summaryrefslogtreecommitdiff
path: root/servers/physics_3d/body_pair_3d_sw.cpp
blob: 36114c0c915c2f1945b431c69693e563ee5a494b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
/*************************************************************************/
/*  body_pair_3d_sw.cpp                                                  */
/*************************************************************************/
/*                       This file is part of:                           */
/*                           GODOT ENGINE                                */
/*                      https://godotengine.org                          */
/*************************************************************************/
/* Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur.                 */
/* Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md).   */
/*                                                                       */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the       */
/* "Software"), to deal in the Software without restriction, including   */
/* without limitation the rights to use, copy, modify, merge, publish,   */
/* distribute, sublicense, and/or sell copies of the Software, and to    */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions:                                             */
/*                                                                       */
/* The above copyright notice and this permission notice shall be        */
/* included in all copies or substantial portions of the Software.       */
/*                                                                       */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,       */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF    */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY  */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,  */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE     */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.                */
/*************************************************************************/

#include "body_pair_3d_sw.h"

#include "collision_solver_3d_sw.h"
#include "core/os/os.h"
#include "space_3d_sw.h"

/*
#define NO_ACCUMULATE_IMPULSES
#define NO_SPLIT_IMPULSES

#define NO_FRICTION
*/

#define NO_TANGENTIALS
/* BODY PAIR */

//#define ALLOWED_PENETRATION 0.01
#define RELAXATION_TIMESTEPS 3
#define MIN_VELOCITY 0.0001
#define MAX_BIAS_ROTATION (Math_PI / 8)

void BodyPair3DSW::_contact_added_callback(const Vector3 &p_point_A, int p_index_A, const Vector3 &p_point_B, int p_index_B, void *p_userdata) {
	BodyPair3DSW *pair = (BodyPair3DSW *)p_userdata;
	pair->contact_added_callback(p_point_A, p_index_A, p_point_B, p_index_B);
}

void BodyPair3DSW::contact_added_callback(const Vector3 &p_point_A, int p_index_A, const Vector3 &p_point_B, int p_index_B) {
	// check if we already have the contact

	//Vector3 local_A = A->get_inv_transform().xform(p_point_A);
	//Vector3 local_B = B->get_inv_transform().xform(p_point_B);

	Vector3 local_A = A->get_inv_transform().basis.xform(p_point_A);
	Vector3 local_B = B->get_inv_transform().basis.xform(p_point_B - offset_B);

	int new_index = contact_count;

	ERR_FAIL_COND(new_index >= (MAX_CONTACTS + 1));

	Contact contact;

	contact.acc_normal_impulse = 0;
	contact.acc_bias_impulse = 0;
	contact.acc_bias_impulse_center_of_mass = 0;
	contact.acc_tangent_impulse = Vector3();
	contact.index_A = p_index_A;
	contact.index_B = p_index_B;
	contact.local_A = local_A;
	contact.local_B = local_B;
	contact.normal = (p_point_A - p_point_B).normalized();
	contact.mass_normal = 0; // will be computed in setup()

	// attempt to determine if the contact will be reused
	real_t contact_recycle_radius = space->get_contact_recycle_radius();

	for (int i = 0; i < contact_count; i++) {
		Contact &c = contacts[i];
		if (c.local_A.distance_squared_to(local_A) < (contact_recycle_radius * contact_recycle_radius) &&
				c.local_B.distance_squared_to(local_B) < (contact_recycle_radius * contact_recycle_radius)) {
			contact.acc_normal_impulse = c.acc_normal_impulse;
			contact.acc_bias_impulse = c.acc_bias_impulse;
			contact.acc_bias_impulse_center_of_mass = c.acc_bias_impulse_center_of_mass;
			contact.acc_tangent_impulse = c.acc_tangent_impulse;
			new_index = i;
			break;
		}
	}

