convex_query_count;
#endif

	// Stop at first collision if contacts are not needed.
	return (collided && !query_cinfo.contact_info.result_callback);
}

bool GodotCollisionSolver3D::solve_soft_body(const GodotShape3D *p_shape_A, const Transform3D &p_transform_A, const GodotShape3D *p_shape_B, const Transform3D &p_transform_B, CallbackResult p_result_callback, void *p_userdata, bool p_swap_result) {
	const GodotSoftBodyShape3D *soft_body_shape_B = static_cast<const GodotSoftBodyShape3D *>(p_shape_B);

	GodotSoftBody3D *soft_body = soft_body_shape_B->get_soft_body();
	const Transform3D &world_to_local = soft_body->get_inv_transform();

	const real_t collision_margin = soft_body->get_collision_margin();

	GodotSphereShape3D sphere_shape;
	sphere_shape.set_data(collision_margin);

	_SoftBodyQueryInfo query_cinfo;
	query_cinfo.contact_info.result_callback = p_result_callback;
	query_cinfo.contact_info.userdata = p_userdata;
	query_cinfo.contact_info.swap_result = p_swap_result;
	query_cinfo.soft_body = soft_body;
	query_cinfo.node_transform = p_transform_B * world_to_local;
	query_cinfo.shape_A = p_shape_A;
	query_cinfo.transform_A = p_transform_A;
	query_cinfo.shape_B = &sphere_shape;

	if (p_shape_A->is_concave()) {
		// In case of concave shape, query convex shapes first.
		const GodotConcaveShape3D *concave_shape_A = static_cast<const GodotConcaveShape3D *>(p_shape_A);

		AABB soft_body_aabb = soft_body->get_bounds();
		soft_body_aabb.grow_by(collision_margin);

		// Calculate AABB for internal concave shape query (in local space).
		AABB local_aabb;
		for (int i = 0; i < 3; i++) {
			Vector3 axis(p_transform_A.basis.get_column(i));
			real_t axis_scale = 1.0 / axis.length();

			real_t smin = soft_body_aabb.position[i];
			real_t smax = smin + soft_body_aabb.size[i];

			smin *= axis_scale;
			smax *= axis_scale;

			local_aabb.position[i] = smin;
			local_aabb.size[i] = smax - smin;
		}

		concave_shape_A->cull(local_aabb, soft_body_concave_callback, &query_cinfo, true);
	} else {
		AABB shape_aabb = p_transform_A.xform(p_shape_A->get_aabb());
		shape_aabb.grow_by(collision_margin);

		soft_body->query_aabb(shape_aabb, soft_body_query_callback, &query_cinfo);
	}

	return (query_cinfo.contact_info.contact_count > 0);
}

struct _ConcaveCollisionInfo {
	const Transform3D *transform_A = nullptr;
	const GodotShape3D *shape_A = nullptr;
	const Transform3D *transform_B = nullptr;
	GodotCollisionSolver3D::CallbackResult result_callback = nullptr;
	void *userdata = nullptr;
	bool swap_result = false;
	bool collided = false;
	int aabb_tests = 0;
	int collisions = 0;
	bool tested = false;
	real_t margin_A = 0.0f;
	real_t margin_B = 0.0f;
	Vector3 close_A;
	Vector3 close_B;
};

bool GodotCollisionSolver3D::concave_callback(void *p_userdata, GodotShape3D *p_convex) {
	_ConcaveCollisionInfo &cinfo = *(static_cast<_ConcaveCollisionInfo *>(p_userdata));
	cinfo.aabb_tests++;

	bool collided = collision_solver(cinfo.shape_A, *cinfo.transform_A, p_convex, *cinfo.transform_B, cinfo.result_callback, cinfo.userdata, cinfo.swap_result, nullptr, cinfo.margin_A, cinfo.margin_B);
	if (!collided) {
		return false;
	}

	cinfo.collided = true;
	cinfo.collisions++;

