1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
|
/*************************************************************************/
/* space_sw.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* http://www.godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#include "globals.h"
#include "space_sw.h"
#include "collision_solver_sw.h"
#include "physics_server_sw.h"
_FORCE_INLINE_ static bool _match_object_type_query(CollisionObjectSW *p_object, uint32_t p_layer_mask, uint32_t p_type_mask) {
if ((p_object->get_layer_mask()&p_layer_mask)==0)
return false;
if (p_object->get_type()==CollisionObjectSW::TYPE_AREA && !(p_type_mask&PhysicsDirectSpaceState::TYPE_MASK_AREA))
return false;
BodySW *body = static_cast<BodySW*>(p_object);
return (1<<body->get_mode())&p_type_mask;
}
bool PhysicsDirectSpaceStateSW::intersect_ray(const Vector3& p_from, const Vector3& p_to,RayResult &r_result,const Set<RID>& p_exclude,uint32_t p_layer_mask,uint32_t p_object_type_mask) {
ERR_FAIL_COND_V(space->locked,false);
Vector3 begin,end;
Vector3 normal;
begin=p_from;
end=p_to;
normal=(end-begin).normalized();
int amount = space->broadphase->cull_segment(begin,end,space->intersection_query_results,SpaceSW::INTERSECTION_QUERY_MAX,space->intersection_query_subindex_results);
//todo, create another array tha references results, compute AABBs and check closest point to ray origin, sort, and stop evaluating results when beyond first collision
bool collided=false;
Vector3 res_point,res_normal;
int res_shape;
const CollisionObjectSW *res_obj;
real_t min_d=1e10;
for(int i=0;i<amount;i++) {
if (!_match_object_type_query(space->intersection_query_results[i],p_layer_mask,p_object_type_mask))
continue;
if (space->intersection_query_results[i]->get_type()==CollisionObjectSW::TYPE_AREA && !(static_cast<AreaSW*>(space->intersection_query_results[i])->is_ray_pickable()))
continue;
if (p_exclude.has( space->intersection_query_results[i]->get_self()))
continue;
const CollisionObjectSW *col_obj=space->intersection_query_results[i];
int shape_idx=space->intersection_query_subindex_results[i];
Transform inv_xform = col_obj->get_shape_inv_transform(shape_idx) * col_obj->get_inv_transform();
Vector3 local_from = inv_xform.xform(begin);
Vector3 local_to = inv_xform.xform(end);
const ShapeSW *shape = col_obj->get_shape(shape_idx);
Vector3 shape_point,shape_normal;
if (shape->intersect_segment(local_from,local_to,shape_point,shape_normal)) {
Transform xform = col_obj->get_transform() * col_obj->get_shape_transform(shape_idx);
shape_point=xform.xform(shape_point);
real_t ld = normal.dot(shape_point);
if (ld<min_d) {
min_d=ld;
res_point=shape_point;
res_normal=inv_xform.basis.xform_inv(shape_normal).normalized();
res_shape=shape_idx;
res_obj=col_obj;
collided=true;
}
}
}
if (!collided)
return false;
r_result.collider_id=res_obj->get_instance_id();
if (r_result.collider_id!=0)
r_result.collider=ObjectDB::get_instance(r_result.collider_id);
else
r_result.collider=NULL;
r_result.normal=res_normal;
r_result.position=res_point;
r_result.rid=res_obj->get_self();
r_result.shape=res_shape;
return true;
}
int PhysicsDirectSpaceStateSW::intersect_shape(const RID& p_shape, const Transform& p_xform,float p_margin,ShapeResult *r_results,int p_result_max,const Set<RID>& p_exclude,uint32_t p_layer_mask,uint32_t p_object_type_mask) {
if (p_result_max<=0)
return 0;
ShapeSW *shape = static_cast<PhysicsServerSW*>(PhysicsServer::get_singleton())->shape_owner.get(p_shape);
ERR_FAIL_COND_V(!shape,0);
AABB aabb = p_xform.xform(shape->get_aabb());