	// figure out if the contact amount must be reduced to fit the new contact

	if (new_index == MAX_CONTACTS) {
		// remove the contact with the minimum depth

		int least_deep = -1;
		real_t min_depth = 1e10;

		for (int i = 0; i <= contact_count; i++) {
			Contact &c = (i == contact_count) ? contact : contacts[i];
			Vector3 global_A = A->get_transform().basis.xform(c.local_A);
			Vector3 global_B = B->get_transform().basis.xform(c.local_B) + offset_B;

			Vector3 axis = global_A - global_B;
			real_t depth = axis.dot(c.normal);

			if (depth < min_depth) {
				min_depth = depth;
				least_deep = i;
			}
		}

		ERR_FAIL_COND(least_deep == -1);

		if (least_deep < contact_count) { //replace the last deep contact by the new one

			contacts[least_deep] = contact;
		}

		return;
	}

	contacts[new_index] = contact;

	if (new_index == contact_count) {
		contact_count++;
	}
}

void BodyPair3DSW::validate_contacts() {
	//make sure to erase contacts that are no longer valid

	real_t contact_max_separation = space->get_contact_max_separation();
	for (int i = 0; i < contact_count; i++) {
		Contact &c = contacts[i];

		Vector3 global_A = A->get_transform().basis.xform(c.local_A);
		Vector3 global_B = B->get_transform().basis.xform(c.local_B) + offset_B;
		Vector3 axis = global_A - global_B;
		real_t depth = axis.dot(c.normal);

		if (depth < -contact_max_separation || (global_B + c.normal * depth - global_A).length() > contact_max_separation) {
			// contact no longer needed, remove

			if ((i + 1) < contact_count) {
				// swap with the last one
				SWAP(contacts[i], contacts[contact_count - 1]);
			}

			i--;
			contact_count--;
		}
	}
}

bool BodyPair3DSW::_test_ccd(real_t p_step, Body3DSW *p_A, int p_shape_A, const Transform &p_xform_A, Body3DSW *p_B, int p_shape_B, const Transform &p_xform_B) {
	Vector3 motion = p_A->get_linear_velocity() * p_step;
	real_t mlen = motion.length();
	if (mlen < CMP_EPSILON) {
		return false;
	}

	Vector3 mnormal = motion / mlen;

	real_t min, max;
	p_A->get_shape(p_shape_A)->project_range(mnormal, p_xform_A, min, max);
	bool fast_object = mlen > (max - min) * 0.3; //going too fast in that direction

	if (!fast_object) { //did it move enough in this direction to even attempt raycast? let's say it should move more than 1/3 the size of the object in that axis
		return false;
	}

	//cast a segment from support in motion normal, in the same direction of motion by motion length
	//support is the worst case collision point, so real collision happened before
	Vector3 s = p_A->get_shape(p_shape_A)->get_support(p_xform_A.basis.xform(mnormal).normalized());
	Vector3 from = p_xform_A.xform(s);
	Vector3 to = from + motion;

	Transform from_inv = p_xform_B.affine_inverse();

	Vector3 local_from = from_inv.xform(from - mnormal * mlen * 0.1); //start from a little inside the bounding box
	Vector3 local_to = from_inv.xform(to);

	Vector3 rpos, rnorm;
	if (!p_B->get_shape(p_shape_B)->intersect_segment(local_from, local_to, rpos, rnorm)) {
		return false;
	}

	//shorten the linear velocity so it does not hit, but gets close enough, next frame will hit softly or soft enough
	Vector3 hitpos = p_xform_B.xform(rpos);

	real_t newlen = hitpos.distance_to(from) - (max - min) * 0.01;
	p_A->set_linear_velocity((mnormal * newlen) / p_step);

	return true;
}

real_t combine_bounce(Body3DSW *A, Body3DSW *B) {
	return CLAMP(A->get_bounce() + B->get_bounce(), 0, 1);
}

real_t combine_friction(Body3DSW *A, Body3DSW *B) {
	return ABS(MIN(A->get_friction(), B->get_friction()));
}

