summaryrefslogtreecommitdiff
path: root/scene/resources/importer_mesh.cpp
blob: a27da11f8d9ef7332705765b921b0da3db4607fa (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
/*************************************************************************/
/*  importer_mesh.cpp                                                    */
/*************************************************************************/
/*                       This file is part of:                           */
/*                           GODOT ENGINE                                */
/*                      https://godotengine.org                          */
/*************************************************************************/
/* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur.                 */
/* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md).   */
/*                                                                       */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the       */
/* "Software"), to deal in the Software without restriction, including   */
/* without limitation the rights to use, copy, modify, merge, publish,   */
/* distribute, sublicense, and/or sell copies of the Software, and to    */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions:                                             */
/*                                                                       */
/* The above copyright notice and this permission notice shall be        */
/* included in all copies or substantial portions of the Software.       */
/*                                                                       */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,       */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF    */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY  */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,  */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE     */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.                */
/*************************************************************************/

#include "importer_mesh.h"

#include "core/math/random_pcg.h"
#include "core/math/static_raycaster.h"
#include "scene/resources/surface_tool.h"

#include <cstdint>

void ImporterMesh::Surface::split_normals(const LocalVector<int> &p_indices, const LocalVector<Vector3> &p_normals) {
	_split_normals(arrays, p_indices, p_normals);

	for (BlendShape &blend_shape : blend_shape_data) {
		_split_normals(blend_shape.arrays, p_indices, p_normals);
	}
}

void ImporterMesh::Surface::_split_normals(Array &r_arrays, const LocalVector<int> &p_indices, const LocalVector<Vector3> &p_normals) {
	ERR_FAIL_COND(r_arrays.size() != RS::ARRAY_MAX);

	const PackedVector3Array &vertices = r_arrays[RS::ARRAY_VERTEX];
	int current_vertex_count = vertices.size();
	int new_vertex_count = p_indices.size();
	int final_vertex_count = current_vertex_count + new_vertex_count;
	const int *indices_ptr = p_indices.ptr();

	for (int i = 0; i < r_arrays.size(); i++) {
		if (i == RS::ARRAY_INDEX) {
			continue;
		}

		if (r_arrays[i].get_type() == Variant::NIL) {
			continue;
		}

		switch (r_arrays[i].get_type()) {
			case Variant::PACKED_VECTOR3_ARRAY: {
				PackedVector3Array data = r_arrays[i];
				data.resize(final_vertex_count);
				Vector3 *data_ptr = data.ptrw();
				if (i == RS::ARRAY_NORMAL) {
					const Vector3 *normals_ptr = p_normals.ptr();
					memcpy(&data_ptr[current_vertex_count], normals_ptr, sizeof(Vector3) * new_vertex_count);
				} else {
					for (int j = 0; j < new_vertex_count; j++) {
						data_ptr[current_vertex_count + j] = data_ptr[indices_ptr[j]];
					}
				}
				r_arrays[i] = data;
			} break;
			case Variant::PACKED_VECTOR2_ARRAY: {
				PackedVector2Array data = r_arrays[i];
				data.resize(final_vertex_count);
				Vector2 *data_ptr = data.ptrw();
				for (int j = 0; j < new_vertex_count; j++) {
					data_ptr[current_vertex_count + j] = data_ptr[indices_ptr[j]];
				}
				r_arrays[i] = data;
			} break;
			case Variant::PACKED_FLOAT32_ARRAY: {
				PackedFloat32Array data = r_arrays[i];
				int elements = data.size() / current_vertex_count;
				data.resize(final_vertex_count * elements);
				float *data_ptr = data.ptrw();
				for (int j = 0; j < new_vertex_count; j++) {
					memcpy(&data_ptr[(current_vertex_count + j) * elements], &data_ptr[indices_ptr[j] * elements], sizeof(float) * elements);
				}
				r_arrays[i] = data;
			} break;
			case Variant::PACKED_INT32_ARRAY: {
				PackedInt32Array data = r_arrays[i];
				int elements = data.size() / current_vertex_count;
				data.resize(final_vertex_count * elements);
				int32_t *data_ptr = data.ptrw();
				for (int j = 0; j < new_vertex_count; j++) {
					memcpy(&data_ptr[(current_vertex_count + j) * elements], &data_ptr[indices_ptr[j] * elements], sizeof(int32_t) * elements);
				}
				r_arrays[i] = data;
			} break;
			case Variant::PACKED_BYTE_ARRAY: {
				PackedByteArray data = r_arrays[i];
				int elements = data.size() / current_vertex_count;
				data.resize(final_vertex_count * elements);
				uint8_t *data_ptr = data.ptrw();
				for (int j = 0; j < new_vertex_count; j++) {
					memcpy(&data_ptr[(current_vertex_count + j) * elements], &data_ptr[indices_ptr[j] * elements], sizeof(uint8_t) * elements);
				}
				r_arrays[i] = data;
			} break;
			case Variant::PACKED_COLOR_ARRAY: {
				PackedColorArray data = r_arrays[i];
				data.resize(final_vertex_count);
				Color *data_ptr = data.ptrw();
				for (int j = 0; j < new_vertex_count; j++) {
					data_ptr[current_vertex_count + j] = data_ptr[indices_ptr[j]];
				}
				r_arrays[i] = data;
			} break;
			default: {
				ERR_FAIL_MSG("Unhandled array type.");
			} break;
		}
	}
}