	// Stop at first collision if contacts are not needed.
	return !cinfo.result_callback;
}

bool GodotCollisionSolver3D::solve_concave(const GodotShape3D *p_shape_A, const Transform3D &p_transform_A, const GodotShape3D *p_shape_B, const Transform3D &p_transform_B, CallbackResult p_result_callback, void *p_userdata, bool p_swap_result, real_t p_margin_A, real_t p_margin_B) {
	const GodotConcaveShape3D *concave_B = static_cast<const GodotConcaveShape3D *>(p_shape_B);

	_ConcaveCollisionInfo cinfo;
	cinfo.transform_A = &p_transform_A;
	cinfo.shape_A = p_shape_A;
	cinfo.transform_B = &p_transform_B;
	cinfo.result_callback = p_result_callback;
	cinfo.userdata = p_userdata;
	cinfo.swap_result = p_swap_result;
	cinfo.collided = false;
	cinfo.collisions = 0;
	cinfo.margin_A = p_margin_A;
	cinfo.margin_B = p_margin_B;

	cinfo.aabb_tests = 0;

	Transform3D rel_transform = p_transform_A;
	rel_transform.origin -= p_transform_B.origin;

	//quickly compute a local AABB

	AABB local_aabb;
	for (int i = 0; i < 3; i++) {
		Vector3 axis(p_transform_B.basis.get_column(i));
		real_t axis_scale = 1.0 / axis.length();
		axis *= axis_scale;

		real_t smin = 0.0, smax = 0.0;
		p_shape_A->project_range(axis, rel_transform, smin, smax);
		smin -= p_margin_A;
		smax += p_margin_A;
		smin *= axis_scale;
		smax *= axis_scale;

		local_aabb.position[i] = smin;
		local_aabb.size[i] = smax - smin;
	}

	concave_B->cull(local_aabb, concave_callback, &cinfo, false);

	return cinfo.collided;
}

bool GodotCollisionSolver3D::solve_static(const GodotShape3D *p_shape_A, const Transform3D &p_transform_A, const GodotShape3D *p_shape_B, const Transform3D &p_transform_B, CallbackResult p_result_callback, void *p_userdata, Vector3 *r_sep_axis, real_t p_margin_A, real_t p_margin_B) {
	PhysicsServer3D::ShapeType type_A = p_shape_A->get_type();
	PhysicsServer3D::ShapeType type_B = p_shape_B->get_type();
	bool concave_A = p_shape_A->is_concave();
	bool concave_B = p_shape_B->is_concave();

	bool swap = false;

	if (type_A > type_B) {
		SWAP(type_A, type_B);
		SWAP(concave_A, concave_B);
		swap = true;
	}

	if (type_A == PhysicsServer3D::SHAPE_WORLD_BOUNDARY) {
		if (type_B == PhysicsServer3D::SHAPE_WORLD_BOUNDARY) {
			WARN_PRINT_ONCE("Collisions between world boundaries are not supported.");
			return false;
		}
		if (type_B == PhysicsServer3D::SHAPE_SEPARATION_RAY) {
			WARN_PRINT_ONCE("Collisions between world boundaries and rays are not supported.");
			return false;
		}
		if (type_B == PhysicsServer3D::SHAPE_SOFT_BODY) {
			WARN_PRINT_ONCE("Collisions between world boundaries and soft bodies are not supported.");
			return false;
		}

		if (swap) {
			return solve_static_world_boundary(p_shape_B, p_transform_B, p_shape_A, p_transform_A, p_result_callback, p_userdata, true, p_margin_A);
		} else {
			return solve_static_world_boundary(p_shape_A, p_transform_A, p_shape_B, p_transform_B, p_result_callback, p_userdata, false, p_margin_B);
		}