bool BodyPair3DSW::setup(real_t p_step) {
	//cannot collide
	if (!A->test_collision_mask(B) || A->has_exception(B->get_self()) || B->has_exception(A->get_self())) {
		collided = false;
		return false;
	}

	bool report_contacts_only = false;
	if ((A->get_mode() <= PhysicsServer3D::BODY_MODE_KINEMATIC) && (B->get_mode() <= PhysicsServer3D::BODY_MODE_KINEMATIC)) {
		if ((A->get_max_contacts_reported() > 0) || (B->get_max_contacts_reported() > 0)) {
			report_contacts_only = true;
		} else {
			collided = false;
			return false;
		}
	}

	if (A->is_shape_set_as_disabled(shape_A) || B->is_shape_set_as_disabled(shape_B)) {
		collided = false;
		return false;
	}

	offset_B = B->get_transform().get_origin() - A->get_transform().get_origin();

	validate_contacts();

	Vector3 offset_A = A->get_transform().get_origin();
	Transform xform_Au = Transform(A->get_transform().basis, Vector3());
	Transform xform_A = xform_Au * A->get_shape_transform(shape_A);

	Transform xform_Bu = B->get_transform();
	xform_Bu.origin -= offset_A;
	Transform xform_B = xform_Bu * B->get_shape_transform(shape_B);

	Shape3DSW *shape_A_ptr = A->get_shape(shape_A);
	Shape3DSW *shape_B_ptr = B->get_shape(shape_B);

	bool collided = CollisionSolver3DSW::solve_static(shape_A_ptr, xform_A, shape_B_ptr, xform_B, _contact_added_callback, this, &sep_axis);
	this->collided = collided;

	if (!collided) {
		//test ccd (currently just a raycast)

		if (A->is_continuous_collision_detection_enabled() && A->get_mode() > PhysicsServer3D::BODY_MODE_KINEMATIC && B->get_mode() <= PhysicsServer3D::BODY_MODE_KINEMATIC) {
			_test_ccd(p_step, A, shape_A, xform_A, B, shape_B, xform_B);
		}

		if (B->is_continuous_collision_detection_enabled() && B->get_mode() > PhysicsServer3D::BODY_MODE_KINEMATIC && A->get_mode() <= PhysicsServer3D::BODY_MODE_KINEMATIC) {
			_test_ccd(p_step, B, shape_B, xform_B, A, shape_A, xform_A);
		}

		return false;
	}

	real_t max_penetration = space->get_contact_max_allowed_penetration();

	real_t bias = (real_t)0.3;

	if (shape_A_ptr->get_custom_bias() || shape_B_ptr->get_custom_bias()) {
		if (shape_A_ptr->get_custom_bias() == 0) {
			bias = shape_B_ptr->get_custom_bias();
		} else if (shape_B_ptr->get_custom_bias() == 0) {
			bias = shape_A_ptr->get_custom_bias();
		} else {
			bias = (shape_B_ptr->get_custom_bias() + shape_A_ptr->get_custom_bias()) * 0.5;
		}
	}

	real_t inv_dt = 1.0 / p_step;

	for (int i = 0; i < contact_count; i++) {
		Contact &c = contacts[i];
		c.active = false;

		Vector3 global_A = xform_Au.xform(c.local_A);
		Vector3 global_B = xform_Bu.xform(c.local_B);

		real_t depth = c.normal.dot(global_A - global_B);

		if (depth <= 0) {
			continue;
		}

#ifdef DEBUG_ENABLED

		if (space->is_debugging_contacts()) {
			space->add_debug_contact(global_A + offset_A);
			space->add_debug_contact(global_B + offset_A);
		}
#endif

		c.rA = global_A - A->get_center_of_mass();
		c.rB = global_B - B->get_center_of_mass() - offset_B;

		// contact query reporting...

