summaryrefslogtreecommitdiff
path: root/servers/physics_3d/godot_body_pair_3d.cpp
blob: 292563b6ab5200c5ec0693a0be8502c9ea99267d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
/**************************************************************************/
/*  godot_body_pair_3d.cpp                                                */
/**************************************************************************/
/*                         This file is part of:                          */
/*                             GODOT ENGINE                               */
/*                        https://godotengine.org                         */
/**************************************************************************/
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur.                  */
/*                                                                        */
/* Permission is hereby granted, free of charge, to any person obtaining  */
/* a copy of this software and associated documentation files (the        */
/* "Software"), to deal in the Software without restriction, including    */
/* without limitation the rights to use, copy, modify, merge, publish,    */
/* distribute, sublicense, and/or sell copies of the Software, and to     */
/* permit persons to whom the Software is furnished to do so, subject to  */
/* the following conditions:                                              */
/*                                                                        */
/* The above copyright notice and this permission notice shall be         */
/* included in all copies or substantial portions of the Software.        */
/*                                                                        */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,        */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF     */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY   */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,   */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE      */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.                 */
/**************************************************************************/

#include "godot_body_pair_3d.h"

#include "godot_collision_solver_3d.h"
#include "godot_space_3d.h"

#include "core/os/os.h"

#define MIN_VELOCITY 0.0001
#define MAX_BIAS_ROTATION (Math_PI / 8)

void GodotBodyPair3D::_contact_added_callback(const Vector3 &p_point_A, int p_index_A, const Vector3 &p_point_B, int p_index_B, const Vector3 &normal, void *p_userdata) {
	GodotBodyPair3D *pair = static_cast<GodotBodyPair3D *>(p_userdata);
	pair->contact_added_callback(p_point_A, p_index_A, p_point_B, p_index_B, normal);
}

void GodotBodyPair3D::contact_added_callback(const Vector3 &p_point_A, int p_index_A, const Vector3 &p_point_B, int p_index_B, const Vector3 &normal) {
	Vector3 local_A = A->get_inv_transform().basis.xform(p_point_A);
	Vector3 local_B = B->get_inv_transform().basis.xform(p_point_B - offset_B);

	int new_index = contact_count;

	ERR_FAIL_COND(new_index >= (MAX_CONTACTS + 1));

	Contact contact;
	contact.index_A = p_index_A;
	contact.index_B = p_index_B;
	contact.local_A = local_A;
	contact.local_B = local_B;
	contact.normal = (p_point_A - p_point_B).normalized();
	contact.used = true;

	// Attempt to determine if the contact will be reused.
	real_t contact_recycle_radius = space->get_contact_recycle_radius();

	for (int i = 0; i < contact_count; i++) {
		Contact &c = contacts[i];
		if (c.local_A.distance_squared_to(local_A) < (contact_recycle_radius * contact_recycle_radius) &&
				c.local_B.distance_squared_to(local_B) < (contact_recycle_radius * contact_recycle_radius)) {
			contact.acc_normal_impulse = c.acc_normal_impulse;
			contact.acc_bias_impulse = c.acc_bias_impulse;
			contact.acc_bias_impulse_center_of_mass = c.acc_bias_impulse_center_of_mass;
			contact.acc_tangent_impulse = c.acc_tangent_impulse;
			c = contact;
			return;
		}
	}

	// Figure out if the contact amount must be reduced to fit the new contact.
	if (new_index == MAX_CONTACTS) {
		// Remove the contact with the minimum depth.

		const Basis &basis_A = A->get_transform().basis;
		const Basis &basis_B = B->get_transform().basis;

		int least_deep = -1;
		real_t min_depth;

		// Start with depth for new contact.
		{
			Vector3 global_A = basis_A.xform(contact.local_A);
			Vector3 global_B = basis_B.xform(contact.local_B) + offset_B;

			Vector3 axis = global_A - global_B;
			min_depth = axis.dot(contact.normal);
		}

		for (int i = 0; i < contact_count; i++) {
			const Contact &c = contacts[i];
			Vector3 global_A = basis_A.xform(c.local_A);
			Vector3 global_B = basis_B.xform(c.local_B) + offset_B;

			Vector3 axis = global_A - global_B;
			real_t depth = axis.dot(c.normal);

			if (depth < min_depth) {
				min_depth = depth;
				least_deep = i;
			}
		}

		if (least_deep > -1) {
			// Replace the least deep contact by the new one.
			contacts[least_deep] = contact;
		}

		return;
	}

	contacts[new_index] = contact;
	contact_count++;
}

void GodotBodyPair3D::validate_contacts() {
	// Make sure to erase contacts that are no longer valid.
	real_t max_separation = space->get_contact_max_separation();
	real_t max_separation2 = max_separation * max_separation;

	const Basis &basis_A = A->get_transform().basis;
	const Basis &basis_B = B->get_transform().basis;

	for (int i = 0; i < contact_count; i++) {
		Contact &c = contacts[i];

		bool erase = false;
		if (!c.used) {
			// Was left behind in previous frame.
			erase = true;
		} else {
			c.used = false;

