summaryrefslogtreecommitdiff
path: root/servers/audio/effects/audio_effect_spectrum_analyzer.cpp
blob: 05cba416be17a8ab8f6cc27dcf901087c0439185 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
#include "audio_effect_spectrum_analyzer.h"
#include "servers/audio_server.h"

static void smbFft(float *fftBuffer, long fftFrameSize, long sign)
/*
	FFT routine, (C)1996 S.M.Bernsee. Sign = -1 is FFT, 1 is iFFT (inverse)
	Fills fftBuffer[0...2*fftFrameSize-1] with the Fourier transform of the
	time domain data in fftBuffer[0...2*fftFrameSize-1]. The FFT array takes
	and returns the cosine and sine parts in an interleaved manner, ie.
	fftBuffer[0] = cosPart[0], fftBuffer[1] = sinPart[0], asf. fftFrameSize
	must be a power of 2. It expects a complex input signal (see footnote 2),
	ie. when working with 'common' audio signals our input signal has to be
	passed as {in[0],0.,in[1],0.,in[2],0.,...} asf. In that case, the transform
	of the frequencies of interest is in fftBuffer[0...fftFrameSize].
*/
{
	float wr, wi, arg, *p1, *p2, temp;
	float tr, ti, ur, ui, *p1r, *p1i, *p2r, *p2i;
	long i, bitm, j, le, le2, k;

	for (i = 2; i < 2 * fftFrameSize - 2; i += 2) {
		for (bitm = 2, j = 0; bitm < 2 * fftFrameSize; bitm <<= 1) {
			if (i & bitm) j++;
			j <<= 1;
		}
		if (i < j) {
			p1 = fftBuffer + i;
			p2 = fftBuffer + j;
			temp = *p1;
			*(p1++) = *p2;
			*(p2++) = temp;
			temp = *p1;
			*p1 = *p2;
			*p2 = temp;
		}
	}
	for (k = 0, le = 2; k < (long)(log((double)fftFrameSize) / log(2.) + .5); k++) {
		le <<= 1;
		le2 = le >> 1;
		ur = 1.0;
		ui = 0.0;
		arg = Math_PI / (le2 >> 1);
		wr = cos(arg);
		wi = sign * sin(arg);
		for (j = 0; j < le2; j += 2) {
			p1r = fftBuffer + j;
			p1i = p1r + 1;
			p2r = p1r + le2;
			p2i = p2r + 1;
			for (i = j; i < 2 * fftFrameSize; i += le) {
				tr = *p2r * ur - *p2i * ui;
				ti = *p2r * ui + *p2i * ur;
				*p2r = *p1r - tr;
				*p2i = *p1i - ti;
				*p1r += tr;
				*p1i += ti;
				p1r += le;
				p1i += le;
				p2r += le;
				p2i += le;
			}
			tr = ur * wr - ui * wi;
			ui = ur * wi + ui * wr;
			ur = tr;
		}
	}
}
void AudioEffectSpectrumAnalyzerInstance::process(const AudioFrame *p_src_frames, AudioFrame *p_dst_frames, int p_frame_count) {

	uint64_t time = OS::get_singleton()->get_ticks_usec();

	//copy everything over first, since this only really does capture
	for (int i = 0; i < p_frame_count; i++) {
		p_dst_frames[i] = p_src_frames[i];
	}

	//capture spectrum
	while (p_frame_count) {
		int to_fill = fft_size * 2 - temporal_fft_pos;
		to_fill = MIN(to_fill, p_frame_count);

		float *fftw = temporal_fft.ptrw();
		for (int i = 0; i < to_fill; i++) { //left and right buffers
			fftw[(i + temporal_fft_pos) * 2] = p_src_frames[i].l;
			fftw[(i + temporal_fft_pos) * 2 + 1] = 0;
			fftw[(i + temporal_fft_pos + fft_size * 2) * 2] = p_src_frames[i].r;
			fftw[(i + temporal_fft_pos + fft_size * 2) * 2 + 1] = 0;
		}

		p_src_frames += to_fill;
		temporal_fft_pos += to_fill;
		p_frame_count -= to_fill;

		if (temporal_fft_pos == fft_size * 2) {
			//time to do a FFT
			smbFft(fftw, fft_size * 2, -1);
			smbFft(fftw + fft_size * 4, fft_size * 2, -1);
			int next = (fft_pos + 1) % fft_count;