		if (A->can_report_contacts()) {
			Vector3 crA = A->get_angular_velocity().cross(c.rA) + A->get_linear_velocity();
			A->add_contact(global_A, -c.normal, depth, shape_A, global_B, shape_B, B->get_instance_id(), B->get_self(), crA);
		}

		if (B->can_report_contacts()) {
			Vector3 crB = B->get_angular_velocity().cross(c.rB) + B->get_linear_velocity();
			B->add_contact(global_B, c.normal, depth, shape_B, global_A, shape_A, A->get_instance_id(), A->get_self(), crB);
		}

		if (report_contacts_only) {
			collided = false;
			continue;
		}

		c.active = true;

		// Precompute normal mass, tangent mass, and bias.
		Vector3 inertia_A = A->get_inv_inertia_tensor().xform(c.rA.cross(c.normal));
		Vector3 inertia_B = B->get_inv_inertia_tensor().xform(c.rB.cross(c.normal));
		real_t kNormal = A->get_inv_mass() + B->get_inv_mass();
		kNormal += c.normal.dot(inertia_A.cross(c.rA)) + c.normal.dot(inertia_B.cross(c.rB));
		c.mass_normal = 1.0f / kNormal;

		c.bias = -bias * inv_dt * MIN(0.0f, -depth + max_penetration);
		c.depth = depth;

		Vector3 j_vec = c.normal * c.acc_normal_impulse + c.acc_tangent_impulse;
		A->apply_impulse(-j_vec, c.rA + A->get_center_of_mass());
		B->apply_impulse(j_vec, c.rB + B->get_center_of_mass());
		c.acc_bias_impulse = 0;
		c.acc_bias_impulse_center_of_mass = 0;

		c.bounce = combine_bounce(A, B);
		if (c.bounce) {
			Vector3 crA = A->get_angular_velocity().cross(c.rA);
			Vector3 crB = B->get_angular_velocity().cross(c.rB);
			Vector3 dv = B->get_linear_velocity() + crB - A->get_linear_velocity() - crA;
			//normal impule
			c.bounce = c.bounce * dv.dot(c.normal);
		}
	}

	return true;
}

void BodyPair3DSW::solve(real_t p_step) {
	if (!collided) {
		return;
	}

	for (int i = 0; i < contact_count; i++) {
		Contact &c = contacts[i];
		if (!c.active) {
			continue;
		}

		c.active = false; //try to deactivate, will activate itself if still needed

		//bias impulse

		Vector3 crbA = A->get_biased_angular_velocity().cross(c.rA);
		Vector3 crbB = B->get_biased_angular_velocity().cross(c.rB);
		Vector3 dbv = B->get_biased_linear_velocity() + crbB - A->get_biased_linear_velocity() - crbA;

		real_t vbn = dbv.dot(c.normal);

		if (Math::abs(-vbn + c.bias) > MIN_VELOCITY) {
			real_t jbn = (-vbn + c.bias) * c.mass_normal;
			real_t jbnOld = c.acc_bias_impulse;
			c.acc_bias_impulse = MAX(jbnOld + jbn, 0.0f);

			Vector3 jb = c.normal * (c.acc_bias_impulse - jbnOld);

			A->apply_bias_impulse(-jb, c.rA + A->get_center_of_mass(), MAX_BIAS_ROTATION / p_step);
			B->apply_bias_impulse(jb, c.rB + B->get_center_of_mass(), MAX_BIAS_ROTATION / p_step);

			crbA = A->get_biased_angular_velocity().cross(c.rA);
			crbB = B->get_biased_angular_velocity().cross(c.rB);
			dbv = B->get_biased_linear_velocity() + crbB - A->get_biased_linear_velocity() - crbA;

			vbn = dbv.dot(c.normal);

			if (Math::abs(-vbn + c.bias) > MIN_VELOCITY) {
				real_t jbn_com = (-vbn + c.bias) / (A->get_inv_mass() + B->get_inv_mass());
				real_t jbnOld_com = c.acc_bias_impulse_center_of_mass;
				c.acc_bias_impulse_center_of_mass = MAX(jbnOld_com + jbn_com, 0.0f);