			Vector3 global_A = basis_A.xform(c.local_A);
			Vector3 global_B = basis_B.xform(c.local_B) + offset_B;
			Vector3 axis = global_A - global_B;
			real_t depth = axis.dot(c.normal);

			if (depth < -max_separation || (global_B + c.normal * depth - global_A).length_squared() > max_separation2) {
				erase = true;
			}
		}

		if (erase) {
			// Contact no longer needed, remove.
			if ((i + 1) < contact_count) {
				// Swap with the last one.
				SWAP(contacts[i], contacts[contact_count - 1]);
			}

			i--;
			contact_count--;
		}
	}
}

// _test_ccd prevents tunneling by slowing down a high velocity body that is about to collide so that next frame it will be at an appropriate location to collide (i.e. slight overlap)
// Warning: the way velocity is adjusted down to cause a collision means the momentum will be weaker than it should for a bounce!
// Process: only proceed if body A's motion is high relative to its size.
// cast forward along motion vector to see if A is going to enter/pass B's collider next frame, only proceed if it does.
// adjust the velocity of A down so that it will just slightly intersect the collider instead of blowing right past it.
bool GodotBodyPair3D::_test_ccd(real_t p_step, GodotBody3D *p_A, int p_shape_A, const Transform3D &p_xform_A, GodotBody3D *p_B, int p_shape_B, const Transform3D &p_xform_B) {
	GodotShape3D *shape_A_ptr = p_A->get_shape(p_shape_A);
	GodotShape3D *shape_B_ptr = p_B->get_shape(p_shape_B);

	Vector3 motion = p_A->get_linear_velocity() * p_step;
	real_t mlen = motion.length();
	if (mlen < CMP_EPSILON) {
		return false;
	}

	Vector3 mnormal = motion / mlen;

	real_t min = 0.0, max = 0.0;
	shape_A_ptr->project_range(mnormal, p_xform_A, min, max);

	// Did it move enough in this direction to even attempt raycast?
	// Let's say it should move more than 1/3 the size of the object in that axis.
	bool fast_object = mlen > (max - min) * 0.3;
	if (!fast_object) {
		return false; // moving slow enough that there's no chance of tunneling.
	}

	// A is moving fast enough that tunneling might occur. See if it's really about to collide.

	// Support points are the farthest forward points on A in the direction of the motion vector.
	// i.e. the candidate points of which one should hit B first if any collision does occur.
	static const int max_supports = 16;
	Vector3 supports_A[max_supports];
	int support_count_A;
	GodotShape3D::FeatureType support_type_A;
	// Convert mnormal into body A's local xform because get_supports requires (and returns) local coordinates.
	shape_A_ptr->get_supports(p_xform_A.basis.xform_inv(mnormal).normalized(), max_supports, supports_A, support_count_A, support_type_A);

	// Cast a segment from each support point of A in the motion direction.
	int segment_support_idx = -1;
	float segment_hit_length = FLT_MAX;
	Vector3 segment_hit_local;
	for (int i = 0; i < support_count_A; i++) {
		supports_A[i] = p_xform_A.xform(supports_A[i]);

		Vector3 from = supports_A[i];
		Vector3 to = from + motion;

		Transform3D from_inv = p_xform_B.affine_inverse();

		// Back up 10% of the per-frame motion behind the support point and use that as the beginning of our cast.
		// At high speeds, this may mean we're actually casting from well behind the body instead of inside it, which is odd.
		// But it still works out.
		Vector3 local_from = from_inv.xform(from - motion * 0.1);
		Vector3 local_to = from_inv.xform(to);

		Vector3 rpos, rnorm;
		if (shape_B_ptr->intersect_segment(local_from, local_to, rpos, rnorm, true)) {
			float hit_length = local_from.distance_to(rpos);
			if (hit_length < segment_hit_length) {
				segment_support_idx = i;
				segment_hit_length = hit_length;
				segment_hit_local = rpos;
			}
		}
	}

	if (segment_support_idx == -1) {
		// There was no hit. Since the segment is the length of per-frame motion, this means the bodies will not
		// actually collide yet on next frame. We'll probably check again next frame once they're closer.
		return false;
	}