			AudioFrame *hw = (AudioFrame *)fft_history[next].ptr(); //do not use write, avoid cow

			for (int i = 0; i < fft_size; i++) {
				//abs(vec)/fft_size normalizes each frequency
				float window = 1.0; //-.5 * Math::cos(2. * Math_PI * (double)i / (double)fft_size) + .5;
				hw[i].l = window * Vector2(fftw[i * 2], fftw[i * 2 + 1]).length() / float(fft_size);
				hw[i].r = window * Vector2(fftw[fft_size * 4 + i * 2], fftw[fft_size * 4 + i * 2 + 1]).length() / float(fft_size);
			}

			fft_pos = next; //swap
			temporal_fft_pos = 0;
		}
	}

	//determine time of capture
	double remainer_sec = (temporal_fft_pos / mix_rate); //subtract remainder from mix time
	last_fft_time = time - uint64_t(remainer_sec * 1000000.0);
}

void AudioEffectSpectrumAnalyzerInstance::_bind_methods() {

	ClassDB::bind_method(D_METHOD("get_magnitude_for_frequency_range", "from_hz", "to_hz", "mode"), &AudioEffectSpectrumAnalyzerInstance::get_magnitude_for_frequency_range, DEFVAL(MAGNITUDE_MAX));
	BIND_ENUM_CONSTANT(MAGNITUDE_AVERAGE);
	BIND_ENUM_CONSTANT(MAGNITUDE_MAX);
}

Vector2 AudioEffectSpectrumAnalyzerInstance::get_magnitude_for_frequency_range(float p_begin, float p_end, MagnitudeMode p_mode) const {

	if (last_fft_time == 0) {
		return Vector2();
	}
	uint64_t time = OS::get_singleton()->get_ticks_usec();
	float diff = double(time - last_fft_time) / 1000000.0 + base->get_tap_back_pos();
	diff -= AudioServer::get_singleton()->get_output_latency();
	float fft_time_size = float(fft_size) / mix_rate;

	int fft_index = fft_pos;

	while (diff > fft_time_size) {
		diff -= fft_time_size;
		fft_index -= 1;
		if (fft_index < 0) {
			fft_index = fft_count - 1;
		}
	}

	int begin_pos = p_begin * fft_size / (mix_rate * 0.5);
	int end_pos = p_end * fft_size / (mix_rate * 0.5);

	begin_pos = CLAMP(begin_pos, 0, fft_size - 1);
	end_pos = CLAMP(end_pos, 0, fft_size - 1);

	if (begin_pos > end_pos) {
		SWAP(begin_pos, end_pos);
	}
	const AudioFrame *r = fft_history[fft_index].ptr();

	if (p_mode == MAGNITUDE_AVERAGE) {
		Vector2 avg;

		for (int i = begin_pos; i <= end_pos; i++) {
			avg += Vector2(r[i]);
		}

		avg /= float(end_pos - begin_pos + 1);

		return avg;
	} else {

		Vector2 max;

		for (int i = begin_pos; i <= end_pos; i++) {
			max.x = MAX(max.x, r[i].l);
			max.y = MAX(max.x, r[i].r);
		}