void ImporterMesh::add_blend_shape(const String &p_name) {
	ERR_FAIL_COND(surfaces.size() > 0);
	blend_shapes.push_back(p_name);
}

int ImporterMesh::get_blend_shape_count() const {
	return blend_shapes.size();
}

String ImporterMesh::get_blend_shape_name(int p_blend_shape) const {
	ERR_FAIL_INDEX_V(p_blend_shape, blend_shapes.size(), String());
	return blend_shapes[p_blend_shape];
}

void ImporterMesh::set_blend_shape_mode(Mesh::BlendShapeMode p_blend_shape_mode) {
	blend_shape_mode = p_blend_shape_mode;
}

Mesh::BlendShapeMode ImporterMesh::get_blend_shape_mode() const {
	return blend_shape_mode;
}

void ImporterMesh::add_surface(Mesh::PrimitiveType p_primitive, const Array &p_arrays, const Array &p_blend_shapes, const Dictionary &p_lods, const Ref<Material> &p_material, const String &p_name, const uint32_t p_flags) {
	ERR_FAIL_COND(p_blend_shapes.size() != blend_shapes.size());
	ERR_FAIL_COND(p_arrays.size() != Mesh::ARRAY_MAX);
	Surface s;
	s.primitive = p_primitive;
	s.arrays = p_arrays;
	s.name = p_name;
	s.flags = p_flags;

	Vector<Vector3> vertex_array = p_arrays[Mesh::ARRAY_VERTEX];
	int vertex_count = vertex_array.size();
	ERR_FAIL_COND(vertex_count == 0);

	for (int i = 0; i < blend_shapes.size(); i++) {
		Array bsdata = p_blend_shapes[i];
		ERR_FAIL_COND(bsdata.size() != Mesh::ARRAY_MAX);
		Vector<Vector3> vertex_data = bsdata[Mesh::ARRAY_VERTEX];
		ERR_FAIL_COND(vertex_data.size() != vertex_count);
		Surface::BlendShape bs;
		bs.arrays = bsdata;
		s.blend_shape_data.push_back(bs);
	}

	List<Variant> lods;
	p_lods.get_key_list(&lods);
	for (const Variant &E : lods) {
		ERR_CONTINUE(!E.is_num());
		Surface::LOD lod;
		lod.distance = E;
		lod.indices = p_lods[E];
		ERR_CONTINUE(lod.indices.size() == 0);
		s.lods.push_back(lod);
	}

	s.material = p_material;

	surfaces.push_back(s);
	mesh.unref();
}

int ImporterMesh::get_surface_count() const {
	return surfaces.size();
}

Mesh::PrimitiveType ImporterMesh::get_surface_primitive_type(int p_surface) {
	ERR_FAIL_INDEX_V(p_surface, surfaces.size(), Mesh::PRIMITIVE_MAX);
	return surfaces[p_surface].primitive;
}
Array ImporterMesh::get_surface_arrays(int p_surface) const {
	ERR_FAIL_INDEX_V(p_surface, surfaces.size(), Array());
	return surfaces[p_surface].arrays;
}
String ImporterMesh::get_surface_name(int p_surface) const {
	ERR_FAIL_INDEX_V(p_surface, surfaces.size(), String());
	return surfaces[p_surface].name;
}
void ImporterMesh::set_surface_name(int p_surface, const String &p_name) {
	ERR_FAIL_INDEX(p_surface, surfaces.size());
	surfaces.write[p_surface].name = p_name;
	mesh.unref();
}

Array ImporterMesh::get_surface_blend_shape_arrays(int p_surface, int p_blend_shape) const {
	ERR_FAIL_INDEX_V(p_surface, surfaces.size(), Array());
	ERR_FAIL_INDEX_V(p_blend_shape, surfaces[p_surface].blend_shape_data.size(), Array());
	return surfaces[p_surface].blend_shape_data[p_blend_shape].arrays;
}
int ImporterMesh::get_surface_lod_count(int p_surface) const {
	ERR_FAIL_INDEX_V(p_surface, surfaces.size(), 0);
	return surfaces[p_surface].lods.size();
}
Vector<int> ImporterMesh::get_surface_lod_indices(int p_surface, int p_lod) const {
	ERR_FAIL_INDEX_V(p_surface, surfaces.size(), Vector<int>());
	ERR_FAIL_INDEX_V(p_lod, surfaces[p_surface].lods.size(), Vector<int>());

	return surfaces[p_surface].lods[p_lod].indices;
}

float ImporterMesh::get_surface_lod_size(int p_surface, int p_lod) const {
	ERR_FAIL_INDEX_V(p_surface, surfaces.size(), 0);
	ERR_FAIL_INDEX_V(p_lod, surfaces[p_surface].lods.size(), 0);
	return surfaces[p_surface].lods[p_lod].distance;
}

uint32_t ImporterMesh::get_surface_format(int p_surface) const {
	ERR_FAIL_INDEX_V(p_surface, surfaces.size(), 0);
	return surfaces[p_surface].flags;
}