				Vector3 jb_com = c.normal * (c.acc_bias_impulse_center_of_mass - jbnOld_com);

				A->apply_bias_impulse(-jb_com, A->get_center_of_mass(), 0.0f);
				B->apply_bias_impulse(jb_com, B->get_center_of_mass(), 0.0f);
			}

			c.active = true;
		}

		Vector3 crA = A->get_angular_velocity().cross(c.rA);
		Vector3 crB = B->get_angular_velocity().cross(c.rB);
		Vector3 dv = B->get_linear_velocity() + crB - A->get_linear_velocity() - crA;

		//normal impulse
		real_t vn = dv.dot(c.normal);

		if (Math::abs(vn) > MIN_VELOCITY) {
			real_t jn = -(c.bounce + vn) * c.mass_normal;
			real_t jnOld = c.acc_normal_impulse;
			c.acc_normal_impulse = MAX(jnOld + jn, 0.0f);

			Vector3 j = c.normal * (c.acc_normal_impulse - jnOld);

			A->apply_impulse(-j, c.rA + A->get_center_of_mass());
			B->apply_impulse(j, c.rB + B->get_center_of_mass());

			c.active = true;
		}

		//friction impulse

		real_t friction = combine_friction(A, B);

		Vector3 lvA = A->get_linear_velocity() + A->get_angular_velocity().cross(c.rA);
		Vector3 lvB = B->get_linear_velocity() + B->get_angular_velocity().cross(c.rB);

		Vector3 dtv = lvB - lvA;
		real_t tn = c.normal.dot(dtv);

		// tangential velocity
		Vector3 tv = dtv - c.normal * tn;
		real_t tvl = tv.length();

		if (tvl > MIN_VELOCITY) {
			tv /= tvl;

			Vector3 temp1 = A->get_inv_inertia_tensor().xform(c.rA.cross(tv));
			Vector3 temp2 = B->get_inv_inertia_tensor().xform(c.rB.cross(tv));

			real_t t = -tvl /
					   (A->get_inv_mass() + B->get_inv_mass() + tv.dot(temp1.cross(c.rA) + temp2.cross(c.rB)));

			Vector3 jt = t * tv;

			Vector3 jtOld = c.acc_tangent_impulse;
			c.acc_tangent_impulse += jt;

			real_t fi_len = c.acc_tangent_impulse.length();
			real_t jtMax = c.acc_normal_impulse * friction;

			if (fi_len > CMP_EPSILON && fi_len > jtMax) {
				c.acc_tangent_impulse *= jtMax / fi_len;
			}

			jt = c.acc_tangent_impulse - jtOld;

			A->apply_impulse(-jt, c.rA + A->get_center_of_mass());
			B->apply_impulse(jt, c.rB + B->get_center_of_mass());

			c.active = true;
		}
	}
}

BodyPair3DSW::BodyPair3DSW(Body3DSW *p_A, int p_shape_A, Body3DSW *p_B, int p_shape_B) :
		BodyContact3DSW(_arr, 2) {
	A = p_A;
	B = p_B;
	shape_A = p_shape_A;
	shape_B = p_shape_B;
	space = A->get_space();
	A->add_constraint(this, 0);
	B->add_constraint(this, 1);
	contact_count = 0;
	collided = false;
}

BodyPair3DSW::~BodyPair3DSW() {
	A->remove_constraint(this);
	B->remove_constraint(this);
}

void BodySoftBodyPair3DSW::_contact_added_callback(const Vector3 &p_point_A, int p_index_A, const Vector3 &p_point_B, int p_index_B, void *p_userdata) {
	BodySoftBodyPair3DSW *pair = (BodySoftBodyPair3DSW *)p_userdata;
	pair->contact_added_callback(p_point_A, p_index_A, p_point_B, p_index_B);
}

void BodySoftBodyPair3DSW::contact_added_callback(const Vector3 &p_point_A, int p_index_A, const Vector3 &p_point_B, int p_index_B) {
	Vector3 local_A = body->get_inv_transform().xform(p_point_A);
	Vector3 local_B = p_point_B - soft_body->get_node_position(p_index_B);

