summaryrefslogtreecommitdiff
path: root/servers/physics/joints/hinge_joint_sw.cpp
blob: d50d5a1a73d4498f6cbe4e342d689e74501ba76d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
/*************************************************************************/
/*  hinge_joint_sw.cpp                                                   */
/*************************************************************************/
/*                       This file is part of:                           */
/*                           GODOT ENGINE                                */
/*                    http://www.godotengine.org                         */
/*************************************************************************/
/* Copyright (c) 2007-2017 Juan Linietsky, Ariel Manzur.                 */
/*                                                                       */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the       */
/* "Software"), to deal in the Software without restriction, including   */
/* without limitation the rights to use, copy, modify, merge, publish,   */
/* distribute, sublicense, and/or sell copies of the Software, and to    */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions:                                             */
/*                                                                       */
/* The above copyright notice and this permission notice shall be        */
/* included in all copies or substantial portions of the Software.       */
/*                                                                       */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,       */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF    */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY  */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,  */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE     */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.                */
/*************************************************************************/

/*
Adapted to Godot from the Bullet library.
See corresponding header file for licensing info.
*/

#include "hinge_joint_sw.h"

static void plane_space(const Vector3& n, Vector3& p, Vector3& q) {

  if (Math::abs(n.z) > 0.707106781186547524400844362) {
    // choose p in y-z plane
    real_t a = n[1]*n[1] + n[2]*n[2];
    real_t k = 1.0/Math::sqrt(a);
    p=Vector3(0,-n[2]*k,n[1]*k);
    // set q = n x p
    q=Vector3(a*k,-n[0]*p[2],n[0]*p[1]);
  }
  else {
    // choose p in x-y plane
    real_t a = n.x*n.x + n.y*n.y;
    real_t k = 1.0/Math::sqrt(a);
    p=Vector3(-n.y*k,n.x*k,0);
    // set q = n x p
    q=Vector3(-n.z*p.y,n.z*p.x,a*k);
  }
}

HingeJointSW::HingeJointSW(BodySW* rbA,BodySW* rbB, const Transform& frameA, const Transform& frameB) :  JointSW(_arr,2) {

	A=rbA;
	B=rbB;

	m_rbAFrame=frameA;
	m_rbBFrame=frameB;
	// flip axis
	m_rbBFrame.basis[0][2] *= real_t(-1.);
	m_rbBFrame.basis[1][2] *= real_t(-1.);
	m_rbBFrame.basis[2][2] *= real_t(-1.);


	//start with free
	m_lowerLimit = Math_PI;
	m_upperLimit = -Math_PI;


	m_useLimit = false;
	m_biasFactor = 0.3f;
	m_relaxationFactor = 1.0f;
	m_limitSoftness = 0.9f;
	m_solveLimit = false;

	tau=0.3;

	m_angularOnly=false;
	m_enableAngularMotor=false;

	A->add_constraint(this,0);
	B->add_constraint(this,1);

}

HingeJointSW::HingeJointSW(BodySW* rbA,BodySW* rbB, const Vector3& pivotInA,const Vector3& pivotInB,
									const  Vector3& axisInA,const Vector3& axisInB) :  JointSW(_arr,2) {

	A=rbA;
	B=rbB;

	m_rbAFrame.origin = pivotInA;

	// since no frame is given, assume this to be zero angle and just pick rb transform axis
	Vector3 rbAxisA1 = rbA->get_transform().basis.get_axis(0);

	Vector3 rbAxisA2;
	real_t projection = axisInA.dot(rbAxisA1);
	if (projection >= 1.0f - CMP_EPSILON) {
		rbAxisA1 = -rbA->get_transform().basis.get_axis(2);
		rbAxisA2 = rbA->get_transform().basis.get_axis(1);
	} else if (projection <= -1.0f + CMP_EPSILON) {
		rbAxisA1 = rbA->get_transform().basis.get_axis(2);
		rbAxisA2 = rbA->get_transform().basis.get_axis(1);
	} else {
		rbAxisA2 = axisInA.cross(rbAxisA1);
		rbAxisA1 = rbAxisA2.cross(axisInA);
	}

	m_rbAFrame.basis=Basis( rbAxisA1.x,rbAxisA2.x,axisInA.x,
									rbAxisA1.y,rbAxisA2.y,axisInA.y,
									rbAxisA1.z,rbAxisA2.z,axisInA.z );

	Quat rotationArc = Quat(axisInA,axisInB);
	Vector3 rbAxisB1 =  rotationArc.xform(rbAxisA1);
	Vector3 rbAxisB2 =  axisInB.cross(rbAxisB1);

	m_rbBFrame.origin = pivotInB;
	m_rbBFrame.basis=Basis( rbAxisB1.x,rbAxisB2.x,-axisInB.x,
									rbAxisB1.y,rbAxisB2.y,-axisInB.y,
									rbAxisB1.z,rbAxisB2.z,-axisInB.z );

