summaryrefslogtreecommitdiff
path: root/servers/physics/joints/generic_6dof_joint_sw.cpp
blob: e4349bda9a9a6d0f223bd10be5d49d546de6fab2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
/*************************************************************************/
/*  generic_6dof_joint_sw.cpp                                            */
/*************************************************************************/
/*                       This file is part of:                           */
/*                           GODOT ENGINE                                */
/*                    http://www.godotengine.org                         */
/*************************************************************************/
/* Copyright (c) 2007-2017 Juan Linietsky, Ariel Manzur.                 */
/* Copyright (c) 2014-2017 Godot Engine contributors (cf. AUTHORS.md)    */
/*                                                                       */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the       */
/* "Software"), to deal in the Software without restriction, including   */
/* without limitation the rights to use, copy, modify, merge, publish,   */
/* distribute, sublicense, and/or sell copies of the Software, and to    */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions:                                             */
/*                                                                       */
/* The above copyright notice and this permission notice shall be        */
/* included in all copies or substantial portions of the Software.       */
/*                                                                       */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,       */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF    */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY  */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,  */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE     */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.                */
/*************************************************************************/

/*
Adapted to Godot from the Bullet library.
*/

/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans  http://continuousphysics.com/Bullet/

This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/

/*
2007-09-09
Generic6DOFJointSW Refactored by Francisco Le?n
email: projectileman@yahoo.com
http://gimpact.sf.net
*/

#include "generic_6dof_joint_sw.h"

#define GENERIC_D6_DISABLE_WARMSTARTING 1

//////////////////////////// G6DOFRotationalLimitMotorSW ////////////////////////////////////

int G6DOFRotationalLimitMotorSW::testLimitValue(real_t test_value) {
	if (m_loLimit > m_hiLimit) {
		m_currentLimit = 0; //Free from violation
		return 0;
	}

	if (test_value < m_loLimit) {
		m_currentLimit = 1; //low limit violation
		m_currentLimitError = test_value - m_loLimit;
		return 1;
	} else if (test_value > m_hiLimit) {
		m_currentLimit = 2; //High limit violation
		m_currentLimitError = test_value - m_hiLimit;
		return 2;
	};

	m_currentLimit = 0; //Free from violation
	return 0;
}

real_t G6DOFRotationalLimitMotorSW::solveAngularLimits(
		real_t timeStep, Vector3 &axis, real_t jacDiagABInv,
		BodySW *body0, BodySW *body1) {
	if (needApplyTorques() == false) return 0.0f;

	real_t target_velocity = m_targetVelocity;
	real_t maxMotorForce = m_maxMotorForce;

	//current error correction
	if (m_currentLimit != 0) {
		target_velocity = -m_ERP * m_currentLimitError / (timeStep);
		maxMotorForce = m_maxLimitForce;
	}

	maxMotorForce *= timeStep;

	// current velocity difference
	Vector3 vel_diff = body0->get_angular_velocity();
	if (body1) {
		vel_diff -= body1->get_angular_velocity();
	}

	real_t rel_vel = axis.dot(vel_diff);

	// correction velocity
	real_t motor_relvel = m_limitSoftness * (target_velocity - m_damping * rel_vel);

	if (motor_relvel < CMP_EPSILON && motor_relvel > -CMP_EPSILON) {
		return 0.0f; //no need for applying force
	}

	// correction impulse
	real_t unclippedMotorImpulse = (1 + m_bounce) * motor_relvel * jacDiagABInv;

	// clip correction impulse
	real_t clippedMotorImpulse;

	///@todo: should clip against accumulated impulse
	if (unclippedMotorImpulse > 0.0f) {
		clippedMotorImpulse = unclippedMotorImpulse > maxMotorForce ? maxMotorForce : unclippedMotorImpulse;
	} else {
		clippedMotorImpulse = unclippedMotorImpulse < -maxMotorForce ? -maxMotorForce : unclippedMotorImpulse;
	}

	// sort with accumulated impulses
	real_t lo = real_t(-1e30);
	real_t hi = real_t(1e30);

	real_t oldaccumImpulse = m_accumulatedImpulse;
	real_t sum = oldaccumImpulse + clippedMotorImpulse;
	m_accumulatedImpulse = sum > hi ? real_t(0.) : sum < lo ? real_t(0.) : sum;

	clippedMotorImpulse = m_accumulatedImpulse - oldaccumImpulse;

	Vector3 motorImp = clippedMotorImpulse * axis;

	body0->apply_torque_impulse(motorImp);
	if (body1) body1->apply_torque_impulse(-motorImp);

	return clippedMotorImpulse;
}

//////////////////////////// End G6DOFRotationalLimitMotorSW ////////////////////////////////////

