1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
|
/*************************************************************************/
/* collision_solver_sw.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2018 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2018 Godot Engine contributors (cf. AUTHORS.md) */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#include "collision_solver_sw.h"
#include "collision_solver_sat.h"
#include "gjk_epa.h"
#define collision_solver sat_calculate_penetration
//#define collision_solver gjk_epa_calculate_penetration
bool CollisionSolverSW::solve_static_plane(const ShapeSW *p_shape_A, const Transform &p_transform_A, const ShapeSW *p_shape_B, const Transform &p_transform_B, CallbackResult p_result_callback, void *p_userdata, bool p_swap_result) {
const PlaneShapeSW *plane = static_cast<const PlaneShapeSW *>(p_shape_A);
if (p_shape_B->get_type() == PhysicsServer::SHAPE_PLANE)
return false;
Plane p = p_transform_A.xform(plane->get_plane());
static const int max_supports = 16;
Vector3 supports[max_supports];
int support_count;
p_shape_B->get_supports(p_transform_B.basis.xform_inv(-p.normal).normalized(), max_supports, supports, support_count);
bool found = false;
for (int i = 0; i < support_count; i++) {
supports[i] = p_transform_B.xform(supports[i]);
if (p.distance_to(supports[i]) >= 0)
continue;
found = true;
Vector3 support_A = p.project(supports[i]);
if (p_result_callback) {
if (p_swap_result)
p_result_callback(supports[i], support_A, p_userdata);
else
p_result_callback(support_A, supports[i], p_userdata);
}
}
return found;
}
bool CollisionSolverSW::solve_ray(const ShapeSW *p_shape_A, const Transform &p_transform_A, const ShapeSW *p_shape_B, const Transform &p_transform_B, CallbackResult p_result_callback, void *p_userdata, bool p_swap_result) {
const RayShapeSW *ray = static_cast<const RayShapeSW *>(p_shape_A);
Vector3 from = p_transform_A.origin;
Vector3 to = from + p_transform_A.basis.get_axis(2) * ray->get_length();
Vector3 support_A = to;
Transform ai = p_transform_B.affine_inverse();
from = ai.xform(from);
to = ai.xform(to);
Vector3 p, n;
if (!p_shape_B->intersect_segment(from, to, p, n))
return false;
Vector3 support_B = p_transform_B.xform(p);
if (ray->get_slips_on_slope()) {
Vector3 global_n = ai.basis.xform_inv(n).normalized();
support_B = support_A + (support_B - support_A).length() * global_n;
}
if (p_result_callback) {
if (p_swap_result)
p_result_callback(support_B, support_A, p_userdata);
else
p_result_callback(support_A, support_B, p_userdata);
}
return true;
}
struct _ConcaveCollisionInfo {
const Transform *transform_A;
const ShapeSW *shape_A;
const Transform *transform_B;
CollisionSolverSW::CallbackResult result_callback;
void *userdata;
bool swap_result;
bool collided;
int aabb_tests;
int collisions;
bool tested;
real_t margin_A;
real_t margin_B;
Vector3 close_A, close_B;
};
void CollisionSolverSW::concave_callback(void *p_userdata, ShapeSW *p_convex) {
_ConcaveCollisionInfo &cinfo = *(_ConcaveCollisionInfo *)(p_userdata);
cinfo.aabb_tests++;
bool collided = collision_solver(cinfo.shape_A, *cinfo.transform_A, p_convex, *cinfo.transform_B, cinfo.result_callback, cinfo.userdata, cinfo.swap_result, NULL, cinfo.margin_A, cinfo.margin_B);
if (!collided)
return;
cinfo.collided = true;
cinfo.collisions++;
}