	//start with free
	m_lowerLimit = Math_PI;
	m_upperLimit = -Math_PI;


	m_useLimit = false;
	m_biasFactor = 0.3f;
	m_relaxationFactor = 1.0f;
	m_limitSoftness = 0.9f;
	m_solveLimit = false;

	tau=0.3;

	m_angularOnly=false;
	m_enableAngularMotor=false;

	A->add_constraint(this,0);
	B->add_constraint(this,1);

}



bool HingeJointSW::setup(float p_step) {

	m_appliedImpulse = real_t(0.);

	if (!m_angularOnly)
	{
		Vector3 pivotAInW = A->get_transform().xform(m_rbAFrame.origin);
		Vector3 pivotBInW = B->get_transform().xform(m_rbBFrame.origin);
		Vector3 relPos = pivotBInW - pivotAInW;

		Vector3 normal[3];
		if (relPos.length_squared() > CMP_EPSILON)
		{
			normal[0] = relPos.normalized();
		}
		else
		{
			normal[0]=Vector3(real_t(1.0),0,0);
		}

		plane_space(normal[0], normal[1], normal[2]);

		for (int i=0;i<3;i++)
		{
			memnew_placement(&m_jac[i], JacobianEntrySW(
				A->get_principal_inertia_axes().transposed(),
				B->get_principal_inertia_axes().transposed(),
				pivotAInW - A->get_transform().origin - A->get_center_of_mass(),
				pivotBInW - B->get_transform().origin - B->get_center_of_mass(),
				normal[i],
				A->get_inv_inertia(),
				A->get_inv_mass(),
				B->get_inv_inertia(),
				B->get_inv_mass()) );
		}
	}

	//calculate two perpendicular jointAxis, orthogonal to hingeAxis
	//these two jointAxis require equal angular velocities for both bodies

	//this is unused for now, it's a todo
	Vector3 jointAxis0local;
	Vector3 jointAxis1local;

	plane_space(m_rbAFrame.basis.get_axis(2),jointAxis0local,jointAxis1local);

	A->get_transform().basis.xform( m_rbAFrame.basis.get_axis(2) );
	Vector3 jointAxis0 = A->get_transform().basis.xform( jointAxis0local );
	Vector3 jointAxis1 = A->get_transform().basis.xform( jointAxis1local );
	Vector3 hingeAxisWorld = A->get_transform().basis.xform( m_rbAFrame.basis.get_axis(2) );

	memnew_placement(&m_jacAng[0],	JacobianEntrySW(jointAxis0,
		A->get_principal_inertia_axes().transposed(),
		B->get_principal_inertia_axes().transposed(),
		A->get_inv_inertia(),
		B->get_inv_inertia()));

	memnew_placement(&m_jacAng[1],	JacobianEntrySW(jointAxis1,
		A->get_principal_inertia_axes().transposed(),
		B->get_principal_inertia_axes().transposed(),
		A->get_inv_inertia(),
		B->get_inv_inertia()));

	memnew_placement(&m_jacAng[2],	JacobianEntrySW(hingeAxisWorld,
		A->get_principal_inertia_axes().transposed(),
		B->get_principal_inertia_axes().transposed(),
		A->get_inv_inertia(),
		B->get_inv_inertia()));


	// Compute limit information
	real_t hingeAngle = get_hinge_angle();

	//print_line("angle: "+rtos(hingeAngle));
	//set bias, sign, clear accumulator
	m_correction = real_t(0.);
	m_limitSign = real_t(0.);
	m_solveLimit = false;
	m_accLimitImpulse = real_t(0.);



	/*if (m_useLimit) {
		print_line("low: "+rtos(m_lowerLimit));
		print_line("hi: "+rtos(m_upperLimit));
	}*/

	//if (m_lowerLimit < m_upperLimit)
	if (m_useLimit && m_lowerLimit <= m_upperLimit)
	{
		//if (hingeAngle <= m_lowerLimit*m_limitSoftness)
		if (hingeAngle <= m_lowerLimit)
		{
			m_correction = (m_lowerLimit - hingeAngle);
			m_limitSign = 1.0f;
			m_solveLimit = true;
		}
		//else if (hingeAngle >= m_upperLimit*m_limitSoftness)
		else if (hingeAngle >= m_upperLimit)
		{
			m_correction = m_upperLimit - hingeAngle;
			m_limitSign = -1.0f;
			m_solveLimit = true;
		}
	}