Ref<Material> ImporterMesh::get_surface_material(int p_surface) const {
	ERR_FAIL_INDEX_V(p_surface, surfaces.size(), Ref<Material>());
	return surfaces[p_surface].material;
}

void ImporterMesh::set_surface_material(int p_surface, const Ref<Material> &p_material) {
	ERR_FAIL_INDEX(p_surface, surfaces.size());
	surfaces.write[p_surface].material = p_material;
	mesh.unref();
}

void ImporterMesh::generate_lods(float p_normal_merge_angle, float p_normal_split_angle) {
	if (!SurfaceTool::simplify_scale_func) {
		return;
	}
	if (!SurfaceTool::simplify_with_attrib_func) {
		return;
	}
	if (!SurfaceTool::optimize_vertex_cache_func) {
		return;
	}

	for (int i = 0; i < surfaces.size(); i++) {
		if (surfaces[i].primitive != Mesh::PRIMITIVE_TRIANGLES) {
			continue;
		}

		surfaces.write[i].lods.clear();
		Vector<Vector3> vertices = surfaces[i].arrays[RS::ARRAY_VERTEX];
		PackedInt32Array indices = surfaces[i].arrays[RS::ARRAY_INDEX];
		Vector<Vector3> normals = surfaces[i].arrays[RS::ARRAY_NORMAL];
		Vector<Vector2> uvs = surfaces[i].arrays[RS::ARRAY_TEX_UV];

		unsigned int index_count = indices.size();
		unsigned int vertex_count = vertices.size();

		if (index_count == 0) {
			continue; //no lods if no indices
		}

		const Vector3 *vertices_ptr = vertices.ptr();
		const int *indices_ptr = indices.ptr();

		if (normals.is_empty()) {
			normals.resize(index_count);
			Vector3 *n_ptr = normals.ptrw();
			for (unsigned int j = 0; j < index_count; j += 3) {
				const Vector3 &v0 = vertices_ptr[indices_ptr[j + 0]];
				const Vector3 &v1 = vertices_ptr[indices_ptr[j + 1]];
				const Vector3 &v2 = vertices_ptr[indices_ptr[j + 2]];
				Vector3 n = vec3_cross(v0 - v2, v0 - v1).normalized();
				n_ptr[j + 0] = n;
				n_ptr[j + 1] = n;
				n_ptr[j + 2] = n;
			}
		}

		float normal_merge_threshold = Math::cos(Math::deg2rad(p_normal_merge_angle));
		float normal_pre_split_threshold = Math::cos(Math::deg2rad(MIN(180.0f, p_normal_split_angle * 2.0f)));
		float normal_split_threshold = Math::cos(Math::deg2rad(p_normal_split_angle));
		const Vector3 *normals_ptr = normals.ptr();

		Map<Vector3, LocalVector<Pair<int, int>>> unique_vertices;

		LocalVector<int> vertex_remap;
		LocalVector<int> vertex_inverse_remap;
		LocalVector<Vector3> merged_vertices;
		LocalVector<Vector3> merged_normals;
		LocalVector<int> merged_normals_counts;
		const Vector2 *uvs_ptr = uvs.ptr();

		for (unsigned int j = 0; j < vertex_count; j++) {
			const Vector3 &v = vertices_ptr[j];
			const Vector3 &n = normals_ptr[j];

			Map<Vector3, LocalVector<Pair<int, int>>>::Element *E = unique_vertices.find(v);

			if (E) {
				const LocalVector<Pair<int, int>> &close_verts = E->get();

				bool found = false;
				for (unsigned int k = 0; k < close_verts.size(); k++) {
					const Pair<int, int> &idx = close_verts[k];