bool CollisionSolverSW::solve_concave(const ShapeSW *p_shape_A, const Transform &p_transform_A, const ShapeSW *p_shape_B, const Transform &p_transform_B, CallbackResult p_result_callback, void *p_userdata, bool p_swap_result, real_t p_margin_A, real_t p_margin_B) {
const ConcaveShapeSW *concave_B = static_cast<const ConcaveShapeSW *>(p_shape_B);
_ConcaveCollisionInfo cinfo;
cinfo.transform_A = &p_transform_A;
cinfo.shape_A = p_shape_A;
cinfo.transform_B = &p_transform_B;
cinfo.result_callback = p_result_callback;
cinfo.userdata = p_userdata;
cinfo.swap_result = p_swap_result;
cinfo.collided = false;
cinfo.collisions = 0;
cinfo.margin_A = p_margin_A;
cinfo.margin_B = p_margin_B;
cinfo.aabb_tests = 0;
Transform rel_transform = p_transform_A;
rel_transform.origin -= p_transform_B.origin;
//quickly compute a local AABB
AABB local_aabb;
for (int i = 0; i < 3; i++) {
Vector3 axis(p_transform_B.basis.get_axis(i));
real_t axis_scale = 1.0 / axis.length();
axis *= axis_scale;
real_t smin, smax;
p_shape_A->project_range(axis, rel_transform, smin, smax);
smin -= p_margin_A;
smax += p_margin_A;
smin *= axis_scale;
smax *= axis_scale;
local_aabb.position[i] = smin;
local_aabb.size[i] = smax - smin;
}
concave_B->cull(local_aabb, concave_callback, &cinfo);
return cinfo.collided;
}
bool CollisionSolverSW::solve_static(const ShapeSW *p_shape_A, const Transform &p_transform_A, const ShapeSW *p_shape_B, const Transform &p_transform_B, CallbackResult p_result_callback, void *p_userdata, Vector3 *r_sep_axis, real_t p_margin_A, real_t p_margin_B) {
PhysicsServer::ShapeType type_A = p_shape_A->get_type();
PhysicsServer::ShapeType type_B = p_shape_B->get_type();
bool concave_A = p_shape_A->is_concave();
bool concave_B = p_shape_B->is_concave();
bool swap = false;
if (type_A > type_B) {
SWAP(type_A, type_B);
SWAP(concave_A, concave_B);
swap = true;
}
if (type_A == PhysicsServer::SHAPE_PLANE) {
if (type_B == PhysicsServer::SHAPE_PLANE)
return false;
if (type_B == PhysicsServer::SHAPE_RAY) {
return false;
}
if (swap) {
return solve_static_plane(p_shape_B, p_transform_B, p_shape_A, p_transform_A, p_result_callback, p_userdata, true);
} else {
return solve_static_plane(p_shape_A, p_transform_A, p_shape_B, p_transform_B, p_result_callback, p_userdata, false);
}
} else if (type_A == PhysicsServer::SHAPE_RAY) {
if (type_B == PhysicsServer::SHAPE_RAY)
return false;
if (swap) {
return solve_ray(p_shape_B, p_transform_B, p_shape_A, p_transform_A, p_result_callback, p_userdata, true);
} else {
return solve_ray(p_shape_A, p_transform_A, p_shape_B, p_transform_B, p_result_callback, p_userdata, false);
}
} else if (concave_B) {
if (concave_A)
return false;
if (!swap)
return solve_concave(p_shape_A, p_transform_A, p_shape_B, p_transform_B, p_result_callback, p_userdata, false, p_margin_A, p_margin_B);
else
return solve_concave(p_shape_B, p_transform_B, p_shape_A, p_transform_A, p_result_callback, p_userdata, true, p_margin_A, p_margin_B);
} else {
return collision_solver(p_shape_A, p_transform_A, p_shape_B, p_transform_B, p_result_callback, p_userdata, false, r_sep_axis, p_margin_A, p_margin_B);
}
return false;
}
void CollisionSolverSW::concave_distance_callback(void *p_userdata, ShapeSW *p_convex) {
_ConcaveCollisionInfo &cinfo = *(_ConcaveCollisionInfo *)(p_userdata);
cinfo.aabb_tests++;
if (cinfo.collided)
return;
Vector3 close_A, close_B;