	} else if (type_A == PhysicsServer3D::SHAPE_SEPARATION_RAY) {
		if (type_B == PhysicsServer3D::SHAPE_SEPARATION_RAY) {
			WARN_PRINT_ONCE("Collisions between rays are not supported.");
			return false;
		}

		if (swap) {
			return solve_separation_ray(p_shape_B, p_transform_B, p_shape_A, p_transform_A, p_result_callback, p_userdata, true, p_margin_B);
		} else {
			return solve_separation_ray(p_shape_A, p_transform_A, p_shape_B, p_transform_B, p_result_callback, p_userdata, false, p_margin_A);
		}

	} else if (type_B == PhysicsServer3D::SHAPE_SOFT_BODY) {
		if (type_A == PhysicsServer3D::SHAPE_SOFT_BODY) {
			WARN_PRINT_ONCE("Collisions between soft bodies are not supported.");
			return false;
		}

		if (swap) {
			return solve_soft_body(p_shape_B, p_transform_B, p_shape_A, p_transform_A, p_result_callback, p_userdata, true);
		} else {
			return solve_soft_body(p_shape_A, p_transform_A, p_shape_B, p_transform_B, p_result_callback, p_userdata, false);
		}

	} else if (concave_B) {
		if (concave_A) {
			WARN_PRINT_ONCE("Collisions between two concave shapes are not supported.");
			return false;
		}

		if (!swap) {
			return solve_concave(p_shape_A, p_transform_A, p_shape_B, p_transform_B, p_result_callback, p_userdata, false, p_margin_A, p_margin_B);
		} else {
			return solve_concave(p_shape_B, p_transform_B, p_shape_A, p_transform_A, p_result_callback, p_userdata, true, p_margin_A, p_margin_B);
		}

	} else {
		return collision_solver(p_shape_A, p_transform_A, p_shape_B, p_transform_B, p_result_callback, p_userdata, false, r_sep_axis, p_margin_A, p_margin_B);
	}
}

bool GodotCollisionSolver3D::concave_distance_callback(void *p_userdata, GodotShape3D *p_convex) {
	_ConcaveCollisionInfo &cinfo = *(static_cast<_ConcaveCollisionInfo *>(p_userdata));
	cinfo.aabb_tests++;

	Vector3 close_A, close_B;
	cinfo.collided = !gjk_epa_calculate_distance(cinfo.shape_A, *cinfo.transform_A, p_convex, *cinfo.transform_B, close_A, close_B);

	if (cinfo.collided) {
		// No need to process any more result.
		return true;
	}

	if (!cinfo.tested || close_A.distance_squared_to(close_B) < cinfo.close_A.distance_squared_to(cinfo.close_B)) {
		cinfo.close_A = close_A;
		cinfo.close_B = close_B;
		cinfo.tested = true;
	}

	cinfo.collisions++;
	return false;
}

bool GodotCollisionSolver3D::solve_distance_world_boundary(const GodotShape3D *p_shape_A, const Transform3D &p_transform_A, const GodotShape3D *p_shape_B, const Transform3D &p_transform_B, Vector3 &r_point_A, Vector3 &r_point_B) {
	const GodotWorldBoundaryShape3D *world_boundary = static_cast<const GodotWorldBoundaryShape3D *>(p_shape_A);
	if (p_shape_B->get_type() == PhysicsServer3D::SHAPE_WORLD_BOUNDARY) {
		return false;
	}
	Plane p = p_transform_A.xform(world_boundary->get_plane());

	static const int max_supports = 16;
	Vector3 supports[max_supports];
	int support_count;
	GodotShape3D::FeatureType support_type;
	Vector3 support_direction = p_transform_B.basis.xform_inv(-p.normal).normalized();

	p_shape_B->get_supports(support_direction, max_supports, supports, support_count, support_type);

	if (support_count == 0) { // This is a poor man's way to detect shapes that don't implement get_supports, such as GodotMotionShape3D.
		Vector3 support_B = p_transform_B.xform(p_shape_B->get_support(support_direction));
		r_point_A = p.project(support_B);
		r_point_B = support_B;
		bool collided = p.distance_to(support_B) <= 0;
		return collided;
	}

	if (support_type == GodotShape3D::FEATURE_CIRCLE) {
		ERR_FAIL_COND_V(support_count != 3, false);