//////////////////////////// G6DOFTranslationalLimitMotorSW ////////////////////////////////////
real_t G6DOFTranslationalLimitMotorSW::solveLinearAxis(
		real_t timeStep,
		real_t jacDiagABInv,
		BodySW *body1, const Vector3 &pointInA,
		BodySW *body2, const Vector3 &pointInB,
		int limit_index,
		const Vector3 &axis_normal_on_a,
		const Vector3 &anchorPos) {

	///find relative velocity
	//    Vector3 rel_pos1 = pointInA - body1->get_transform().origin;
	//    Vector3 rel_pos2 = pointInB - body2->get_transform().origin;
	Vector3 rel_pos1 = anchorPos - body1->get_transform().origin;
	Vector3 rel_pos2 = anchorPos - body2->get_transform().origin;

	Vector3 vel1 = body1->get_velocity_in_local_point(rel_pos1);
	Vector3 vel2 = body2->get_velocity_in_local_point(rel_pos2);
	Vector3 vel = vel1 - vel2;

	real_t rel_vel = axis_normal_on_a.dot(vel);

	/// apply displacement correction

	//positional error (zeroth order error)
	real_t depth = -(pointInA - pointInB).dot(axis_normal_on_a);
	real_t lo = real_t(-1e30);
	real_t hi = real_t(1e30);

	real_t minLimit = m_lowerLimit[limit_index];
	real_t maxLimit = m_upperLimit[limit_index];

	//handle the limits
	if (minLimit < maxLimit) {
		{
			if (depth > maxLimit) {
				depth -= maxLimit;
				lo = real_t(0.);

			} else {
				if (depth < minLimit) {
					depth -= minLimit;
					hi = real_t(0.);
				} else {
					return 0.0f;
				}
			}
		}
	}

	real_t normalImpulse = m_limitSoftness[limit_index] * (m_restitution[limit_index] * depth / timeStep - m_damping[limit_index] * rel_vel) * jacDiagABInv;

	real_t oldNormalImpulse = m_accumulatedImpulse[limit_index];
	real_t sum = oldNormalImpulse + normalImpulse;
	m_accumulatedImpulse[limit_index] = sum > hi ? real_t(0.) : sum < lo ? real_t(0.) : sum;
	normalImpulse = m_accumulatedImpulse[limit_index] - oldNormalImpulse;

	Vector3 impulse_vector = axis_normal_on_a * normalImpulse;
	body1->apply_impulse(rel_pos1, impulse_vector);
	body2->apply_impulse(rel_pos2, -impulse_vector);
	return normalImpulse;
}

//////////////////////////// G6DOFTranslationalLimitMotorSW ////////////////////////////////////

Generic6DOFJointSW::Generic6DOFJointSW(BodySW *rbA, BodySW *rbB, const Transform &frameInA, const Transform &frameInB, bool useLinearReferenceFrameA)
	: JointSW(_arr, 2), m_frameInA(frameInA), m_frameInB(frameInB),
	  m_useLinearReferenceFrameA(useLinearReferenceFrameA) {
	A = rbA;
	B = rbB;
	A->add_constraint(this, 0);
	B->add_constraint(this, 1);
}

void Generic6DOFJointSW::calculateAngleInfo() {
	Basis relative_frame = m_calculatedTransformA.basis.inverse() * m_calculatedTransformB.basis;

	m_calculatedAxisAngleDiff = relative_frame.get_euler();

	// in euler angle mode we do not actually constrain the angular velocity
	// along the axes axis[0] and axis[2] (although we do use axis[1]) :
	//
	//    to get			constrain w2-w1 along		...not
	//    ------			---------------------		------
	//    d(angle[0])/dt = 0	ax[1] x ax[2]			ax[0]
	//    d(angle[1])/dt = 0	ax[1]
	//    d(angle[2])/dt = 0	ax[0] x ax[1]			ax[2]
	//
	// constraining w2-w1 along an axis 'a' means that a'*(w2-w1)=0.
	// to prove the result for angle[0], write the expression for angle[0] from
	// GetInfo1 then take the derivative. to prove this for angle[2] it is
	// easier to take the euler rate expression for d(angle[2])/dt with respect
	// to the components of w and set that to 0.