cinfo.collided = !gjk_epa_calculate_distance(cinfo.shape_A, *cinfo.transform_A, p_convex, *cinfo.transform_B, close_A, close_B);
if (cinfo.collided)
return;
if (!cinfo.tested || close_A.distance_squared_to(close_B) < cinfo.close_A.distance_squared_to(cinfo.close_B)) {
cinfo.close_A = close_A;
cinfo.close_B = close_B;
cinfo.tested = true;
}
cinfo.collisions++;
}
bool CollisionSolverSW::solve_distance_plane(const ShapeSW *p_shape_A, const Transform &p_transform_A, const ShapeSW *p_shape_B, const Transform &p_transform_B, Vector3 &r_point_A, Vector3 &r_point_B) {
const PlaneShapeSW *plane = static_cast<const PlaneShapeSW *>(p_shape_A);
if (p_shape_B->get_type() == PhysicsServer::SHAPE_PLANE)
return false;
Plane p = p_transform_A.xform(plane->get_plane());
static const int max_supports = 16;
Vector3 supports[max_supports];
int support_count;
p_shape_B->get_supports(p_transform_B.basis.xform_inv(-p.normal).normalized(), max_supports, supports, support_count);
bool collided = false;
Vector3 closest;
real_t closest_d = 0;
for (int i = 0; i < support_count; i++) {
supports[i] = p_transform_B.xform(supports[i]);
real_t d = p.distance_to(supports[i]);
if (i == 0 || d < closest_d) {
closest = supports[i];
closest_d = d;
if (d <= 0)
collided = true;
}
}
r_point_A = p.project(closest);
r_point_B = closest;
return collided;
}
bool CollisionSolverSW::solve_distance(const ShapeSW *p_shape_A, const Transform &p_transform_A, const ShapeSW *p_shape_B, const Transform &p_transform_B, Vector3 &r_point_A, Vector3 &r_point_B, const AABB &p_concave_hint, Vector3 *r_sep_axis) {
if (p_shape_A->is_concave())
return false;
if (p_shape_B->get_type() == PhysicsServer::SHAPE_PLANE) {
Vector3 a, b;
bool col = solve_distance_plane(p_shape_B, p_transform_B, p_shape_A, p_transform_A, a, b);
r_point_A = b;
r_point_B = a;
return !col;
} else if (p_shape_B->is_concave()) {
if (p_shape_A->is_concave())
return false;
const ConcaveShapeSW *concave_B = static_cast<const ConcaveShapeSW *>(p_shape_B);
_ConcaveCollisionInfo cinfo;
cinfo.transform_A = &p_transform_A;
cinfo.shape_A = p_shape_A;
cinfo.transform_B = &p_transform_B;
cinfo.result_callback = NULL;
cinfo.userdata = NULL;
cinfo.swap_result = false;
cinfo.collided = false;
cinfo.collisions = 0;
cinfo.aabb_tests = 0;
cinfo.tested = false;
Transform rel_transform = p_transform_A;
rel_transform.origin -= p_transform_B.origin;
//quickly compute a local AABB
bool use_cc_hint = p_concave_hint != AABB();
AABB cc_hint_aabb;
if (use_cc_hint) {
cc_hint_aabb = p_concave_hint;
cc_hint_aabb.position -= p_transform_B.origin;
}
AABB local_aabb;
for (int i = 0; i < 3; i++) {
Vector3 axis(p_transform_B.basis.get_axis(i));
real_t axis_scale = ((real_t)1.0) / axis.length();
axis *= axis_scale;
real_t smin, smax;
if (use_cc_hint) {
cc_hint_aabb.project_range_in_plane(Plane(axis, 0), smin, smax);
} else {
p_shape_A->project_range(axis, rel_transform, smin, smax);
}
smin *= axis_scale;
smax *= axis_scale;
local_aabb.position[i] = smin;
local_aabb.size[i] = smax - smin;
}
concave_B->cull(local_aabb, concave_distance_callback, &cinfo);
if (!cinfo.collided) {
r_point_A = cinfo.close_A;
r_point_B = cinfo.close_B;
}
return !cinfo.collided;
} else {
return gjk_epa_calculate_distance(p_shape_A, p_transform_A, p_shape_B, p_transform_B, r_point_A, r_point_B); //should pass sepaxis..
}
return false;
}
|