	Vector3 hitpos = p_xform_B.xform(segment_hit_local);

	real_t newlen = hitpos.distance_to(supports_A[segment_support_idx]);
	// Adding 1% of body length to the distance between collision and support point
	// should cause body A's support point to arrive just within B's collider next frame.
	newlen += (max - min) * 0.01;
	// FIXME: This doesn't always work well when colliding with a triangle face of a trimesh shape.

	p_A->set_linear_velocity((mnormal * newlen) / p_step);

	return true;
}

real_t combine_bounce(GodotBody3D *A, GodotBody3D *B) {
	return CLAMP(A->get_bounce() + B->get_bounce(), 0, 1);
}

real_t combine_friction(GodotBody3D *A, GodotBody3D *B) {
	return ABS(MIN(A->get_friction(), B->get_friction()));
}

bool GodotBodyPair3D::setup(real_t p_step) {
	check_ccd = false;

	if (!A->interacts_with(B) || A->has_exception(B->get_self()) || B->has_exception(A->get_self())) {
		collided = false;
		return false;
	}

	collide_A = (A->get_mode() > PhysicsServer3D::BODY_MODE_KINEMATIC) && A->collides_with(B);
	collide_B = (B->get_mode() > PhysicsServer3D::BODY_MODE_KINEMATIC) && B->collides_with(A);

	report_contacts_only = false;
	if (!collide_A && !collide_B) {
		if ((A->get_max_contacts_reported() > 0) || (B->get_max_contacts_reported() > 0)) {
			report_contacts_only = true;
		} else {
			collided = false;
			return false;
		}
	}

	offset_B = B->get_transform().get_origin() - A->get_transform().get_origin();

	validate_contacts();

	const Vector3 &offset_A = A->get_transform().get_origin();
	Transform3D xform_Au = Transform3D(A->get_transform().basis, Vector3());
	Transform3D xform_A = xform_Au * A->get_shape_transform(shape_A);

	Transform3D xform_Bu = B->get_transform();
	xform_Bu.origin -= offset_A;
	Transform3D xform_B = xform_Bu * B->get_shape_transform(shape_B);

	GodotShape3D *shape_A_ptr = A->get_shape(shape_A);
	GodotShape3D *shape_B_ptr = B->get_shape(shape_B);

	collided = GodotCollisionSolver3D::solve_static(shape_A_ptr, xform_A, shape_B_ptr, xform_B, _contact_added_callback, this, &sep_axis);

	if (!collided) {
		if (A->is_continuous_collision_detection_enabled() && collide_A) {
			check_ccd = true;
			return true;
		}

		if (B->is_continuous_collision_detection_enabled() && collide_B) {
			check_ccd = true;
			return true;
		}

		return false;
	}

	return true;
}

bool GodotBodyPair3D::pre_solve(real_t p_step) {
	if (!collided) {
		if (check_ccd) {
			const Vector3 &offset_A = A->get_transform().get_origin();
			Transform3D xform_Au = Transform3D(A->get_transform().basis, Vector3());
			Transform3D xform_A = xform_Au * A->get_shape_transform(shape_A);

			Transform3D xform_Bu = B->get_transform();
			xform_Bu.origin -= offset_A;
			Transform3D xform_B = xform_Bu * B->get_shape_transform(shape_B);

			if (A->is_continuous_collision_detection_enabled() && collide_A) {
				_test_ccd(p_step, A, shape_A, xform_A, B, shape_B, xform_B);
			}

			if (B->is_continuous_collision_detection_enabled() && collide_B) {
				_test_ccd(p_step, B, shape_B, xform_B, A, shape_A, xform_A);
			}
		}

		return false;
	}

	real_t max_penetration = space->get_contact_max_allowed_penetration();

	real_t bias = 0.8;

	GodotShape3D *shape_A_ptr = A->get_shape(shape_A);
	GodotShape3D *shape_B_ptr = B->get_shape(shape_B);

	if (shape_A_ptr->get_custom_bias() || shape_B_ptr->get_custom_bias()) {
		if (shape_A_ptr->get_custom_bias() == 0) {
			bias = shape_B_ptr->get_custom_bias();
		} else if (shape_B_ptr->get_custom_bias() == 0) {
			bias = shape_A_ptr->get_custom_bias();
		} else {
			bias = (shape_B_ptr->get_custom_bias() + shape_A_ptr->get_custom_bias()) * 0.5;
		}
	}

	real_t inv_dt = 1.0 / p_step;

	bool do_process = false;

	const Basis &basis_A = A->get_transform().basis;
	const Basis &basis_B = B->get_transform().basis;