		Vector3 circle_pos = supports[0];
		Vector3 circle_axis_1 = supports[1] - circle_pos;
		Vector3 circle_axis_2 = supports[2] - circle_pos;

		// Use 3 equidistant points on the circle.
		for (int i = 0; i < 3; ++i) {
			Vector3 vertex_pos = circle_pos;
			vertex_pos += circle_axis_1 * Math::cos(2.0 * Math_PI * i / 3.0);
			vertex_pos += circle_axis_2 * Math::sin(2.0 * Math_PI * i / 3.0);
			supports[i] = vertex_pos;
		}
	}

	bool collided = false;
	Vector3 closest;
	real_t closest_d = 0;

	for (int i = 0; i < support_count; i++) {
		supports[i] = p_transform_B.xform(supports[i]);
		real_t d = p.distance_to(supports[i]);
		if (i == 0 || d < closest_d) {
			closest = supports[i];
			closest_d = d;
			if (d <= 0) {
				collided = true;
			}
		}
	}

	r_point_A = p.project(closest);
	r_point_B = closest;

	return collided;
}

bool GodotCollisionSolver3D::solve_distance(const GodotShape3D *p_shape_A, const Transform3D &p_transform_A, const GodotShape3D *p_shape_B, const Transform3D &p_transform_B, Vector3 &r_point_A, Vector3 &r_point_B, const AABB &p_concave_hint, Vector3 *r_sep_axis) {
	if (p_shape_B->get_type() == PhysicsServer3D::SHAPE_WORLD_BOUNDARY) {
		Vector3 a, b;
		bool col = solve_distance_world_boundary(p_shape_B, p_transform_B, p_shape_A, p_transform_A, a, b);
		r_point_A = b;
		r_point_B = a;
		return !col;

	} else if (p_shape_B->is_concave()) {
		if (p_shape_A->is_concave()) {
			return false;
		}

		const GodotConcaveShape3D *concave_B = static_cast<const GodotConcaveShape3D *>(p_shape_B);

		_ConcaveCollisionInfo cinfo;
		cinfo.transform_A = &p_transform_A;
		cinfo.shape_A = p_shape_A;
		cinfo.transform_B = &p_transform_B;
		cinfo.result_callback = nullptr;
		cinfo.userdata = nullptr;
		cinfo.swap_result = false;
		cinfo.collided = false;
		cinfo.collisions = 0;
		cinfo.aabb_tests = 0;
		cinfo.tested = false;

		Transform3D rel_transform = p_transform_A;
		rel_transform.origin -= p_transform_B.origin;

		//quickly compute a local AABB

		bool use_cc_hint = p_concave_hint != AABB();
		AABB cc_hint_aabb;
		if (use_cc_hint) {
			cc_hint_aabb = p_concave_hint;
			cc_hint_aabb.position -= p_transform_B.origin;
		}

		AABB local_aabb;
		for (int i = 0; i < 3; i++) {
			Vector3 axis(p_transform_B.basis.get_column(i));
			real_t axis_scale = ((real_t)1.0) / axis.length();
			axis *= axis_scale;

			real_t smin, smax;

			if (use_cc_hint) {
				cc_hint_aabb.project_range_in_plane(Plane(axis), smin, smax);
			} else {
				p_shape_A->project_range(axis, rel_transform, smin, smax);
			}

			smin *= axis_scale;
			smax *= axis_scale;

			local_aabb.position[i] = smin;
			local_aabb.size[i] = smax - smin;
		}

		concave_B->cull(local_aabb, concave_distance_callback, &cinfo, false);
		if (!cinfo.collided) {
			r_point_A = cinfo.close_A;
			r_point_B = cinfo.close_B;
		}

		return !cinfo.collided;
	} else {
		return gjk_epa_calculate_distance(p_shape_A, p_transform_A, p_shape_B, p_transform_B, r_point_A, r_point_B); //should pass sepaxis..
	}
}