					// TODO check more attributes?
					if ((!uvs_ptr || uvs_ptr[j].distance_squared_to(uvs_ptr[idx.second]) < CMP_EPSILON2) && normals[idx.second].dot(n) > normal_merge_threshold) {
						vertex_remap.push_back(idx.first);
						merged_normals[idx.first] += normals[idx.second];
						merged_normals_counts[idx.first]++;
						found = true;
						break;
					}
				}

				if (!found) {
					int vcount = merged_vertices.size();
					unique_vertices[v].push_back(Pair<int, int>(vcount, j));
					vertex_inverse_remap.push_back(j);
					merged_vertices.push_back(v);
					vertex_remap.push_back(vcount);
					merged_normals.push_back(normals_ptr[j]);
					merged_normals_counts.push_back(1);
				}
			} else {
				int vcount = merged_vertices.size();
				unique_vertices[v] = LocalVector<Pair<int, int>>();
				unique_vertices[v].push_back(Pair<int, int>(vcount, j));
				vertex_inverse_remap.push_back(j);
				merged_vertices.push_back(v);
				vertex_remap.push_back(vcount);
				merged_normals.push_back(normals_ptr[j]);
				merged_normals_counts.push_back(1);
			}
		}

		LocalVector<int> merged_indices;
		merged_indices.resize(index_count);
		for (unsigned int j = 0; j < index_count; j++) {
			merged_indices[j] = vertex_remap[indices[j]];
		}

		unsigned int merged_vertex_count = merged_vertices.size();
		const Vector3 *merged_vertices_ptr = merged_vertices.ptr();
		const int32_t *merged_indices_ptr = merged_indices.ptr();

		{
			const int *counts_ptr = merged_normals_counts.ptr();
			Vector3 *merged_normals_ptrw = merged_normals.ptr();
			for (unsigned int j = 0; j < merged_vertex_count; j++) {
				merged_normals_ptrw[j] /= counts_ptr[j];
			}
		}

		LocalVector<float> normal_weights;
		normal_weights.resize(merged_vertex_count);
		for (unsigned int j = 0; j < merged_vertex_count; j++) {
			normal_weights[j] = 2.0; // Give some weight to normal preservation, may be worth exposing as an import setting
		}

		const float max_mesh_error = FLT_MAX; // We don't want to limit by error, just by index target
		float scale = SurfaceTool::simplify_scale_func((const float *)merged_vertices_ptr, merged_vertex_count, sizeof(Vector3));
		float mesh_error = 0.0f;

		unsigned int index_target = 12; // Start with the smallest target, 4 triangles
		unsigned int last_index_count = 0;

		int split_vertex_count = vertex_count;
		LocalVector<Vector3> split_vertex_normals;
		LocalVector<int> split_vertex_indices;
		split_vertex_normals.reserve(index_count / 3);
		split_vertex_indices.reserve(index_count / 3);

		RandomPCG pcg;
		pcg.seed(123456789); // Keep seed constant across imports

		Ref<StaticRaycaster> raycaster = StaticRaycaster::create();
		if (raycaster.is_valid()) {
			raycaster->add_mesh(vertices, indices, 0);
			raycaster->commit();
		}

		while (index_target < index_count) {
			PackedInt32Array new_indices;
			new_indices.resize(index_count);

			size_t new_index_count = SurfaceTool::simplify_with_attrib_func((unsigned int *)new_indices.ptrw(), (const uint32_t *)merged_indices_ptr, index_count, (const float *)merged_vertices_ptr, merged_vertex_count, sizeof(Vector3), index_target, max_mesh_error, &mesh_error, (float *)merged_normals.ptr(), normal_weights.ptr(), 3);

			if (new_index_count < last_index_count * 1.5f) {
				index_target = index_target * 1.5f;
				continue;
			}

			if (new_index_count <= 0 || (new_index_count >= (index_count * 0.75f))) {
				break;
			}

			new_indices.resize(new_index_count);

			LocalVector<LocalVector<int>> vertex_corners;
			vertex_corners.resize(vertex_count);
			{
				int *ptrw = new_indices.ptrw();
				for (unsigned int j = 0; j < new_index_count; j++) {
					const int &remapped = vertex_inverse_remap[ptrw[j]];
					vertex_corners[remapped].push_back(j);
					ptrw[j] = remapped;
				}
			}

			if (raycaster.is_valid()) {
				float error_factor = 1.0f / (scale * MAX(mesh_error, 0.15));
				const float ray_bias = 0.05;
				float ray_length = ray_bias + mesh_error * scale * 3.0f;

				Vector<StaticRaycaster::Ray> rays;
				LocalVector<Vector2> ray_uvs;

				int32_t *new_indices_ptr = new_indices.ptrw();

				int current_ray_count = 0;
				for (unsigned int j = 0; j < new_index_count; j += 3) {
					const Vector3 &v0 = vertices_ptr[new_indices_ptr[j + 0]];
					const Vector3 &v1 = vertices_ptr[new_indices_ptr[j + 1]];
					const Vector3 &v2 = vertices_ptr[new_indices_ptr[j + 2]];
					Vector3 face_normal = vec3_cross(v0 - v2, v0 - v1);
					float face_area = face_normal.length(); // Actually twice the face area, since it's the same error_factor on all faces, we don't care