	Basis zero_basis;
	zero_basis.set_zero();

	const Basis &inv_inertia_tensor_A = collide_A ? A->get_inv_inertia_tensor() : zero_basis;
	const Basis &inv_inertia_tensor_B = collide_B ? B->get_inv_inertia_tensor() : zero_basis;

	real_t inv_mass_A = collide_A ? A->get_inv_mass() : 0.0;
	real_t inv_mass_B = collide_B ? B->get_inv_mass() : 0.0;

	for (int i = 0; i < contact_count; i++) {
		Contact &c = contacts[i];
		c.active = false;

		Vector3 global_A = basis_A.xform(c.local_A);
		Vector3 global_B = basis_B.xform(c.local_B) + offset_B;

		Vector3 axis = global_A - global_B;
		real_t depth = axis.dot(c.normal);

		if (depth <= 0.0) {
			continue;
		}

#ifdef DEBUG_ENABLED
		if (space->is_debugging_contacts()) {
			const Vector3 &offset_A = A->get_transform().get_origin();
			space->add_debug_contact(global_A + offset_A);
			space->add_debug_contact(global_B + offset_A);
		}
#endif

		c.rA = global_A - A->get_center_of_mass();
		c.rB = global_B - B->get_center_of_mass() - offset_B;

		// Precompute normal mass, tangent mass, and bias.
		Vector3 inertia_A = inv_inertia_tensor_A.xform(c.rA.cross(c.normal));
		Vector3 inertia_B = inv_inertia_tensor_B.xform(c.rB.cross(c.normal));
		real_t kNormal = inv_mass_A + inv_mass_B;
		kNormal += c.normal.dot(inertia_A.cross(c.rA)) + c.normal.dot(inertia_B.cross(c.rB));
		c.mass_normal = 1.0f / kNormal;

		c.bias = -bias * inv_dt * MIN(0.0f, -depth + max_penetration);
		c.depth = depth;

		Vector3 j_vec = c.normal * c.acc_normal_impulse + c.acc_tangent_impulse;

		c.acc_impulse -= j_vec;

		// contact query reporting...

		if (A->can_report_contacts()) {
			Vector3 crA = A->get_angular_velocity().cross(c.rA) + A->get_linear_velocity();
			A->add_contact(global_A, -c.normal, depth, shape_A, global_B, shape_B, B->get_instance_id(), B->get_self(), crA, c.acc_impulse);
		}

		if (B->can_report_contacts()) {
			Vector3 crB = B->get_angular_velocity().cross(c.rB) + B->get_linear_velocity();
			B->add_contact(global_B, c.normal, depth, shape_B, global_A, shape_A, A->get_instance_id(), A->get_self(), crB, -c.acc_impulse);
		}

		if (report_contacts_only) {
			collided = false;
			continue;
		}

		c.active = true;
		do_process = true;

		if (collide_A) {
			A->apply_impulse(-j_vec, c.rA + A->get_center_of_mass());
		}
		if (collide_B) {
			B->apply_impulse(j_vec, c.rB + B->get_center_of_mass());
		}

		c.bounce = combine_bounce(A, B);
		if (c.bounce) {
			Vector3 crA = A->get_prev_angular_velocity().cross(c.rA);
			Vector3 crB = B->get_prev_angular_velocity().cross(c.rB);
			Vector3 dv = B->get_prev_linear_velocity() + crB - A->get_prev_linear_velocity() - crA;
			c.bounce = c.bounce * dv.dot(c.normal);
		}
	}

	return do_process;
}

void GodotBodyPair3D::solve(real_t p_step) {
	if (!collided) {
		return;
	}

	const real_t max_bias_av = MAX_BIAS_ROTATION / p_step;

	Basis zero_basis;
	zero_basis.set_zero();

	const Basis &inv_inertia_tensor_A = collide_A ? A->get_inv_inertia_tensor() : zero_basis;
	const Basis &inv_inertia_tensor_B = collide_B ? B->get_inv_inertia_tensor() : zero_basis;

	real_t inv_mass_A = collide_A ? A->get_inv_mass() : 0.0;
	real_t inv_mass_B = collide_B ? B->get_inv_mass() : 0.0;

	for (int i = 0; i < contact_count; i++) {
		Contact &c = contacts[i];
		if (!c.active) {
			continue;
		}

		c.active = false; //try to deactivate, will activate itself if still needed

		//bias impulse

		Vector3 crbA = A->get_biased_angular_velocity().cross(c.rA);
		Vector3 crbB = B->get_biased_angular_velocity().cross(c.rB);
		Vector3 dbv = B->get_biased_linear_velocity() + crbB - A->get_biased_linear_velocity() - crbA;

		real_t vbn = dbv.dot(c.normal);

		if (Math::abs(-vbn + c.bias) > MIN_VELOCITY) {
			real_t jbn = (-vbn + c.bias) * c.mass_normal;
			real_t jbnOld = c.acc_bias_impulse;
			c.acc_bias_impulse = MAX(jbnOld + jbn, 0.0f);