int amount = space->broadphase->cull_aabb(aabb,space->intersection_query_results,SpaceSW::INTERSECTION_QUERY_MAX,space->intersection_query_subindex_results);
bool collided=false;
int cc=0;
//Transform ai = p_xform.affine_inverse();
for(int i=0;i<amount;i++) {
if (cc>=p_result_max)
break;
if (!_match_object_type_query(space->intersection_query_results[i],p_layer_mask,p_object_type_mask))
continue;
//area cant be picked by ray (default)
if (p_exclude.has( space->intersection_query_results[i]->get_self()))
continue;
const CollisionObjectSW *col_obj=space->intersection_query_results[i];
int shape_idx=space->intersection_query_subindex_results[i];
if (!CollisionSolverSW::solve_static(shape,p_xform,col_obj->get_shape(shape_idx),col_obj->get_transform() * col_obj->get_shape_transform(shape_idx), NULL,NULL,NULL,p_margin,0))
continue;
r_results[cc].collider_id=col_obj->get_instance_id();
if (r_results[cc].collider_id!=0)
r_results[cc].collider=ObjectDB::get_instance(r_results[cc].collider_id);
else
r_results[cc].collider=NULL;
r_results[cc].rid=col_obj->get_self();
r_results[cc].shape=shape_idx;
cc++;
}
return cc;
}
bool PhysicsDirectSpaceStateSW::cast_motion(const RID& p_shape, const Transform& p_xform,const Vector3& p_motion,float p_margin,float &p_closest_safe,float &p_closest_unsafe, const Set<RID>& p_exclude,uint32_t p_layer_mask,uint32_t p_object_type_mask,ShapeRestInfo *r_info) {
ShapeSW *shape = static_cast<PhysicsServerSW*>(PhysicsServer::get_singleton())->shape_owner.get(p_shape);
ERR_FAIL_COND_V(!shape,false);
AABB aabb = p_xform.xform(shape->get_aabb());
aabb=aabb.merge(AABB(aabb.pos+p_motion,aabb.size)); //motion
aabb=aabb.grow(p_margin);
//if (p_motion!=Vector3())
// print_line(p_motion);
int amount = space->broadphase->cull_aabb(aabb,space->intersection_query_results,SpaceSW::INTERSECTION_QUERY_MAX,space->intersection_query_subindex_results);
float best_safe=1;
float best_unsafe=1;
Transform xform_inv = p_xform.affine_inverse();
MotionShapeSW mshape;
mshape.shape=shape;
mshape.motion=xform_inv.basis.xform(p_motion);
bool best_first=true;
Vector3 closest_A,closest_B;
for(int i=0;i<amount;i++) {
if (!_match_object_type_query(space->intersection_query_results[i],p_layer_mask,p_object_type_mask))
continue;
if (p_exclude.has( space->intersection_query_results[i]->get_self()))
continue; //ignore excluded
const CollisionObjectSW *col_obj=space->intersection_query_results[i];
int shape_idx=space->intersection_query_subindex_results[i];
Vector3 point_A,point_B;
Vector3 sep_axis=p_motion.normalized();
Transform col_obj_xform = col_obj->get_transform() * col_obj->get_shape_transform(shape_idx);
//test initial overlap, does it collide if going all the way?
if (CollisionSolverSW::solve_distance(&mshape,p_xform,col_obj->get_shape(shape_idx),col_obj_xform,point_A,point_B,aabb,&sep_axis)) {
//print_line("failed motion cast (no collision)");
continue;
}
//test initial overlap
#if 0
if (CollisionSolverSW::solve_static(shape,p_xform,col_obj->get_shape(shape_idx),col_obj_xform,NULL,NULL,&sep_axis)) {
print_line("failed initial cast (collision at begining)");
return false;
}
#else
sep_axis=p_motion.normalized();
if (!CollisionSolverSW::solve_distance(shape,p_xform,col_obj->get_shape(shape_idx),col_obj_xform,point_A,point_B,aabb,&sep_axis)) {
//print_line("failed motion cast (no collision)");
return false;
}
#endif
//just do kinematic solving
float low=0;
float hi=1;
Vector3 mnormal=p_motion.normalized();
for(int i=0;i<8;i++) { //steps should be customizable..