					Vector3 dir = face_normal / face_area;
					int ray_count = CLAMP(5.0 * face_area * error_factor, 16, 64);

					rays.resize(current_ray_count + ray_count);
					StaticRaycaster::Ray *rays_ptr = rays.ptrw();

					ray_uvs.resize(current_ray_count + ray_count);
					Vector2 *ray_uvs_ptr = ray_uvs.ptr();

					for (int k = 0; k < ray_count; k++) {
						float u = pcg.randf();
						float v = pcg.randf();

						if (u + v >= 1.0f) {
							u = 1.0f - u;
							v = 1.0f - v;
						}

						u = 0.9f * u + 0.05f / 3.0f; // Give barycentric coordinates some padding, we don't want to sample right on the edge
						v = 0.9f * v + 0.05f / 3.0f; // v = (v - one_third) * 0.95f + one_third;
						float w = 1.0f - u - v;

						Vector3 org = v0 * w + v1 * u + v2 * v;
						org -= dir * ray_bias;
						rays_ptr[current_ray_count + k] = StaticRaycaster::Ray(org, dir, 0.0f, ray_length);
						rays_ptr[current_ray_count + k].id = j / 3;
						ray_uvs_ptr[current_ray_count + k] = Vector2(u, v);
					}

					current_ray_count += ray_count;
				}

				raycaster->intersect(rays);

				LocalVector<Vector3> ray_normals;
				LocalVector<real_t> ray_normal_weights;

				ray_normals.resize(new_index_count);
				ray_normal_weights.resize(new_index_count);

				for (unsigned int j = 0; j < new_index_count; j++) {
					ray_normal_weights[j] = 0.0f;
				}

				const StaticRaycaster::Ray *rp = rays.ptr();
				for (int j = 0; j < rays.size(); j++) {
					if (rp[j].geomID != 0) { // Ray missed
						continue;
					}

					if (rp[j].normal.normalized().dot(rp[j].dir) > 0.0f) { // Hit a back face.
						continue;
					}

					const float &u = rp[j].u;
					const float &v = rp[j].v;
					const float w = 1.0f - u - v;

					const unsigned int &hit_tri_id = rp[j].primID;
					const unsigned int &orig_tri_id = rp[j].id;

					const Vector3 &n0 = normals_ptr[indices_ptr[hit_tri_id * 3 + 0]];
					const Vector3 &n1 = normals_ptr[indices_ptr[hit_tri_id * 3 + 1]];
					const Vector3 &n2 = normals_ptr[indices_ptr[hit_tri_id * 3 + 2]];
					Vector3 normal = n0 * w + n1 * u + n2 * v;

					Vector2 orig_uv = ray_uvs[j];
					real_t orig_bary[3] = { 1.0f - orig_uv.x - orig_uv.y, orig_uv.x, orig_uv.y };
					for (int k = 0; k < 3; k++) {
						int idx = orig_tri_id * 3 + k;
						real_t weight = orig_bary[k];
						ray_normals[idx] += normal * weight;
						ray_normal_weights[idx] += weight;
					}
				}

				for (unsigned int j = 0; j < new_index_count; j++) {
					if (ray_normal_weights[j] < 1.0f) { // Not enough data, the new normal would be just a bad guess
						ray_normals[j] = Vector3();
					} else {
						ray_normals[j] /= ray_normal_weights[j];
					}
				}

				LocalVector<LocalVector<int>> normal_group_indices;
				LocalVector<Vector3> normal_group_averages;
				normal_group_indices.reserve(24);
				normal_group_averages.reserve(24);

				for (unsigned int j = 0; j < vertex_count; j++) {
					const LocalVector<int> &corners = vertex_corners[j];
					const Vector3 &vertex_normal = normals_ptr[j];

					for (unsigned int k = 0; k < corners.size(); k++) {
						const int &corner_idx = corners[k];
						const Vector3 &ray_normal = ray_normals[corner_idx];

						if (ray_normal.length_squared() < CMP_EPSILON2) {
							continue;
						}

						bool found = false;
						for (unsigned int l = 0; l < normal_group_indices.size(); l++) {
							LocalVector<int> &group_indices = normal_group_indices[l];
							Vector3 n = normal_group_averages[l] / group_indices.size();
							if (n.dot(ray_normal) > normal_pre_split_threshold) {
								found = true;
								group_indices.push_back(corner_idx);
								normal_group_averages[l] += ray_normal;
								break;
							}
						}

						if (!found) {
							LocalVector<int> new_group;
							new_group.push_back(corner_idx);
							normal_group_indices.push_back(new_group);
							normal_group_averages.push_back(ray_normal);
						}
					}

					for (unsigned int k = 0; k < normal_group_indices.size(); k++) {
						LocalVector<int> &group_indices = normal_group_indices[k];
						Vector3 n = normal_group_averages[k] / group_indices.size();

						if (vertex_normal.dot(n) < normal_split_threshold) {
							split_vertex_indices.push_back(j);
							split_vertex_normals.push_back(n);
							int new_idx = split_vertex_count++;
							for (unsigned int l = 0; l < group_indices.size(); l++) {
								new_indices_ptr[group_indices[l]] = new_idx;
							}
						}
					}