			Vector3 jb = c.normal * (c.acc_bias_impulse - jbnOld);

			if (collide_A) {
				A->apply_bias_impulse(-jb, c.rA + A->get_center_of_mass(), max_bias_av);
			}
			if (collide_B) {
				B->apply_bias_impulse(jb, c.rB + B->get_center_of_mass(), max_bias_av);
			}

			crbA = A->get_biased_angular_velocity().cross(c.rA);
			crbB = B->get_biased_angular_velocity().cross(c.rB);
			dbv = B->get_biased_linear_velocity() + crbB - A->get_biased_linear_velocity() - crbA;

			vbn = dbv.dot(c.normal);

			if (Math::abs(-vbn + c.bias) > MIN_VELOCITY) {
				real_t jbn_com = (-vbn + c.bias) / (inv_mass_A + inv_mass_B);
				real_t jbnOld_com = c.acc_bias_impulse_center_of_mass;
				c.acc_bias_impulse_center_of_mass = MAX(jbnOld_com + jbn_com, 0.0f);

				Vector3 jb_com = c.normal * (c.acc_bias_impulse_center_of_mass - jbnOld_com);

				if (collide_A) {
					A->apply_bias_impulse(-jb_com, A->get_center_of_mass(), 0.0f);
				}
				if (collide_B) {
					B->apply_bias_impulse(jb_com, B->get_center_of_mass(), 0.0f);
				}
			}

			c.active = true;
		}

		Vector3 crA = A->get_angular_velocity().cross(c.rA);
		Vector3 crB = B->get_angular_velocity().cross(c.rB);
		Vector3 dv = B->get_linear_velocity() + crB - A->get_linear_velocity() - crA;

		//normal impulse
		real_t vn = dv.dot(c.normal);

		if (Math::abs(vn) > MIN_VELOCITY) {
			real_t jn = -(c.bounce + vn) * c.mass_normal;
			real_t jnOld = c.acc_normal_impulse;
			c.acc_normal_impulse = MAX(jnOld + jn, 0.0f);

			Vector3 j = c.normal * (c.acc_normal_impulse - jnOld);

			if (collide_A) {
				A->apply_impulse(-j, c.rA + A->get_center_of_mass());
			}
			if (collide_B) {
				B->apply_impulse(j, c.rB + B->get_center_of_mass());
			}
			c.acc_impulse -= j;

			c.active = true;
		}

		//friction impulse

		real_t friction = combine_friction(A, B);

		Vector3 lvA = A->get_linear_velocity() + A->get_angular_velocity().cross(c.rA);
		Vector3 lvB = B->get_linear_velocity() + B->get_angular_velocity().cross(c.rB);

		Vector3 dtv = lvB - lvA;
		real_t tn = c.normal.dot(dtv);

		// tangential velocity
		Vector3 tv = dtv - c.normal * tn;
		real_t tvl = tv.length();

		if (tvl > MIN_VELOCITY) {
			tv /= tvl;

			Vector3 temp1 = inv_inertia_tensor_A.xform(c.rA.cross(tv));
			Vector3 temp2 = inv_inertia_tensor_B.xform(c.rB.cross(tv));

			real_t t = -tvl / (inv_mass_A + inv_mass_B + tv.dot(temp1.cross(c.rA) + temp2.cross(c.rB)));

			Vector3 jt = t * tv;

			Vector3 jtOld = c.acc_tangent_impulse;
			c.acc_tangent_impulse += jt;

			real_t fi_len = c.acc_tangent_impulse.length();
			real_t jtMax = c.acc_normal_impulse * friction;

			if (fi_len > CMP_EPSILON && fi_len > jtMax) {
				c.acc_tangent_impulse *= jtMax / fi_len;
			}

			jt = c.acc_tangent_impulse - jtOld;

			if (collide_A) {
				A->apply_impulse(-jt, c.rA + A->get_center_of_mass());
			}
			if (collide_B) {
				B->apply_impulse(jt, c.rB + B->get_center_of_mass());
			}
			c.acc_impulse -= jt;

			c.active = true;
		}
	}
}

GodotBodyPair3D::GodotBodyPair3D(GodotBody3D *p_A, int p_shape_A, GodotBody3D *p_B, int p_shape_B) :
		GodotBodyContact3D(_arr, 2) {
	A = p_A;
	B = p_B;
	shape_A = p_shape_A;
	shape_B = p_shape_B;
	space = A->get_space();
	A->add_constraint(this, 0);
	B->add_constraint(this, 1);
}