	Vector3 axis0 = m_calculatedTransformB.basis.get_axis(0);
	Vector3 axis2 = m_calculatedTransformA.basis.get_axis(2);

	m_calculatedAxis[1] = axis2.cross(axis0);
	m_calculatedAxis[0] = m_calculatedAxis[1].cross(axis2);
	m_calculatedAxis[2] = axis0.cross(m_calculatedAxis[1]);

	/*
	if(m_debugDrawer)
	{

		char buff[300];
		sprintf(buff,"\n X: %.2f ; Y: %.2f ; Z: %.2f ",
		m_calculatedAxisAngleDiff[0],
		m_calculatedAxisAngleDiff[1],
		m_calculatedAxisAngleDiff[2]);
		m_debugDrawer->reportErrorWarning(buff);
	}
	*/
}

void Generic6DOFJointSW::calculateTransforms() {
	m_calculatedTransformA = A->get_transform() * m_frameInA;
	m_calculatedTransformB = B->get_transform() * m_frameInB;

	calculateAngleInfo();
}

void Generic6DOFJointSW::buildLinearJacobian(
		JacobianEntrySW &jacLinear, const Vector3 &normalWorld,
		const Vector3 &pivotAInW, const Vector3 &pivotBInW) {
	memnew_placement(&jacLinear, JacobianEntrySW(
										 A->get_principal_inertia_axes().transposed(),
										 B->get_principal_inertia_axes().transposed(),
										 pivotAInW - A->get_transform().origin - A->get_center_of_mass(),
										 pivotBInW - B->get_transform().origin - B->get_center_of_mass(),
										 normalWorld,
										 A->get_inv_inertia(),
										 A->get_inv_mass(),
										 B->get_inv_inertia(),
										 B->get_inv_mass()));
}

void Generic6DOFJointSW::buildAngularJacobian(
		JacobianEntrySW &jacAngular, const Vector3 &jointAxisW) {
	memnew_placement(&jacAngular, JacobianEntrySW(jointAxisW,
										  A->get_principal_inertia_axes().transposed(),
										  B->get_principal_inertia_axes().transposed(),
										  A->get_inv_inertia(),
										  B->get_inv_inertia()));
}

bool Generic6DOFJointSW::testAngularLimitMotor(int axis_index) {
	real_t angle = m_calculatedAxisAngleDiff[axis_index];

	//test limits
	m_angularLimits[axis_index].testLimitValue(angle);
	return m_angularLimits[axis_index].needApplyTorques();
}

bool Generic6DOFJointSW::setup(real_t p_step) {

	// Clear accumulated impulses for the next simulation step
	m_linearLimits.m_accumulatedImpulse = Vector3(real_t(0.), real_t(0.), real_t(0.));
	int i;
	for (i = 0; i < 3; i++) {
		m_angularLimits[i].m_accumulatedImpulse = real_t(0.);
	}
	//calculates transform
	calculateTransforms();

	//  const Vector3& pivotAInW = m_calculatedTransformA.origin;
	//  const Vector3& pivotBInW = m_calculatedTransformB.origin;
	calcAnchorPos();
	Vector3 pivotAInW = m_AnchorPos;
	Vector3 pivotBInW = m_AnchorPos;

	// not used here
	//    Vector3 rel_pos1 = pivotAInW - A->get_transform().origin;
	//    Vector3 rel_pos2 = pivotBInW - B->get_transform().origin;

	Vector3 normalWorld;
	//linear part
	for (i = 0; i < 3; i++) {
		if (m_linearLimits.enable_limit[i] && m_linearLimits.isLimited(i)) {
			if (m_useLinearReferenceFrameA)
				normalWorld = m_calculatedTransformA.basis.get_axis(i);
			else
				normalWorld = m_calculatedTransformB.basis.get_axis(i);

			buildLinearJacobian(
					m_jacLinear[i], normalWorld,
					pivotAInW, pivotBInW);
		}
	}

	// angular part
	for (i = 0; i < 3; i++) {
		//calculates error angle
		if (m_angularLimits[i].m_enableLimit && testAngularLimitMotor(i)) {
			normalWorld = this->getAxis(i);
			// Create angular atom
			buildAngularJacobian(m_jacAng[i], normalWorld);
		}
	}

	return true;
}

void Generic6DOFJointSW::solve(real_t timeStep) {
	m_timeStep = timeStep;

	//calculateTransforms();

	int i;