	//Compute K = J*W*J' for hinge axis
	Vector3 axisA =  A->get_transform().basis.xform(  m_rbAFrame.basis.get_axis(2) );
	m_kHinge =   1.0f / (A->compute_angular_impulse_denominator(axisA) +
				     B->compute_angular_impulse_denominator(axisA));

	return true;
}

void HingeJointSW::solve(float p_step) {

	Vector3 pivotAInW = A->get_transform().xform(m_rbAFrame.origin);
	Vector3 pivotBInW = B->get_transform().xform(m_rbBFrame.origin);

	//real_t tau = real_t(0.3);

	//linear part
	if (!m_angularOnly)
	{
		Vector3 rel_pos1 = pivotAInW - A->get_transform().origin;
		Vector3 rel_pos2 = pivotBInW - B->get_transform().origin;

		Vector3 vel1 = A->get_velocity_in_local_point(rel_pos1);
		Vector3 vel2 = B->get_velocity_in_local_point(rel_pos2);
		Vector3 vel = vel1 - vel2;

		for (int i=0;i<3;i++)
		{
			const Vector3& normal = m_jac[i].m_linearJointAxis;
			real_t jacDiagABInv = real_t(1.) / m_jac[i].getDiagonal();

			real_t rel_vel;
			rel_vel = normal.dot(vel);
			//positional error (zeroth order error)
			real_t depth = -(pivotAInW - pivotBInW).dot(normal); //this is the error projected on the normal
			real_t impulse = depth*tau/p_step  * jacDiagABInv -  rel_vel * jacDiagABInv;
			m_appliedImpulse += impulse;
			Vector3 impulse_vector = normal * impulse;
			A->apply_impulse(pivotAInW - A->get_transform().origin,impulse_vector);
			B->apply_impulse(pivotBInW - B->get_transform().origin,-impulse_vector);
		}
	}


	{
		///solve angular part

		// get axes in world space
		Vector3 axisA =  A->get_transform().basis.xform(  m_rbAFrame.basis.get_axis(2) );
		Vector3 axisB =  B->get_transform().basis.xform(  m_rbBFrame.basis.get_axis(2) );

		const Vector3& angVelA = A->get_angular_velocity();
		const Vector3& angVelB = B->get_angular_velocity();

		Vector3 angVelAroundHingeAxisA = axisA * axisA.dot(angVelA);
		Vector3 angVelAroundHingeAxisB = axisB * axisB.dot(angVelB);

		Vector3 angAorthog = angVelA - angVelAroundHingeAxisA;
		Vector3 angBorthog = angVelB - angVelAroundHingeAxisB;
		Vector3 velrelOrthog = angAorthog-angBorthog;
		{
			//solve orthogonal angular velocity correction
			real_t relaxation = real_t(1.);
			real_t len = velrelOrthog.length();
			if (len > real_t(0.00001))
			{
				Vector3 normal = velrelOrthog.normalized();
				real_t denom = A->compute_angular_impulse_denominator(normal) +
					B->compute_angular_impulse_denominator(normal);
				// scale for mass and relaxation
				velrelOrthog *= (real_t(1.)/denom) * m_relaxationFactor;
			}

			//solve angular positional correction
			Vector3 angularError = -axisA.cross(axisB) *(real_t(1.)/p_step);
			real_t len2 = angularError.length();
			if (len2>real_t(0.00001))
			{
				Vector3 normal2 = angularError.normalized();
				real_t denom2 = A->compute_angular_impulse_denominator(normal2) +
						B->compute_angular_impulse_denominator(normal2);
				angularError *= (real_t(1.)/denom2) * relaxation;
			}

			A->apply_torque_impulse(-velrelOrthog+angularError);
			B->apply_torque_impulse(velrelOrthog-angularError);

			// solve limit
			if (m_solveLimit)
			{
				real_t amplitude = ( (angVelB - angVelA).dot( axisA )*m_relaxationFactor + m_correction* (real_t(1.)/p_step)*m_biasFactor  ) * m_limitSign;

				real_t impulseMag = amplitude * m_kHinge;

				// Clamp the accumulated impulse
				real_t temp = m_accLimitImpulse;
				m_accLimitImpulse = MAX(m_accLimitImpulse + impulseMag, real_t(0) );
				impulseMag = m_accLimitImpulse - temp;


				Vector3 impulse = axisA * impulseMag * m_limitSign;
				A->apply_torque_impulse(impulse);
				B->apply_torque_impulse(-impulse);
			}
		}

		//apply motor
		if (m_enableAngularMotor)
		{
			//todo: add limits too
			Vector3 angularLimit(0,0,0);