GodotBodyPair3D::~GodotBodyPair3D() {
	A->remove_constraint(this);
	B->remove_constraint(this);
}

void GodotBodySoftBodyPair3D::_contact_added_callback(const Vector3 &p_point_A, int p_index_A, const Vector3 &p_point_B, int p_index_B, const Vector3 &normal, void *p_userdata) {
	GodotBodySoftBodyPair3D *pair = static_cast<GodotBodySoftBodyPair3D *>(p_userdata);
	pair->contact_added_callback(p_point_A, p_index_A, p_point_B, p_index_B, normal);
}

void GodotBodySoftBodyPair3D::contact_added_callback(const Vector3 &p_point_A, int p_index_A, const Vector3 &p_point_B, int p_index_B, const Vector3 &normal) {
	Vector3 local_A = body->get_inv_transform().xform(p_point_A);
	Vector3 local_B = p_point_B - soft_body->get_node_position(p_index_B);

	Contact contact;
	contact.index_A = p_index_A;
	contact.index_B = p_index_B;
	contact.local_A = local_A;
	contact.local_B = local_B;
	contact.normal = (normal.dot((p_point_A - p_point_B)) < 0 ? -normal : normal);
	contact.used = true;

	// Attempt to determine if the contact will be reused.
	real_t contact_recycle_radius = space->get_contact_recycle_radius();

	uint32_t contact_count = contacts.size();
	for (uint32_t contact_index = 0; contact_index < contact_count; ++contact_index) {
		Contact &c = contacts[contact_index];
		if (c.index_B == p_index_B) {
			if (c.local_A.distance_squared_to(local_A) < (contact_recycle_radius * contact_recycle_radius) &&
					c.local_B.distance_squared_to(local_B) < (contact_recycle_radius * contact_recycle_radius)) {
				contact.acc_normal_impulse = c.acc_normal_impulse;
				contact.acc_bias_impulse = c.acc_bias_impulse;
				contact.acc_bias_impulse_center_of_mass = c.acc_bias_impulse_center_of_mass;
				contact.acc_tangent_impulse = c.acc_tangent_impulse;
			}
			c = contact;
			return;
		}
	}

	contacts.push_back(contact);
}

void GodotBodySoftBodyPair3D::validate_contacts() {
	// Make sure to erase contacts that are no longer valid.
	real_t max_separation = space->get_contact_max_separation();
	real_t max_separation2 = max_separation * max_separation;

	const Transform3D &transform_A = body->get_transform();

	uint32_t contact_count = contacts.size();
	for (uint32_t contact_index = 0; contact_index < contact_count; ++contact_index) {
		Contact &c = contacts[contact_index];

		bool erase = false;
		if (!c.used) {
			// Was left behind in previous frame.
			erase = true;
		} else {
			c.used = false;

			Vector3 global_A = transform_A.xform(c.local_A);
			Vector3 global_B = soft_body->get_node_position(c.index_B) + c.local_B;
			Vector3 axis = global_A - global_B;
			real_t depth = axis.dot(c.normal);

			if (depth < -max_separation || (global_B + c.normal * depth - global_A).length_squared() > max_separation2) {
				erase = true;
			}
		}

		if (erase) {
			// Contact no longer needed, remove.
			if ((contact_index + 1) < contact_count) {
				// Swap with the last one.
				SWAP(c, contacts[contact_count - 1]);
			}

			contact_index--;
			contact_count--;
		}
	}

	contacts.resize(contact_count);
}

bool GodotBodySoftBodyPair3D::setup(real_t p_step) {
	if (!body->interacts_with(soft_body) || body->has_exception(soft_body->get_self()) || soft_body->has_exception(body->get_self())) {
		collided = false;
		return false;
	}

	body_collides = (body->get_mode() > PhysicsServer3D::BODY_MODE_KINEMATIC) && body->collides_with(soft_body);
	soft_body_collides = soft_body->collides_with(body);

	if (!body_collides && !soft_body_collides) {
		if (body->get_max_contacts_reported() > 0) {
			report_contacts_only = true;
		} else {
			collided = false;
			return false;
		}
	}

	const Transform3D &xform_Au = body->get_transform();
	Transform3D xform_A = xform_Au * body->get_shape_transform(body_shape);

	Transform3D xform_Bu = soft_body->get_transform();
	Transform3D xform_B = xform_Bu * soft_body->get_shape_transform(0);

	validate_contacts();

	GodotShape3D *shape_A_ptr = body->get_shape(body_shape);
	GodotShape3D *shape_B_ptr = soft_body->get_shape(0);

	collided = GodotCollisionSolver3D::solve_static(shape_A_ptr, xform_A, shape_B_ptr, xform_B, _contact_added_callback, this, &sep_axis);

	return collided;
}

bool GodotBodySoftBodyPair3D::pre_solve(real_t p_step) {
	if (!collided) {
		return false;
	}

	real_t max_penetration = space->get_contact_max_allowed_penetration();

	real_t bias = space->get_contact_bias();