					normal_group_indices.clear();
					normal_group_averages.clear();
				}
			}

			Surface::LOD lod;
			lod.distance = MAX(mesh_error * scale, CMP_EPSILON2);
			lod.indices = new_indices;
			surfaces.write[i].lods.push_back(lod);
			index_target = MAX(new_index_count, index_target) * 2;
			last_index_count = new_index_count;

			if (mesh_error == 0.0f) {
				break;
			}
		}

		surfaces.write[i].split_normals(split_vertex_indices, split_vertex_normals);
		surfaces.write[i].lods.sort_custom<Surface::LODComparator>();

		for (int j = 0; j < surfaces.write[i].lods.size(); j++) {
			Surface::LOD &lod = surfaces.write[i].lods.write[j];
			unsigned int *lod_indices_ptr = (unsigned int *)lod.indices.ptrw();
			SurfaceTool::optimize_vertex_cache_func(lod_indices_ptr, lod_indices_ptr, lod.indices.size(), split_vertex_count);
		}
	}
}

bool ImporterMesh::has_mesh() const {
	return mesh.is_valid();
}

Ref<ArrayMesh> ImporterMesh::get_mesh(const Ref<ArrayMesh> &p_base) {
	ERR_FAIL_COND_V(surfaces.size() == 0, Ref<ArrayMesh>());

	if (mesh.is_null()) {
		if (p_base.is_valid()) {
			mesh = p_base;
		}
		if (mesh.is_null()) {
			mesh.instantiate();
		}
		mesh->set_name(get_name());
		if (has_meta("import_id")) {
			mesh->set_meta("import_id", get_meta("import_id"));
		}
		for (int i = 0; i < blend_shapes.size(); i++) {
			mesh->add_blend_shape(blend_shapes[i]);
		}
		mesh->set_blend_shape_mode(blend_shape_mode);
		for (int i = 0; i < surfaces.size(); i++) {
			Array bs_data;
			if (surfaces[i].blend_shape_data.size()) {
				for (int j = 0; j < surfaces[i].blend_shape_data.size(); j++) {
					bs_data.push_back(surfaces[i].blend_shape_data[j].arrays);
				}
			}
			Dictionary lods;
			if (surfaces[i].lods.size()) {
				for (int j = 0; j < surfaces[i].lods.size(); j++) {
					lods[surfaces[i].lods[j].distance] = surfaces[i].lods[j].indices;
				}
			}

			mesh->add_surface_from_arrays(surfaces[i].primitive, surfaces[i].arrays, bs_data, lods, surfaces[i].flags);
			if (surfaces[i].material.is_valid()) {
				mesh->surface_set_material(mesh->get_surface_count() - 1, surfaces[i].material);
			}
			if (!surfaces[i].name.is_empty()) {
				mesh->surface_set_name(mesh->get_surface_count() - 1, surfaces[i].name);
			}
		}

		mesh->set_lightmap_size_hint(lightmap_size_hint);

		if (shadow_mesh.is_valid()) {
			Ref<ArrayMesh> shadow = shadow_mesh->get_mesh();
			mesh->set_shadow_mesh(shadow);
		}
	}

	return mesh;
}

void ImporterMesh::clear() {
	surfaces.clear();
	blend_shapes.clear();
	mesh.unref();
}

void ImporterMesh::create_shadow_mesh() {
	if (shadow_mesh.is_valid()) {
		shadow_mesh.unref();
	}

	//no shadow mesh for blendshapes
	if (blend_shapes.size() > 0) {
		return;
	}
	//no shadow mesh for skeletons
	for (int i = 0; i < surfaces.size(); i++) {
		if (surfaces[i].arrays[RS::ARRAY_BONES].get_type() != Variant::NIL) {
			return;
		}
		if (surfaces[i].arrays[RS::ARRAY_WEIGHTS].get_type() != Variant::NIL) {
			return;
		}
	}

	shadow_mesh.instantiate();

	for (int i = 0; i < surfaces.size(); i++) {
		LocalVector<int> vertex_remap;
		Vector<Vector3> new_vertices;
		Vector<Vector3> vertices = surfaces[i].arrays[RS::ARRAY_VERTEX];
		int vertex_count = vertices.size();
		{
			Map<Vector3, int> unique_vertices;
			const Vector3 *vptr = vertices.ptr();
			for (int j = 0; j < vertex_count; j++) {
				const Vector3 &v = vptr[j];

				Map<Vector3, int>::Element *E = unique_vertices.find(v);

				if (E) {
					vertex_remap.push_back(E->get());
				} else {
					int vcount = unique_vertices.size();
					unique_vertices[v] = vcount;
					vertex_remap.push_back(vcount);
					new_vertices.push_back(v);
				}
			}
		}