Transform xfa = p_xform;
float ofs = (low+hi)*0.5;
Vector3 sep=mnormal; //important optimization for this to work fast enough
mshape.motion=xform_inv.basis.xform(p_motion*ofs);
Vector3 lA,lB;
bool collided = !CollisionSolverSW::solve_distance(&mshape,p_xform,col_obj->get_shape(shape_idx),col_obj_xform,lA,lB,aabb,&sep);
if (collided) {
//print_line(itos(i)+": "+rtos(ofs));
hi=ofs;
} else {
point_A=lA;
point_B=lB;
low=ofs;
}
}
if (low<best_safe) {
best_first=true; //force reset
best_safe=low;
best_unsafe=hi;
}
if (r_info && (best_first || (point_A.distance_squared_to(point_B) < closest_A.distance_squared_to(closest_B) && low<=best_safe))) {
closest_A=point_A;
closest_B=point_B;
r_info->collider_id=col_obj->get_instance_id();
r_info->rid=col_obj->get_self();
r_info->shape=shape_idx;
r_info->point=closest_B;
r_info->normal=(closest_A-closest_B).normalized();
best_first=false;
if (col_obj->get_type()==CollisionObjectSW::TYPE_BODY) {
const BodySW *body=static_cast<const BodySW*>(col_obj);
r_info->linear_velocity= body->get_linear_velocity() + (body->get_angular_velocity()).cross(body->get_transform().origin - closest_B);
}
}
}
p_closest_safe=best_safe;
p_closest_unsafe=best_unsafe;
return true;
}
bool PhysicsDirectSpaceStateSW::collide_shape(RID p_shape, const Transform& p_shape_xform,float p_margin,Vector3 *r_results,int p_result_max,int &r_result_count, const Set<RID>& p_exclude,uint32_t p_layer_mask,uint32_t p_object_type_mask){
if (p_result_max<=0)
return 0;
ShapeSW *shape = static_cast<PhysicsServerSW*>(PhysicsServer::get_singleton())->shape_owner.get(p_shape);
ERR_FAIL_COND_V(!shape,0);
AABB aabb = p_shape_xform.xform(shape->get_aabb());
aabb=aabb.grow(p_margin);
int amount = space->broadphase->cull_aabb(aabb,space->intersection_query_results,SpaceSW::INTERSECTION_QUERY_MAX,space->intersection_query_subindex_results);
bool collided=false;
int cc=0;
r_result_count=0;
PhysicsServerSW::CollCbkData cbk;
cbk.max=p_result_max;
cbk.amount=0;
cbk.ptr=r_results;
CollisionSolverSW::CallbackResult cbkres=NULL;
PhysicsServerSW::CollCbkData *cbkptr=NULL;
if (p_result_max>0) {
cbkptr=&cbk;
cbkres=PhysicsServerSW::_shape_col_cbk;
}
for(int i=0;i<amount;i++) {
if (!_match_object_type_query(space->intersection_query_results[i],p_layer_mask,p_object_type_mask))
continue;
const CollisionObjectSW *col_obj=space->intersection_query_results[i];
int shape_idx=space->intersection_query_subindex_results[i];
if (p_exclude.has( col_obj->get_self() )) {
continue;
}
//print_line("AGAINST: "+itos(col_obj->get_self().get_id())+":"+itos(shape_idx));
//print_line("THE ABBB: "+(col_obj->get_transform() * col_obj->get_shape_transform(shape_idx)).xform(col_obj->get_shape(shape_idx)->get_aabb()));
if (CollisionSolverSW::solve_static(shape,p_shape_xform,col_obj->get_shape(shape_idx),col_obj->get_transform() * col_obj->get_shape_transform(shape_idx),cbkres,cbkptr,NULL,p_margin)) {
collided=true;
}