	GodotShape3D *shape_A_ptr = body->get_shape(body_shape);

	if (shape_A_ptr->get_custom_bias()) {
		bias = shape_A_ptr->get_custom_bias();
	}

	real_t inv_dt = 1.0 / p_step;

	bool do_process = false;

	const Transform3D &transform_A = body->get_transform();

	Basis zero_basis;
	zero_basis.set_zero();

	const Basis &body_inv_inertia_tensor = body_collides ? body->get_inv_inertia_tensor() : zero_basis;

	real_t body_inv_mass = body_collides ? body->get_inv_mass() : 0.0;

	uint32_t contact_count = contacts.size();
	for (uint32_t contact_index = 0; contact_index < contact_count; ++contact_index) {
		Contact &c = contacts[contact_index];
		c.active = false;

		real_t node_inv_mass = soft_body_collides ? soft_body->get_node_inv_mass(c.index_B) : 0.0;
		if ((node_inv_mass == 0.0) && (body_inv_mass == 0.0)) {
			continue;
		}

		Vector3 global_A = transform_A.xform(c.local_A);
		Vector3 global_B = soft_body->get_node_position(c.index_B) + c.local_B;
		Vector3 axis = global_A - global_B;
		real_t depth = axis.dot(c.normal);

		if (depth <= 0.0) {
			continue;
		}

#ifdef DEBUG_ENABLED
		if (space->is_debugging_contacts()) {
			space->add_debug_contact(global_A);
			space->add_debug_contact(global_B);
		}
#endif

		c.rA = global_A - transform_A.origin - body->get_center_of_mass();
		c.rB = global_B;

		// Precompute normal mass, tangent mass, and bias.
		Vector3 inertia_A = body_inv_inertia_tensor.xform(c.rA.cross(c.normal));
		real_t kNormal = body_inv_mass + node_inv_mass;
		kNormal += c.normal.dot(inertia_A.cross(c.rA));
		c.mass_normal = 1.0f / kNormal;

		c.bias = -bias * inv_dt * MIN(0.0f, -depth + max_penetration);
		c.depth = depth;

		Vector3 j_vec = c.normal * c.acc_normal_impulse + c.acc_tangent_impulse;
		if (body_collides) {
			body->apply_impulse(-j_vec, c.rA + body->get_center_of_mass());
		}
		if (soft_body_collides) {
			soft_body->apply_node_impulse(c.index_B, j_vec);
		}
		c.acc_impulse -= j_vec;

		if (body->can_report_contacts()) {
			Vector3 crA = body->get_angular_velocity().cross(c.rA) + body->get_linear_velocity();
			body->add_contact(global_A, -c.normal, depth, body_shape, global_B, 0, soft_body->get_instance_id(), soft_body->get_self(), crA, c.acc_impulse);
		}

		if (report_contacts_only) {
			collided = false;
			continue;
		}

		c.active = true;
		do_process = true;

		if (body_collides) {
			body->set_active(true);
		}

		c.bounce = body->get_bounce();

		if (c.bounce) {
			Vector3 crA = body->get_angular_velocity().cross(c.rA);
			Vector3 dv = soft_body->get_node_velocity(c.index_B) - body->get_linear_velocity() - crA;

			// Normal impulse.
			c.bounce = c.bounce * dv.dot(c.normal);
		}
	}

	return do_process;
}

void GodotBodySoftBodyPair3D::solve(real_t p_step) {
	if (!collided) {
		return;
	}

	const real_t max_bias_av = MAX_BIAS_ROTATION / p_step;

	Basis zero_basis;
	zero_basis.set_zero();

	const Basis &body_inv_inertia_tensor = body_collides ? body->get_inv_inertia_tensor() : zero_basis;

	real_t body_inv_mass = body_collides ? body->get_inv_mass() : 0.0;

	uint32_t contact_count = contacts.size();
	for (uint32_t contact_index = 0; contact_index < contact_count; ++contact_index) {
		Contact &c = contacts[contact_index];
		if (!c.active) {
			continue;
		}

		c.active = false;

		real_t node_inv_mass = soft_body_collides ? soft_body->get_node_inv_mass(c.index_B) : 0.0;