		Array new_surface;
		new_surface.resize(RS::ARRAY_MAX);
		Dictionary lods;

		//		print_line("original vertex count: " + itos(vertices.size()) + " new vertex count: " + itos(new_vertices.size()));

		new_surface[RS::ARRAY_VERTEX] = new_vertices;

		Vector<int> indices = surfaces[i].arrays[RS::ARRAY_INDEX];
		if (indices.size()) {
			int index_count = indices.size();
			const int *index_rptr = indices.ptr();
			Vector<int> new_indices;
			new_indices.resize(indices.size());
			int *index_wptr = new_indices.ptrw();

			for (int j = 0; j < index_count; j++) {
				int index = index_rptr[j];
				ERR_FAIL_INDEX(index, vertex_count);
				index_wptr[j] = vertex_remap[index];
			}

			new_surface[RS::ARRAY_INDEX] = new_indices;

			// Make sure the same LODs as the full version are used.
			// This makes it more coherent between rendered model and its shadows.
			for (int j = 0; j < surfaces[i].lods.size(); j++) {
				indices = surfaces[i].lods[j].indices;

				index_count = indices.size();
				index_rptr = indices.ptr();
				new_indices.resize(indices.size());
				index_wptr = new_indices.ptrw();

				for (int k = 0; k < index_count; k++) {
					int index = index_rptr[k];
					ERR_FAIL_INDEX(index, vertex_count);
					index_wptr[k] = vertex_remap[index];
				}

				lods[surfaces[i].lods[j].distance] = new_indices;
			}
		}

		shadow_mesh->add_surface(surfaces[i].primitive, new_surface, Array(), lods, Ref<Material>(), surfaces[i].name, surfaces[i].flags);
	}
}

Ref<ImporterMesh> ImporterMesh::get_shadow_mesh() const {
	return shadow_mesh;
}

void ImporterMesh::_set_data(const Dictionary &p_data) {
	clear();
	if (p_data.has("blend_shape_names")) {
		blend_shapes = p_data["blend_shape_names"];
	}
	if (p_data.has("surfaces")) {
		Array surface_arr = p_data["surfaces"];
		for (int i = 0; i < surface_arr.size(); i++) {
			Dictionary s = surface_arr[i];
			ERR_CONTINUE(!s.has("primitive"));
			ERR_CONTINUE(!s.has("arrays"));
			Mesh::PrimitiveType prim = Mesh::PrimitiveType(int(s["primitive"]));
			ERR_CONTINUE(prim >= Mesh::PRIMITIVE_MAX);
			Array arr = s["arrays"];
			Dictionary lods;
			String name;
			if (s.has("name")) {
				name = s["name"];
			}
			if (s.has("lods")) {
				lods = s["lods"];
			}
			Array b_shapes;
			if (s.has("b_shapes")) {
				b_shapes = s["b_shapes"];
			}
			Ref<Material> material;
			if (s.has("material")) {
				material = s["material"];
			}
			uint32_t flags = 0;
			if (s.has("flags")) {
				flags = s["flags"];
			}
			add_surface(prim, arr, b_shapes, lods, material, name, flags);
		}
	}
}
Dictionary ImporterMesh::_get_data() const {
	Dictionary data;
	if (blend_shapes.size()) {
		data["blend_shape_names"] = blend_shapes;
	}
	Array surface_arr;
	for (int i = 0; i < surfaces.size(); i++) {
		Dictionary d;
		d["primitive"] = surfaces[i].primitive;
		d["arrays"] = surfaces[i].arrays;
		if (surfaces[i].blend_shape_data.size()) {
			Array bs_data;
			for (int j = 0; j < surfaces[i].blend_shape_data.size(); j++) {
				bs_data.push_back(surfaces[i].blend_shape_data[j].arrays);
			}
			d["blend_shapes"] = bs_data;
		}
		if (surfaces[i].lods.size()) {
			Dictionary lods;
			for (int j = 0; j < surfaces[i].lods.size(); j++) {
				lods[surfaces[i].lods[j].distance] = surfaces[i].lods[j].indices;
			}
			d["lods"] = lods;
		}

		if (surfaces[i].material.is_valid()) {
			d["material"] = surfaces[i].material;
		}

		if (!surfaces[i].name.is_empty()) {
			d["name"] = surfaces[i].name;
		}

		if (surfaces[i].flags != 0) {
			d["flags"] = surfaces[i].flags;
		}

		surface_arr.push_back(d);
	}
	data["surfaces"] = surface_arr;
	return data;
}

Vector<Face3> ImporterMesh::get_faces() const {
	Vector<Face3> faces;
	for (int i = 0; i < surfaces.size(); i++) {
		if (surfaces[i].primitive == Mesh::PRIMITIVE_TRIANGLES) {
			Vector<Vector3> vertices = surfaces[i].arrays[Mesh::ARRAY_VERTEX];
			Vector<int> indices = surfaces[i].arrays[Mesh::ARRAY_INDEX];
			if (indices.size()) {
				for (int j = 0; j < indices.size(); j += 3) {
					Face3 f;
					f.vertex[0] = vertices[indices[j + 0]];
					f.vertex[1] = vertices[indices[j + 1]];
					f.vertex[2] = vertices[indices[j + 2]];
					faces.push_back(f);
				}
			} else {
				for (int j = 0; j < vertices.size(); j += 3) {
					Face3 f;
					f.vertex[0] = vertices[j + 0];
					f.vertex[1] = vertices[j + 1];
					f.vertex[2] = vertices[j + 2];
					faces.push_back(f);
				}
			}
		}
	}