}
r_result_count=cbk.amount;
return collided;
}
struct _RestCallbackData {
const CollisionObjectSW *object;
const CollisionObjectSW *best_object;
int shape;
int best_shape;
Vector3 best_contact;
Vector3 best_normal;
float best_len;
};
static void _rest_cbk_result(const Vector3& p_point_A,const Vector3& p_point_B,void *p_userdata) {
_RestCallbackData *rd=(_RestCallbackData*)p_userdata;
Vector3 contact_rel = p_point_B - p_point_A;
float len = contact_rel.length();
if (len <= rd->best_len)
return;
rd->best_len=len;
rd->best_contact=p_point_B;
rd->best_normal=contact_rel/len;
rd->best_object=rd->object;
rd->best_shape=rd->shape;
}
bool PhysicsDirectSpaceStateSW::rest_info(RID p_shape, const Transform& p_shape_xform,float p_margin,ShapeRestInfo *r_info, const Set<RID>& p_exclude,uint32_t p_layer_mask,uint32_t p_object_type_mask) {
ShapeSW *shape = static_cast<PhysicsServerSW*>(PhysicsServer::get_singleton())->shape_owner.get(p_shape);
ERR_FAIL_COND_V(!shape,0);
AABB aabb = p_shape_xform.xform(shape->get_aabb());
aabb=aabb.grow(p_margin);
int amount = space->broadphase->cull_aabb(aabb,space->intersection_query_results,SpaceSW::INTERSECTION_QUERY_MAX,space->intersection_query_subindex_results);
_RestCallbackData rcd;
rcd.best_len=0;
rcd.best_object=NULL;
rcd.best_shape=0;
for(int i=0;i<amount;i++) {
if (!_match_object_type_query(space->intersection_query_results[i],p_layer_mask,p_object_type_mask))
continue;
const CollisionObjectSW *col_obj=space->intersection_query_results[i];
int shape_idx=space->intersection_query_subindex_results[i];
if (p_exclude.has( col_obj->get_self() ))
continue;
rcd.object=col_obj;
rcd.shape=shape_idx;
bool sc = CollisionSolverSW::solve_static(shape,p_shape_xform,col_obj->get_shape(shape_idx),col_obj->get_transform() * col_obj->get_shape_transform(shape_idx),_rest_cbk_result,&rcd,NULL,p_margin);
if (!sc)
continue;
}
if (rcd.best_len==0)
return false;
r_info->collider_id=rcd.best_object->get_instance_id();
r_info->shape=rcd.best_shape;
r_info->normal=rcd.best_normal;
r_info->point=rcd.best_contact;
r_info->rid=rcd.best_object->get_self();
if (rcd.best_object->get_type()==CollisionObjectSW::TYPE_BODY) {
const BodySW *body = static_cast<const BodySW*>(rcd.best_object);
Vector3 rel_vec = r_info->point-body->get_transform().get_origin();
r_info->linear_velocity = body->get_linear_velocity() +
(body->get_angular_velocity()).cross(body->get_transform().origin-rcd.best_contact);// * mPos);
} else {
r_info->linear_velocity=Vector3();
}
return true;
}
PhysicsDirectSpaceStateSW::PhysicsDirectSpaceStateSW() {
space=NULL;
}
////////////////////////////////////////////////////////////////////////////////////////////////////////////
void* SpaceSW::_broadphase_pair(CollisionObjectSW *A,int p_subindex_A,CollisionObjectSW *B,int p_subindex_B,void *p_self) {
CollisionObjectSW::Type type_A=A->get_type();
CollisionObjectSW::Type type_B=B->get_type();