		// Bias impulse.
		Vector3 crbA = body->get_biased_angular_velocity().cross(c.rA);
		Vector3 dbv = soft_body->get_node_biased_velocity(c.index_B) - body->get_biased_linear_velocity() - crbA;

		real_t vbn = dbv.dot(c.normal);

		if (Math::abs(-vbn + c.bias) > MIN_VELOCITY) {
			real_t jbn = (-vbn + c.bias) * c.mass_normal;
			real_t jbnOld = c.acc_bias_impulse;
			c.acc_bias_impulse = MAX(jbnOld + jbn, 0.0f);

			Vector3 jb = c.normal * (c.acc_bias_impulse - jbnOld);

			if (body_collides) {
				body->apply_bias_impulse(-jb, c.rA + body->get_center_of_mass(), max_bias_av);
			}
			if (soft_body_collides) {
				soft_body->apply_node_bias_impulse(c.index_B, jb);
			}

			crbA = body->get_biased_angular_velocity().cross(c.rA);
			dbv = soft_body->get_node_biased_velocity(c.index_B) - body->get_biased_linear_velocity() - crbA;

			vbn = dbv.dot(c.normal);

			if (Math::abs(-vbn + c.bias) > MIN_VELOCITY) {
				real_t jbn_com = (-vbn + c.bias) / (body_inv_mass + node_inv_mass);
				real_t jbnOld_com = c.acc_bias_impulse_center_of_mass;
				c.acc_bias_impulse_center_of_mass = MAX(jbnOld_com + jbn_com, 0.0f);

				Vector3 jb_com = c.normal * (c.acc_bias_impulse_center_of_mass - jbnOld_com);

				if (body_collides) {
					body->apply_bias_impulse(-jb_com, body->get_center_of_mass(), 0.0f);
				}
				if (soft_body_collides) {
					soft_body->apply_node_bias_impulse(c.index_B, jb_com);
				}
			}

			c.active = true;
		}

		Vector3 crA = body->get_angular_velocity().cross(c.rA);
		Vector3 dv = soft_body->get_node_velocity(c.index_B) - body->get_linear_velocity() - crA;

		// Normal impulse.
		real_t vn = dv.dot(c.normal);

		if (Math::abs(vn) > MIN_VELOCITY) {
			real_t jn = -(c.bounce + vn) * c.mass_normal;
			real_t jnOld = c.acc_normal_impulse;
			c.acc_normal_impulse = MAX(jnOld + jn, 0.0f);

			Vector3 j = c.normal * (c.acc_normal_impulse - jnOld);

			if (body_collides) {
				body->apply_impulse(-j, c.rA + body->get_center_of_mass());
			}
			if (soft_body_collides) {
				soft_body->apply_node_impulse(c.index_B, j);
			}
			c.acc_impulse -= j;

			c.active = true;
		}

		// Friction impulse.
		real_t friction = body->get_friction();

		Vector3 lvA = body->get_linear_velocity() + body->get_angular_velocity().cross(c.rA);
		Vector3 lvB = soft_body->get_node_velocity(c.index_B);
		Vector3 dtv = lvB - lvA;

		real_t tn = c.normal.dot(dtv);

		// Tangential velocity.
		Vector3 tv = dtv - c.normal * tn;
		real_t tvl = tv.length();

		if (tvl > MIN_VELOCITY) {
			tv /= tvl;

			Vector3 temp1 = body_inv_inertia_tensor.xform(c.rA.cross(tv));

			real_t t = -tvl / (body_inv_mass + node_inv_mass + tv.dot(temp1.cross(c.rA)));

			Vector3 jt = t * tv;

			Vector3 jtOld = c.acc_tangent_impulse;
			c.acc_tangent_impulse += jt;

			real_t fi_len = c.acc_tangent_impulse.length();
			real_t jtMax = c.acc_normal_impulse * friction;

			if (fi_len > CMP_EPSILON && fi_len > jtMax) {
				c.acc_tangent_impulse *= jtMax / fi_len;
			}

			jt = c.acc_tangent_impulse - jtOld;

			if (body_collides) {
				body->apply_impulse(-jt, c.rA + body->get_center_of_mass());
			}
			if (soft_body_collides) {
				soft_body->apply_node_impulse(c.index_B, jt);
			}
			c.acc_impulse -= jt;

			c.active = true;
		}
	}
}

GodotBodySoftBodyPair3D::GodotBodySoftBodyPair3D(GodotBody3D *p_A, int p_shape_A, GodotSoftBody3D *p_B) :
		GodotBodyContact3D(&body, 1) {
	body = p_A;
	soft_body = p_B;
	body_shape = p_shape_A;
	space = p_A->get_space();
	body->add_constraint(this, 0);
	soft_body->add_constraint(this);
}

GodotBodySoftBodyPair3D::~GodotBodySoftBodyPair3D() {
	body->remove_constraint(this);
	soft_body->remove_constraint(this);
}