	Contact contact;
	contact.index_A = p_index_A;
	contact.index_B = p_index_B;
	contact.acc_normal_impulse = 0;
	contact.acc_bias_impulse = 0;
	contact.acc_bias_impulse_center_of_mass = 0;
	contact.acc_tangent_impulse = Vector3();
	contact.local_A = local_A;
	contact.local_B = local_B;
	contact.normal = (p_point_A - p_point_B).normalized();
	contact.mass_normal = 0;

	// Attempt to determine if the contact will be reused.
	real_t contact_recycle_radius = space->get_contact_recycle_radius();

	uint32_t contact_count = contacts.size();
	for (uint32_t contact_index = 0; contact_index < contact_count; ++contact_index) {
		Contact &c = contacts[contact_index];
		if (c.index_B == p_index_B) {
			if (c.local_A.distance_squared_to(local_A) < (contact_recycle_radius * contact_recycle_radius) &&
					c.local_B.distance_squared_to(local_B) < (contact_recycle_radius * contact_recycle_radius)) {
				contact.acc_normal_impulse = c.acc_normal_impulse;
				contact.acc_bias_impulse = c.acc_bias_impulse;
				contact.acc_bias_impulse_center_of_mass = c.acc_bias_impulse_center_of_mass;
				contact.acc_tangent_impulse = c.acc_tangent_impulse;
			}
			c = contact;
			return;
		}
	}

	contacts.push_back(contact);
}

void BodySoftBodyPair3DSW::validate_contacts() {
	// Make sure to erase contacts that are no longer valid.
	const Transform &transform_A = body->get_transform();

	real_t contact_max_separation = space->get_contact_max_separation();

	uint32_t contact_count = contacts.size();
	for (uint32_t contact_index = 0; contact_index < contact_count; ++contact_index) {
		Contact &c = contacts[contact_index];

		Vector3 global_A = transform_A.xform(c.local_A);
		Vector3 global_B = soft_body->get_node_position(c.index_B) + c.local_B;
		Vector3 axis = global_A - global_B;
		real_t depth = axis.dot(c.normal);

		if (depth < -contact_max_separation || (global_B + c.normal * depth - global_A).length() > contact_max_separation) {
			// Contact no longer needed, remove.
			if ((contact_index + 1) < contact_count) {
				// Swap with the last one.
				SWAP(c, contacts[contact_count - 1]);
			}

			contact_index--;
			contact_count--;
		}
	}

	contacts.resize(contact_count);
}

bool BodySoftBodyPair3DSW::setup(real_t p_step) {
	if (!body->test_collision_mask(soft_body) || body->has_exception(soft_body->get_self()) || soft_body->has_exception(body->get_self())) {
		collided = false;
		return false;
	}

	if (body->is_shape_set_as_disabled(body_shape)) {
		collided = false;
		return false;
	}

	const Transform &xform_Au = body->get_transform();
	Transform xform_A = xform_Au * body->get_shape_transform(body_shape);

	Transform xform_Bu = soft_body->get_transform();
	Transform xform_B = xform_Bu * soft_body->get_shape_transform(0);

	validate_contacts();