if (type_A>type_B) {
SWAP(A,B);
SWAP(p_subindex_A,p_subindex_B);
SWAP(type_A,type_B);
}
SpaceSW *self = (SpaceSW*)p_self;
self->collision_pairs++;
if (type_A==CollisionObjectSW::TYPE_AREA) {
ERR_FAIL_COND_V(type_B!=CollisionObjectSW::TYPE_BODY,NULL);
AreaSW *area=static_cast<AreaSW*>(A);
BodySW *body=static_cast<BodySW*>(B);
AreaPairSW *area_pair = memnew(AreaPairSW(body,p_subindex_B,area,p_subindex_A) );
return area_pair;
} else {
BodyPairSW *b = memnew( BodyPairSW((BodySW*)A,p_subindex_A,(BodySW*)B,p_subindex_B) );
return b;
}
return NULL;
}
void SpaceSW::_broadphase_unpair(CollisionObjectSW *A,int p_subindex_A,CollisionObjectSW *B,int p_subindex_B,void *p_data,void *p_self) {
SpaceSW *self = (SpaceSW*)p_self;
self->collision_pairs--;
ConstraintSW *c = (ConstraintSW*)p_data;
memdelete(c);
}
const SelfList<BodySW>::List& SpaceSW::get_active_body_list() const {
return active_list;
}
void SpaceSW::body_add_to_active_list(SelfList<BodySW>* p_body) {
active_list.add(p_body);
}
void SpaceSW::body_remove_from_active_list(SelfList<BodySW>* p_body) {
active_list.remove(p_body);
}
void SpaceSW::body_add_to_inertia_update_list(SelfList<BodySW>* p_body) {
inertia_update_list.add(p_body);
}
void SpaceSW::body_remove_from_inertia_update_list(SelfList<BodySW>* p_body) {
inertia_update_list.remove(p_body);
}
BroadPhaseSW *SpaceSW::get_broadphase() {
return broadphase;
}
void SpaceSW::add_object(CollisionObjectSW *p_object) {
ERR_FAIL_COND( objects.has(p_object) );
objects.insert(p_object);
}
void SpaceSW::remove_object(CollisionObjectSW *p_object) {
ERR_FAIL_COND( !objects.has(p_object) );
objects.erase(p_object);
}
const Set<CollisionObjectSW*> &SpaceSW::get_objects() const {
return objects;
}
void SpaceSW::body_add_to_state_query_list(SelfList<BodySW>* p_body) {
state_query_list.add(p_body);
}
void SpaceSW::body_remove_from_state_query_list(SelfList<BodySW>* p_body) {
state_query_list.remove(p_body);
}
void SpaceSW::area_add_to_monitor_query_list(SelfList<AreaSW>* p_area) {
monitor_query_list.add(p_area);
}
void SpaceSW::area_remove_from_monitor_query_list(SelfList<AreaSW>* p_area) {
monitor_query_list.remove(p_area);
}
void SpaceSW::area_add_to_moved_list(SelfList<AreaSW>* p_area) {
area_moved_list.add(p_area);
}
void SpaceSW::area_remove_from_moved_list(SelfList<AreaSW>* p_area) {
area_moved_list.remove(p_area);
}
const SelfList<AreaSW>::List& SpaceSW::get_moved_area_list() const {
return area_moved_list;
}
void SpaceSW::call_queries() {
while(state_query_list.first()) {
BodySW * b = state_query_list.first()->self();
b->call_queries();
state_query_list.remove(state_query_list.first());
}
while(monitor_query_list.first()) {
AreaSW * a = monitor_query_list.first()->self();
a->call_queries();
monitor_query_list.remove(monitor_query_list.first());
}
}
void SpaceSW::setup() {
while(inertia_update_list.first()) {
inertia_update_list.first()->self()->update_inertias();