			Vector3 velrel = angVelAroundHingeAxisA - angVelAroundHingeAxisB;
			real_t projRelVel = velrel.dot(axisA);

			real_t desiredMotorVel = m_motorTargetVelocity;
			real_t motor_relvel = desiredMotorVel - projRelVel;

			real_t unclippedMotorImpulse = m_kHinge * motor_relvel;
			//todo: should clip against accumulated impulse
			real_t clippedMotorImpulse = unclippedMotorImpulse > m_maxMotorImpulse ? m_maxMotorImpulse : unclippedMotorImpulse;
			clippedMotorImpulse = clippedMotorImpulse < -m_maxMotorImpulse ? -m_maxMotorImpulse : clippedMotorImpulse;
			Vector3 motorImp = clippedMotorImpulse * axisA;

			A->apply_torque_impulse(motorImp+angularLimit);
			B->apply_torque_impulse(-motorImp-angularLimit);

		}
	}

}
/*
void	HingeJointSW::updateRHS(real_t	timeStep)
{
	(void)timeStep;

}
*/

static _FORCE_INLINE_ real_t atan2fast(real_t y, real_t x)
{
	real_t coeff_1 = Math_PI / 4.0f;
	real_t coeff_2 = 3.0f * coeff_1;
	real_t abs_y = Math::abs(y);
	real_t angle;
	if (x >= 0.0f) {
		real_t r = (x - abs_y) / (x + abs_y);
		angle = coeff_1 - coeff_1 * r;
	} else {
		real_t r = (x + abs_y) / (abs_y - x);
		angle = coeff_2 - coeff_1 * r;
	}
	return (y < 0.0f) ? -angle : angle;
}


real_t HingeJointSW::get_hinge_angle() {
	const Vector3 refAxis0  = A->get_transform().basis.xform( m_rbAFrame.basis.get_axis(0) );
	const Vector3 refAxis1  = A->get_transform().basis.xform( m_rbAFrame.basis.get_axis(1) );
	const Vector3 swingAxis = B->get_transform().basis.xform( m_rbBFrame.basis.get_axis(1) );

	return atan2fast( swingAxis.dot(refAxis0), swingAxis.dot(refAxis1)  );
}


void HingeJointSW::set_param(PhysicsServer::HingeJointParam p_param, float p_value) {

	switch (p_param) {

		case PhysicsServer::HINGE_JOINT_BIAS: tau=p_value; break;
		case PhysicsServer::HINGE_JOINT_LIMIT_UPPER: m_upperLimit=p_value; break;
		case PhysicsServer::HINGE_JOINT_LIMIT_LOWER: m_lowerLimit=p_value; break;
		case PhysicsServer::HINGE_JOINT_LIMIT_BIAS: m_biasFactor=p_value; break;
		case PhysicsServer::HINGE_JOINT_LIMIT_SOFTNESS: m_limitSoftness=p_value; break;
		case PhysicsServer::HINGE_JOINT_LIMIT_RELAXATION: m_relaxationFactor=p_value; break;
		case PhysicsServer::HINGE_JOINT_MOTOR_TARGET_VELOCITY: m_motorTargetVelocity=p_value; break;
		case PhysicsServer::HINGE_JOINT_MOTOR_MAX_IMPULSE: m_maxMotorImpulse=p_value; break;

	}
}

float HingeJointSW::get_param(PhysicsServer::HingeJointParam p_param) const{

	switch (p_param) {

		case PhysicsServer::HINGE_JOINT_BIAS: return tau;
		case PhysicsServer::HINGE_JOINT_LIMIT_UPPER: return m_upperLimit;
		case PhysicsServer::HINGE_JOINT_LIMIT_LOWER: return m_lowerLimit;
		case PhysicsServer::HINGE_JOINT_LIMIT_BIAS: return m_biasFactor;
		case PhysicsServer::HINGE_JOINT_LIMIT_SOFTNESS: return m_limitSoftness;
		case PhysicsServer::HINGE_JOINT_LIMIT_RELAXATION: return m_relaxationFactor;
		case PhysicsServer::HINGE_JOINT_MOTOR_TARGET_VELOCITY: return m_motorTargetVelocity;
		case PhysicsServer::HINGE_JOINT_MOTOR_MAX_IMPULSE: return m_maxMotorImpulse;

	}

	return 0;
}

void HingeJointSW::set_flag(PhysicsServer::HingeJointFlag p_flag, bool p_value){

	switch (p_flag) {
		case PhysicsServer::HINGE_JOINT_FLAG_USE_LIMIT: m_useLimit=p_value; break;
		case PhysicsServer::HINGE_JOINT_FLAG_ENABLE_MOTOR: m_enableAngularMotor=p_value; break;
	}

}
bool HingeJointSW::get_flag(PhysicsServer::HingeJointFlag p_flag) const{

	switch (p_flag) {
		case PhysicsServer::HINGE_JOINT_FLAG_USE_LIMIT: return m_useLimit;
		case PhysicsServer::HINGE_JOINT_FLAG_ENABLE_MOTOR:return m_enableAngularMotor;
	}

	return false;
}