	Shape3DSW *shape_A_ptr = body->get_shape(body_shape);
	Shape3DSW *shape_B_ptr = soft_body->get_shape(0);

	bool collided = CollisionSolver3DSW::solve_static(shape_A_ptr, xform_A, shape_B_ptr, xform_B, _contact_added_callback, this, &sep_axis);
	this->collided = collided;

	real_t max_penetration = space->get_contact_max_allowed_penetration();

	real_t bias = (real_t)0.3;
	if (shape_A_ptr->get_custom_bias()) {
		bias = shape_A_ptr->get_custom_bias();
	}

	real_t inv_dt = 1.0 / p_step;

	uint32_t contact_count = contacts.size();
	for (uint32_t contact_index = 0; contact_index < contact_count; ++contact_index) {
		Contact &c = contacts[contact_index];
		c.active = false;

		real_t node_inv_mass = soft_body->get_node_inv_mass(c.index_B);
		if (node_inv_mass == 0.0) {
			continue;
		}

		Vector3 global_A = xform_Au.xform(c.local_A);
		Vector3 global_B = soft_body->get_node_position(c.index_B) + c.local_B;

		real_t depth = c.normal.dot(global_A - global_B);

		if (depth <= 0) {
			continue;
		}

		c.active = true;

#ifdef DEBUG_ENABLED

		if (space->is_debugging_contacts()) {
			space->add_debug_contact(global_A);
			space->add_debug_contact(global_B);
		}
#endif

		c.rA = global_A - xform_Au.origin - body->get_center_of_mass();
		c.rB = global_B;

		if (body->can_report_contacts()) {
			Vector3 crA = body->get_angular_velocity().cross(c.rA) + body->get_linear_velocity();
			body->add_contact(global_A, -c.normal, depth, body_shape, global_B, 0, soft_body->get_instance_id(), soft_body->get_self(), crA);
		}

		if (body->get_mode() > PhysicsServer3D::BODY_MODE_KINEMATIC) {
			body->set_active(true);
		}

		// Precompute normal mass, tangent mass, and bias.
		Vector3 inertia_A = body->get_inv_inertia_tensor().xform(c.rA.cross(c.normal));
		real_t kNormal = body->get_inv_mass() + node_inv_mass;
		kNormal += c.normal.dot(inertia_A.cross(c.rA));
		c.mass_normal = 1.0f / kNormal;

		c.bias = -bias * inv_dt * MIN(0.0f, -depth + max_penetration);
		c.depth = depth;

		Vector3 j_vec = c.normal * c.acc_normal_impulse + c.acc_tangent_impulse;
		body->apply_impulse(c.rA + body->get_center_of_mass(), -j_vec);
		soft_body->apply_node_impulse(c.index_B, j_vec);
		c.acc_bias_impulse = 0;
		c.acc_bias_impulse_center_of_mass = 0;

		c.bounce = body->get_bounce();

		if (c.bounce) {
			Vector3 crA = body->get_angular_velocity().cross(c.rA);
			Vector3 dv = soft_body->get_node_velocity(c.index_B) - body->get_linear_velocity() - crA;

			// Normal impulse.
			c.bounce = c.bounce * dv.dot(c.normal);
		}
	}

	return true;
}

void BodySoftBodyPair3DSW::solve(real_t p_step) {
	if (!collided) {
		return;
	}

	uint32_t contact_count = contacts.size();
	for (uint32_t contact_index = 0; contact_index < contact_count; ++contact_index) {
		Contact &c = contacts[contact_index];
		if (!c.active) {
			continue;
		}

		c.active = false;

		// Bias impulse.
		Vector3 crbA = body->get_biased_angular_velocity().cross(c.rA);
		Vector3 dbv = soft_body->get_node_biased_velocity(c.index_B) - body->get_biased_linear_velocity() - crbA;

		real_t vbn = dbv.dot(c.normal);

		if (Math::abs(-vbn + c.bias) > MIN_VELOCITY) {
			real_t jbn = (-vbn + c.bias) * c.mass_normal;
			real_t jbnOld = c.acc_bias_impulse;
			c.acc_bias_impulse = MAX(jbnOld + jbn, 0.0f);