		return max;
	}
}

Ref<AudioEffectInstance> AudioEffectSpectrumAnalyzer::instance() {

	Ref<AudioEffectSpectrumAnalyzerInstance> ins;
	ins.instance();
	ins->base = Ref<AudioEffectSpectrumAnalyzer>(this);
	static const int fft_sizes[FFT_SIZE_MAX] = { 256, 512, 1024, 2048, 4096 };
	ins->fft_size = fft_sizes[fft_size];
	ins->mix_rate = AudioServer::get_singleton()->get_mix_rate();
	ins->fft_count = (buffer_length / (float(ins->fft_size) / ins->mix_rate)) + 1;
	ins->fft_pos = 0;
	ins->last_fft_time = 0;
	ins->fft_history.resize(ins->fft_count);
	ins->temporal_fft.resize(ins->fft_size * 8); //x2 stereo, x2 amount of samples for freqs, x2 for input
	ins->temporal_fft_pos = 0;
	for (int i = 0; i < ins->fft_count; i++) {
		ins->fft_history.write[i].resize(ins->fft_size); //only magnitude matters
		for (int j = 0; j < ins->fft_size; j++) {
			ins->fft_history.write[i].write[j] = AudioFrame(0, 0);
		}
	}
	return ins;
}

void AudioEffectSpectrumAnalyzer::set_buffer_length(float p_volume) {
	buffer_length = p_volume;
}

float AudioEffectSpectrumAnalyzer::get_buffer_length() const {

	return buffer_length;
}

void AudioEffectSpectrumAnalyzer::set_tap_back_pos(float p_seconds) {
	tapback_pos = p_seconds;
}

float AudioEffectSpectrumAnalyzer::get_tap_back_pos() const {
	return tapback_pos;
}

void AudioEffectSpectrumAnalyzer::set_fft_size(FFT_Size p_fft_size) {
	ERR_FAIL_INDEX(p_fft_size, FFT_SIZE_MAX);
	fft_size = p_fft_size;
}

AudioEffectSpectrumAnalyzer::FFT_Size AudioEffectSpectrumAnalyzer::get_fft_size() const {
	return fft_size;
}

void AudioEffectSpectrumAnalyzer::_bind_methods() {

	ClassDB::bind_method(D_METHOD("set_buffer_length", "seconds"), &AudioEffectSpectrumAnalyzer::set_buffer_length);
	ClassDB::bind_method(D_METHOD("get_buffer_length"), &AudioEffectSpectrumAnalyzer::get_buffer_length);

	ClassDB::bind_method(D_METHOD("set_tap_back_pos", "seconds"), &AudioEffectSpectrumAnalyzer::set_tap_back_pos);
	ClassDB::bind_method(D_METHOD("get_tap_back_pos"), &AudioEffectSpectrumAnalyzer::get_tap_back_pos);

	ClassDB::bind_method(D_METHOD("set_fft_size", "size"), &AudioEffectSpectrumAnalyzer::set_fft_size);
	ClassDB::bind_method(D_METHOD("get_fft_size"), &AudioEffectSpectrumAnalyzer::get_fft_size);

	ADD_PROPERTY(PropertyInfo(Variant::REAL, "buffer_length", PROPERTY_HINT_RANGE, "0.1,4,0.1"), "set_buffer_length", "get_buffer_length");
	ADD_PROPERTY(PropertyInfo(Variant::REAL, "tap_back_pos", PROPERTY_HINT_RANGE, "0.1,4,0.1"), "set_tap_back_pos", "get_tap_back_pos");
	ADD_PROPERTY(PropertyInfo(Variant::INT, "fft_size", PROPERTY_HINT_ENUM, "256,512,1024,2048,4096"), "set_fft_size", "get_fft_size");

	BIND_ENUM_CONSTANT(FFT_SIZE_256);
	BIND_ENUM_CONSTANT(FFT_SIZE_512);
	BIND_ENUM_CONSTANT(FFT_SIZE_1024);
	BIND_ENUM_CONSTANT(FFT_SIZE_2048);
	BIND_ENUM_CONSTANT(FFT_SIZE_4096);
	BIND_ENUM_CONSTANT(FFT_SIZE_MAX);
}

AudioEffectSpectrumAnalyzer::AudioEffectSpectrumAnalyzer() {
	buffer_length = 2;
	tapback_pos = 0.01;
	fft_size = FFT_SIZE_1024;
}