inertia_update_list.remove(inertia_update_list.first());
}
}
void SpaceSW::update() {
broadphase->update();
}
void SpaceSW::set_param(PhysicsServer::SpaceParameter p_param, real_t p_value) {
switch(p_param) {
case PhysicsServer::SPACE_PARAM_CONTACT_RECYCLE_RADIUS: contact_recycle_radius=p_value; break;
case PhysicsServer::SPACE_PARAM_CONTACT_MAX_SEPARATION: contact_max_separation=p_value; break;
case PhysicsServer::SPACE_PARAM_BODY_MAX_ALLOWED_PENETRATION: contact_max_allowed_penetration=p_value; break;
case PhysicsServer::SPACE_PARAM_BODY_LINEAR_VELOCITY_SLEEP_TRESHOLD: body_linear_velocity_sleep_threshold=p_value; break;
case PhysicsServer::SPACE_PARAM_BODY_ANGULAR_VELOCITY_SLEEP_TRESHOLD: body_angular_velocity_sleep_threshold=p_value; break;
case PhysicsServer::SPACE_PARAM_BODY_TIME_TO_SLEEP: body_time_to_sleep=p_value; break;
case PhysicsServer::SPACE_PARAM_BODY_ANGULAR_VELOCITY_DAMP_RATIO: body_angular_velocity_damp_ratio=p_value; break;
case PhysicsServer::SPACE_PARAM_CONSTRAINT_DEFAULT_BIAS: constraint_bias=p_value; break;
}
}
real_t SpaceSW::get_param(PhysicsServer::SpaceParameter p_param) const {
switch(p_param) {
case PhysicsServer::SPACE_PARAM_CONTACT_RECYCLE_RADIUS: return contact_recycle_radius;
case PhysicsServer::SPACE_PARAM_CONTACT_MAX_SEPARATION: return contact_max_separation;
case PhysicsServer::SPACE_PARAM_BODY_MAX_ALLOWED_PENETRATION: return contact_max_allowed_penetration;
case PhysicsServer::SPACE_PARAM_BODY_LINEAR_VELOCITY_SLEEP_TRESHOLD: return body_linear_velocity_sleep_threshold;
case PhysicsServer::SPACE_PARAM_BODY_ANGULAR_VELOCITY_SLEEP_TRESHOLD: return body_angular_velocity_sleep_threshold;
case PhysicsServer::SPACE_PARAM_BODY_TIME_TO_SLEEP: return body_time_to_sleep;
case PhysicsServer::SPACE_PARAM_BODY_ANGULAR_VELOCITY_DAMP_RATIO: return body_angular_velocity_damp_ratio;
case PhysicsServer::SPACE_PARAM_CONSTRAINT_DEFAULT_BIAS: return constraint_bias;
}
return 0;
}
void SpaceSW::lock() {
locked=true;
}
void SpaceSW::unlock() {
locked=false;
}
bool SpaceSW::is_locked() const {
return locked;
}
PhysicsDirectSpaceStateSW *SpaceSW::get_direct_state() {
return direct_access;
}
SpaceSW::SpaceSW() {
collision_pairs=0;
active_objects=0;
island_count=0;
locked=false;
contact_recycle_radius=0.01;
contact_max_separation=0.05;
contact_max_allowed_penetration= 0.01;
constraint_bias = 0.01;
body_linear_velocity_sleep_threshold=GLOBAL_DEF("physics/sleep_threshold_linear",0.1);
body_angular_velocity_sleep_threshold=GLOBAL_DEF("physics/sleep_threshold_angular", (8.0 / 180.0 * Math_PI) );
body_time_to_sleep=0.5;
body_angular_velocity_damp_ratio=10;
broadphase = BroadPhaseSW::create_func();
broadphase->set_pair_callback(_broadphase_pair,this);
broadphase->set_unpair_callback(_broadphase_unpair,this);
area=NULL;
direct_access = memnew( PhysicsDirectSpaceStateSW );
direct_access->space=this;
}
SpaceSW::~SpaceSW() {
memdelete(broadphase);
memdelete( direct_access );
}
|