			Vector3 jb = c.normal * (c.acc_bias_impulse - jbnOld);

			body->apply_bias_impulse(c.rA + body->get_center_of_mass(), -jb, MAX_BIAS_ROTATION / p_step);
			soft_body->apply_node_bias_impulse(c.index_B, jb);

			crbA = body->get_biased_angular_velocity().cross(c.rA);
			dbv = soft_body->get_node_biased_velocity(c.index_B) - body->get_biased_linear_velocity() - crbA;

			vbn = dbv.dot(c.normal);

			if (Math::abs(-vbn + c.bias) > MIN_VELOCITY) {
				real_t jbn_com = (-vbn + c.bias) / (body->get_inv_mass() + soft_body->get_node_inv_mass(c.index_B));
				real_t jbnOld_com = c.acc_bias_impulse_center_of_mass;
				c.acc_bias_impulse_center_of_mass = MAX(jbnOld_com + jbn_com, 0.0f);

				Vector3 jb_com = c.normal * (c.acc_bias_impulse_center_of_mass - jbnOld_com);

				body->apply_bias_impulse(body->get_center_of_mass(), -jb_com, 0.0f);
				soft_body->apply_node_bias_impulse(c.index_B, -jb_com);
			}

			c.active = true;
		}

		Vector3 crA = body->get_angular_velocity().cross(c.rA);
		Vector3 dv = soft_body->get_node_velocity(c.index_B) - body->get_linear_velocity() - crA;

		// Normal impulse.
		real_t vn = dv.dot(c.normal);

		if (Math::abs(vn) > MIN_VELOCITY) {
			real_t jn = -(c.bounce + vn) * c.mass_normal;
			real_t jnOld = c.acc_normal_impulse;
			c.acc_normal_impulse = MAX(jnOld + jn, 0.0f);

			Vector3 j = c.normal * (c.acc_normal_impulse - jnOld);

			body->apply_impulse(c.rA + body->get_center_of_mass(), -j);
			soft_body->apply_node_impulse(c.index_B, j);

			c.active = true;
		}

		// Friction impulse.
		real_t friction = body->get_friction();

		Vector3 lvA = body->get_linear_velocity() + body->get_angular_velocity().cross(c.rA);
		Vector3 lvB = soft_body->get_node_velocity(c.index_B);
		Vector3 dtv = lvB - lvA;

		real_t tn = c.normal.dot(dtv);

		// Tangential velocity.
		Vector3 tv = dtv - c.normal * tn;
		real_t tvl = tv.length();

		if (tvl > MIN_VELOCITY) {
			tv /= tvl;

			Vector3 temp1 = body->get_inv_inertia_tensor().xform(c.rA.cross(tv));

			real_t t = -tvl /
					   (body->get_inv_mass() + soft_body->get_node_inv_mass(c.index_B) + tv.dot(temp1.cross(c.rA)));

			Vector3 jt = t * tv;

			Vector3 jtOld = c.acc_tangent_impulse;
			c.acc_tangent_impulse += jt;

			real_t fi_len = c.acc_tangent_impulse.length();
			real_t jtMax = c.acc_normal_impulse * friction;

			if (fi_len > CMP_EPSILON && fi_len > jtMax) {
				c.acc_tangent_impulse *= jtMax / fi_len;
			}

			jt = c.acc_tangent_impulse - jtOld;

			body->apply_impulse(c.rA + body->get_center_of_mass(), -jt);
			soft_body->apply_node_impulse(c.index_B, jt);

			c.active = true;
		}
	}
}

BodySoftBodyPair3DSW::BodySoftBodyPair3DSW(Body3DSW *p_A, int p_shape_A, SoftBody3DSW *p_B) {
	body = p_A;
	soft_body = p_B;
	body_shape = p_shape_A;
	space = p_A->get_space();
	body->add_constraint(this, 0);
	soft_body->add_constraint(this);
}

BodySoftBodyPair3DSW::~BodySoftBodyPair3DSW() {
	body->remove_constraint(this);
	soft_body->remove_constraint(this);
}