	// linear

	Vector3 pointInA = m_calculatedTransformA.origin;
	Vector3 pointInB = m_calculatedTransformB.origin;

	real_t jacDiagABInv;
	Vector3 linear_axis;
	for (i = 0; i < 3; i++) {
		if (m_linearLimits.enable_limit[i] && m_linearLimits.isLimited(i)) {
			jacDiagABInv = real_t(1.) / m_jacLinear[i].getDiagonal();

			if (m_useLinearReferenceFrameA)
				linear_axis = m_calculatedTransformA.basis.get_axis(i);
			else
				linear_axis = m_calculatedTransformB.basis.get_axis(i);

			m_linearLimits.solveLinearAxis(
					m_timeStep,
					jacDiagABInv,
					A, pointInA,
					B, pointInB,
					i, linear_axis, m_AnchorPos);
		}
	}

	// angular
	Vector3 angular_axis;
	real_t angularJacDiagABInv;
	for (i = 0; i < 3; i++) {
		if (m_angularLimits[i].m_enableLimit && m_angularLimits[i].needApplyTorques()) {

			// get axis
			angular_axis = getAxis(i);

			angularJacDiagABInv = real_t(1.) / m_jacAng[i].getDiagonal();

			m_angularLimits[i].solveAngularLimits(m_timeStep, angular_axis, angularJacDiagABInv, A, B);
		}
	}
}

void Generic6DOFJointSW::updateRHS(real_t timeStep) {
	(void)timeStep;
}

Vector3 Generic6DOFJointSW::getAxis(int axis_index) const {
	return m_calculatedAxis[axis_index];
}

real_t Generic6DOFJointSW::getAngle(int axis_index) const {
	return m_calculatedAxisAngleDiff[axis_index];
}

void Generic6DOFJointSW::calcAnchorPos(void) {
	real_t imA = A->get_inv_mass();
	real_t imB = B->get_inv_mass();
	real_t weight;
	if (imB == real_t(0.0)) {
		weight = real_t(1.0);
	} else {
		weight = imA / (imA + imB);
	}
	const Vector3 &pA = m_calculatedTransformA.origin;
	const Vector3 &pB = m_calculatedTransformB.origin;
	m_AnchorPos = pA * weight + pB * (real_t(1.0) - weight);
	return;
} // Generic6DOFJointSW::calcAnchorPos()

void Generic6DOFJointSW::set_param(Vector3::Axis p_axis, PhysicsServer::G6DOFJointAxisParam p_param, real_t p_value) {

	ERR_FAIL_INDEX(p_axis, 3);
	switch (p_param) {
		case PhysicsServer::G6DOF_JOINT_LINEAR_LOWER_LIMIT: {

			m_linearLimits.m_lowerLimit[p_axis] = p_value;
		} break;
		case PhysicsServer::G6DOF_JOINT_LINEAR_UPPER_LIMIT: {

			m_linearLimits.m_upperLimit[p_axis] = p_value;

		} break;
		case PhysicsServer::G6DOF_JOINT_LINEAR_LIMIT_SOFTNESS: {

			m_linearLimits.m_limitSoftness[p_axis] = p_value;

		} break;
		case PhysicsServer::G6DOF_JOINT_LINEAR_RESTITUTION: {

			m_linearLimits.m_restitution[p_axis] = p_value;

		} break;
		case PhysicsServer::G6DOF_JOINT_LINEAR_DAMPING: {

			m_linearLimits.m_damping[p_axis] = p_value;

		} break;
		case PhysicsServer::G6DOF_JOINT_ANGULAR_LOWER_LIMIT: {

			m_angularLimits[p_axis].m_loLimit = p_value;

		} break;
		case PhysicsServer::G6DOF_JOINT_ANGULAR_UPPER_LIMIT: {

			m_angularLimits[p_axis].m_hiLimit = p_value;

		} break;
		case PhysicsServer::G6DOF_JOINT_ANGULAR_LIMIT_SOFTNESS: {

			m_angularLimits[p_axis].m_limitSoftness = p_value;

		} break;
		case PhysicsServer::G6DOF_JOINT_ANGULAR_DAMPING: {

			m_angularLimits[p_axis].m_damping = p_value;

		} break;
		case PhysicsServer::G6DOF_JOINT_ANGULAR_RESTITUTION: {

			m_angularLimits[p_axis].m_bounce = p_value;

		} break;
		case PhysicsServer::G6DOF_JOINT_ANGULAR_FORCE_LIMIT: {

			m_angularLimits[p_axis].m_maxLimitForce = p_value;

		} break;
		case PhysicsServer::G6DOF_JOINT_ANGULAR_ERP: {

			m_angularLimits[p_axis].m_ERP = p_value;

		} break;
		case PhysicsServer::G6DOF_JOINT_ANGULAR_MOTOR_TARGET_VELOCITY: {

			m_angularLimits[p_axis].m_targetVelocity = p_value;

