summaryrefslogtreecommitdiff
path: root/servers/physics_2d/godot_collision_solver_2d.cpp
blob: 25371b9885ae25ecba2b165be803297e4b10a9bb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
/*************************************************************************/
/*  godot_collision_solver_2d.cpp                                        */
/*************************************************************************/
/*                       This file is part of:                           */
/*                           GODOT ENGINE                                */
/*                      https://godotengine.org                          */
/*************************************************************************/
/* Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur.                 */
/* Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md).   */
/*                                                                       */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the       */
/* "Software"), to deal in the Software without restriction, including   */
/* without limitation the rights to use, copy, modify, merge, publish,   */
/* distribute, sublicense, and/or sell copies of the Software, and to    */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions:                                             */
/*                                                                       */
/* The above copyright notice and this permission notice shall be        */
/* included in all copies or substantial portions of the Software.       */
/*                                                                       */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,       */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF    */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY  */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,  */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE     */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.                */
/*************************************************************************/

#include "godot_collision_solver_2d.h"
#include "godot_collision_solver_2d_sat.h"

#define collision_solver sat_2d_calculate_penetration
//#define collision_solver gjk_epa_calculate_penetration

bool GodotCollisionSolver2D::solve_static_world_boundary(const GodotShape2D *p_shape_A, const Transform2D &p_transform_A, const GodotShape2D *p_shape_B, const Transform2D &p_transform_B, CallbackResult p_result_callback, void *p_userdata, bool p_swap_result) {
	const GodotWorldBoundaryShape2D *world_boundary = static_cast<const GodotWorldBoundaryShape2D *>(p_shape_A);
	if (p_shape_B->get_type() == PhysicsServer2D::SHAPE_WORLD_BOUNDARY) {
		return false;
	}

	Vector2 n = p_transform_A.basis_xform(world_boundary->get_normal()).normalized();
	Vector2 p = p_transform_A.xform(world_boundary->get_normal() * world_boundary->get_d());
	real_t d = n.dot(p);

	Vector2 supports[2];
	int support_count;

	p_shape_B->get_supports(p_transform_B.affine_inverse().basis_xform(-n).normalized(), supports, support_count);

	bool found = false;

	for (int i = 0; i < support_count; i++) {
		supports[i] = p_transform_B.xform(supports[i]);
		real_t pd = n.dot(supports[i]);
		if (pd >= d) {
			continue;
		}
		found = true;

		Vector2 support_A = supports[i] - n * (pd - d);

		if (p_result_callback) {
			if (p_swap_result) {
				p_result_callback(supports[i], support_A, p_userdata);
			} else {
				p_result_callback(support_A, supports[i], p_userdata);
			}
		}
	}

	return found;
}

bool GodotCollisionSolver2D::solve_separation_ray(const GodotShape2D *p_shape_A, const Vector2 &p_motion_A, const Transform2D &p_transform_A, const GodotShape2D *p_shape_B, const Transform2D &p_transform_B, CallbackResult p_result_callback, void *p_userdata, bool p_swap_result, Vector2 *r_sep_axis, real_t p_margin) {
	const GodotSeparationRayShape2D *ray = static_cast<const GodotSeparationRayShape2D *>(p_shape_A);
	if (p_shape_B->get_type() == PhysicsServer2D::SHAPE_SEPARATION_RAY) {
		return false;
	}

	Vector2 from = p_transform_A.get_origin();
	Vector2 to = from + p_transform_A[1] * (ray->get_length() + p_margin);
	if (p_motion_A != Vector2()) {
		//not the best but should be enough
		Vector2 normal = (to - from).normalized();
		to += normal * MAX(0.0, normal.dot(p_motion_A));
	}
	Vector2 support_A = to;

	Transform2D invb = p_transform_B.affine_inverse();
	from = invb.xform(from);
	to = invb.xform(to);

	Vector2 p, n;
	if (!p_shape_B->intersect_segment(from, to, p, n)) {
		if (r_sep_axis) {
			*r_sep_axis = p_transform_A[1].normalized();
		}
		return false;
	}

	// Discard contacts when the ray is fully contained inside the shape.
	if (n == Vector2()) {
		if (r_sep_axis) {
			*r_sep_axis = p_transform_A[1].normalized();
		}
		return false;
	}

	// Discard contacts in the wrong direction.
	if (n.dot(from - to) < CMP_EPSILON) {
		if (r_sep_axis) {
			*r_sep_axis = p_transform_A[1].normalized();
		}
		return false;
	}

	Vector2 support_B = p_transform_B.xform(p);
	if (ray->get_slide_on_slope()) {
		Vector2 global_n = invb.basis_xform_inv(n).normalized();
		support_B = support_A + (support_B - support_A).length() * global_n;
	}

	if (p_result_callback) {
		if (p_swap_result) {
			p_result_callback(support_B, support_A, p_userdata);
		} else {
			p_result_callback(support_A, support_B, p_userdata);
		}
	}
	return true;
}

struct _ConcaveCollisionInfo2D {
	const Transform2D *transform_A = nullptr;
	const GodotShape2D *shape_A = nullptr;
	const Transform2D *transform_B = nullptr;
	Vector2 motion_A;
	Vector2 motion_B;
	real_t margin_A = 0.0;
	real_t margin_B = 0.0;
	GodotCollisionSolver2D::CallbackResult result_callback;
	void *userdata = nullptr;
	bool swap_result = false;
	bool collided = false;
	int aabb_tests = 0;
	int collisions = 0;
	Vector2 *sep_axis = nullptr;
};

bool GodotCollisionSolver2D::concave_callback(void *p_userdata, GodotShape2D *p_convex) {
	_ConcaveCollisionInfo2D &cinfo = *(_ConcaveCollisionInfo2D *)(p_userdata);
	cinfo.aabb_tests++;

	bool collided = collision_solver(cinfo.shape_A, *cinfo.transform_A, cinfo.motion_A, p_convex, *cinfo.transform_B, cinfo.motion_B, cinfo.result_callback, cinfo.userdata, cinfo.swap_result, cinfo.sep_axis, cinfo.margin_A, cinfo.margin_B);
	if (!collided) {
		return false;
	}

	cinfo.collided = true;
	cinfo.collisions++;