		} break;
		case PhysicsServer::G6DOF_JOINT_ANGULAR_MOTOR_FORCE_LIMIT: {

			m_angularLimits[p_axis].m_maxLimitForce = p_value;

		} break;
	}
}

real_t Generic6DOFJointSW::get_param(Vector3::Axis p_axis, PhysicsServer::G6DOFJointAxisParam p_param) const {
	ERR_FAIL_INDEX_V(p_axis, 3, 0);
	switch (p_param) {
		case PhysicsServer::G6DOF_JOINT_LINEAR_LOWER_LIMIT: {

			return m_linearLimits.m_lowerLimit[p_axis];
		} break;
		case PhysicsServer::G6DOF_JOINT_LINEAR_UPPER_LIMIT: {

			return m_linearLimits.m_upperLimit[p_axis];

		} break;
		case PhysicsServer::G6DOF_JOINT_LINEAR_LIMIT_SOFTNESS: {

			return m_linearLimits.m_limitSoftness[p_axis];

		} break;
		case PhysicsServer::G6DOF_JOINT_LINEAR_RESTITUTION: {

			return m_linearLimits.m_restitution[p_axis];

		} break;
		case PhysicsServer::G6DOF_JOINT_LINEAR_DAMPING: {

			return m_linearLimits.m_damping[p_axis];

		} break;
		case PhysicsServer::G6DOF_JOINT_ANGULAR_LOWER_LIMIT: {

			return m_angularLimits[p_axis].m_loLimit;

		} break;
		case PhysicsServer::G6DOF_JOINT_ANGULAR_UPPER_LIMIT: {

			return m_angularLimits[p_axis].m_hiLimit;

		} break;
		case PhysicsServer::G6DOF_JOINT_ANGULAR_LIMIT_SOFTNESS: {

			return m_angularLimits[p_axis].m_limitSoftness;

		} break;
		case PhysicsServer::G6DOF_JOINT_ANGULAR_DAMPING: {

			return m_angularLimits[p_axis].m_damping;

		} break;
		case PhysicsServer::G6DOF_JOINT_ANGULAR_RESTITUTION: {

			return m_angularLimits[p_axis].m_bounce;

		} break;
		case PhysicsServer::G6DOF_JOINT_ANGULAR_FORCE_LIMIT: {

			return m_angularLimits[p_axis].m_maxLimitForce;

		} break;
		case PhysicsServer::G6DOF_JOINT_ANGULAR_ERP: {

			return m_angularLimits[p_axis].m_ERP;

		} break;
		case PhysicsServer::G6DOF_JOINT_ANGULAR_MOTOR_TARGET_VELOCITY: {

			return m_angularLimits[p_axis].m_targetVelocity;

		} break;
		case PhysicsServer::G6DOF_JOINT_ANGULAR_MOTOR_FORCE_LIMIT: {

			return m_angularLimits[p_axis].m_maxMotorForce;

		} break;
	}
	return 0;
}

void Generic6DOFJointSW::set_flag(Vector3::Axis p_axis, PhysicsServer::G6DOFJointAxisFlag p_flag, bool p_value) {

	ERR_FAIL_INDEX(p_axis, 3);

	switch (p_flag) {
		case PhysicsServer::G6DOF_JOINT_FLAG_ENABLE_LINEAR_LIMIT: {

			m_linearLimits.enable_limit[p_axis] = p_value;
		} break;
		case PhysicsServer::G6DOF_JOINT_FLAG_ENABLE_ANGULAR_LIMIT: {

			m_angularLimits[p_axis].m_enableLimit = p_value;
		} break;
		case PhysicsServer::G6DOF_JOINT_FLAG_ENABLE_MOTOR: {

			m_angularLimits[p_axis].m_enableMotor = p_value;
		} break;
	}
}
bool Generic6DOFJointSW::get_flag(Vector3::Axis p_axis, PhysicsServer::G6DOFJointAxisFlag p_flag) const {

	ERR_FAIL_INDEX_V(p_axis, 3, 0);
	switch (p_flag) {
		case PhysicsServer::G6DOF_JOINT_FLAG_ENABLE_LINEAR_LIMIT: {

			return m_linearLimits.enable_limit[p_axis];
		} break;
		case PhysicsServer::G6DOF_JOINT_FLAG_ENABLE_ANGULAR_LIMIT: {

			return m_angularLimits[p_axis].m_enableLimit;
		} break;
		case PhysicsServer::G6DOF_JOINT_FLAG_ENABLE_MOTOR: {

			return m_angularLimits[p_axis].m_enableMotor;
		} break;
	}

	return 0;
}