	// Stop at first collision if contacts are not needed.
	return !cinfo.result_callback;
}

bool GodotCollisionSolver2D::solve_concave(const GodotShape2D *p_shape_A, const Transform2D &p_transform_A, const Vector2 &p_motion_A, const GodotShape2D *p_shape_B, const Transform2D &p_transform_B, const Vector2 &p_motion_B, CallbackResult p_result_callback, void *p_userdata, bool p_swap_result, Vector2 *r_sep_axis, real_t p_margin_A, real_t p_margin_B) {
	const GodotConcaveShape2D *concave_B = static_cast<const GodotConcaveShape2D *>(p_shape_B);

	_ConcaveCollisionInfo2D cinfo;
	cinfo.transform_A = &p_transform_A;
	cinfo.shape_A = p_shape_A;
	cinfo.transform_B = &p_transform_B;
	cinfo.motion_A = p_motion_A;
	cinfo.result_callback = p_result_callback;
	cinfo.userdata = p_userdata;
	cinfo.swap_result = p_swap_result;
	cinfo.collided = false;
	cinfo.collisions = 0;
	cinfo.sep_axis = r_sep_axis;
	cinfo.margin_A = p_margin_A;
	cinfo.margin_B = p_margin_B;

	cinfo.aabb_tests = 0;

	Transform2D rel_transform = p_transform_A;
	rel_transform.elements[2] -= p_transform_B.get_origin();

	//quickly compute a local Rect2

	Rect2 local_aabb;
	for (int i = 0; i < 2; i++) {
		Vector2 axis(p_transform_B.elements[i]);
		real_t axis_scale = 1.0 / axis.length();
		axis *= axis_scale;

		real_t smin, smax;
		p_shape_A->project_rangev(axis, rel_transform, smin, smax);
		smin *= axis_scale;
		smax *= axis_scale;

		local_aabb.position[i] = smin;
		local_aabb.size[i] = smax - smin;
	}

	concave_B->cull(local_aabb, concave_callback, &cinfo);

	return cinfo.collided;
}

bool GodotCollisionSolver2D::solve(const GodotShape2D *p_shape_A, const Transform2D &p_transform_A, const Vector2 &p_motion_A, const GodotShape2D *p_shape_B, const Transform2D &p_transform_B, const Vector2 &p_motion_B, CallbackResult p_result_callback, void *p_userdata, Vector2 *r_sep_axis, real_t p_margin_A, real_t p_margin_B) {
	PhysicsServer2D::ShapeType type_A = p_shape_A->get_type();
	PhysicsServer2D::ShapeType type_B = p_shape_B->get_type();
	bool concave_A = p_shape_A->is_concave();
	bool concave_B = p_shape_B->is_concave();
	real_t margin_A = p_margin_A, margin_B = p_margin_B;

	bool swap = false;

	if (type_A > type_B) {
		SWAP(type_A, type_B);
		SWAP(concave_A, concave_B);
		SWAP(margin_A, margin_B);
		swap = true;
	}

	if (type_A == PhysicsServer2D::SHAPE_WORLD_BOUNDARY) {
		if (type_B == PhysicsServer2D::SHAPE_WORLD_BOUNDARY) {
			return false;
		}

		if (swap) {
			return solve_static_world_boundary(p_shape_B, p_transform_B, p_shape_A, p_transform_A, p_result_callback, p_userdata, true);
		} else {
			return solve_static_world_boundary(p_shape_A, p_transform_A, p_shape_B, p_transform_B, p_result_callback, p_userdata, false);
		}

	} else if (type_A == PhysicsServer2D::SHAPE_SEPARATION_RAY) {
		if (type_B == PhysicsServer2D::SHAPE_SEPARATION_RAY) {
			return false; //no ray-ray
		}

		if (swap) {
			return solve_separation_ray(p_shape_B, p_motion_B, p_transform_B, p_shape_A, p_transform_A, p_result_callback, p_userdata, true, r_sep_axis, p_margin_B);
		} else {
			return solve_separation_ray(p_shape_A, p_motion_A, p_transform_A, p_shape_B, p_transform_B, p_result_callback, p_userdata, false, r_sep_axis, p_margin_A);
		}

	} else if (concave_B) {
		if (concave_A) {
			return false;
		}

		if (!swap) {
			return solve_concave(p_shape_A, p_transform_A, p_motion_A, p_shape_B, p_transform_B, p_motion_B, p_result_callback, p_userdata, false, r_sep_axis, margin_A, margin_B);
		} else {
			return solve_concave(p_shape_B, p_transform_B, p_motion_B, p_shape_A, p_transform_A, p_motion_A, p_result_callback, p_userdata, true, r_sep_axis, margin_A, margin_B);
		}

	} else {
		return collision_solver(p_shape_A, p_transform_A, p_motion_A, p_shape_B, p_transform_B, p_motion_B, p_result_callback, p_userdata, false, r_sep_axis, margin_A, margin_B);
	}
}