	return faces;
}

Vector<Ref<Shape3D>> ImporterMesh::convex_decompose(const Mesh::ConvexDecompositionSettings &p_settings) const {
	ERR_FAIL_COND_V(!Mesh::convex_decomposition_function, Vector<Ref<Shape3D>>());

	const Vector<Face3> faces = get_faces();
	int face_count = faces.size();

	Vector<Vector3> vertices;
	uint32_t vertex_count = 0;
	vertices.resize(face_count * 3);
	Vector<uint32_t> indices;
	indices.resize(face_count * 3);
	{
		Map<Vector3, uint32_t> vertex_map;
		Vector3 *vertex_w = vertices.ptrw();
		uint32_t *index_w = indices.ptrw();
		for (int i = 0; i < face_count; i++) {
			for (int j = 0; j < 3; j++) {
				const Vector3 &vertex = faces[i].vertex[j];
				Map<Vector3, uint32_t>::Element *found_vertex = vertex_map.find(vertex);
				uint32_t index;
				if (found_vertex) {
					index = found_vertex->get();
				} else {
					index = ++vertex_count;
					vertex_map[vertex] = index;
					vertex_w[index] = vertex;
				}
				index_w[i * 3 + j] = index;
			}
		}
	}
	vertices.resize(vertex_count);

	Vector<Vector<Vector3>> decomposed = Mesh::convex_decomposition_function((real_t *)vertices.ptr(), vertex_count, indices.ptr(), face_count, p_settings, nullptr);

	Vector<Ref<Shape3D>> ret;

	for (int i = 0; i < decomposed.size(); i++) {
		Ref<ConvexPolygonShape3D> shape;
		shape.instantiate();
		shape->set_points(decomposed[i]);
		ret.push_back(shape);
	}

	return ret;
}

Ref<Shape3D> ImporterMesh::create_trimesh_shape() const {
	Vector<Face3> faces = get_faces();
	if (faces.size() == 0) {
		return Ref<Shape3D>();
	}

	Vector<Vector3> face_points;
	face_points.resize(faces.size() * 3);

	for (int i = 0; i < face_points.size(); i += 3) {
		Face3 f = faces.get(i / 3);
		face_points.set(i, f.vertex[0]);
		face_points.set(i + 1, f.vertex[1]);
		face_points.set(i + 2, f.vertex[2]);
	}

	Ref<ConcavePolygonShape3D> shape = memnew(ConcavePolygonShape3D);
	shape->set_faces(face_points);
	return shape;
}

Ref<NavigationMesh> ImporterMesh::create_navigation_mesh() {
	Vector<Face3> faces = get_faces();
	if (faces.size() == 0) {
		return Ref<NavigationMesh>();
	}

	Map<Vector3, int> unique_vertices;
	LocalVector<int> face_indices;

	for (int i = 0; i < faces.size(); i++) {
		for (int j = 0; j < 3; j++) {
			Vector3 v = faces[i].vertex[j];
			int idx;
			if (unique_vertices.has(v)) {
				idx = unique_vertices[v];
			} else {
				idx = unique_vertices.size();
				unique_vertices[v] = idx;
			}
			face_indices.push_back(idx);
		}
	}

	Vector<Vector3> vertices;
	vertices.resize(unique_vertices.size());
	for (const KeyValue<Vector3, int> &E : unique_vertices) {
		vertices.write[E.value] = E.key;
	}

	Ref<NavigationMesh> nm;
	nm.instantiate();
	nm->set_vertices(vertices);

	Vector<int> v3;
	v3.resize(3);
	for (uint32_t i = 0; i < face_indices.size(); i += 3) {
		v3.write[0] = face_indices[i + 0];
		v3.write[1] = face_indices[i + 1];
		v3.write[2] = face_indices[i + 2];
		nm->add_polygon(v3);
	}

	return nm;
}

extern bool (*array_mesh_lightmap_unwrap_callback)(float p_texel_size, const float *p_vertices, const float *p_normals, int p_vertex_count, const int *p_indices, int p_index_count, const uint8_t *p_cache_data, bool *r_use_cache, uint8_t **r_mesh_cache, int *r_mesh_cache_size, float **r_uv, int **r_vertex, int *r_vertex_count, int **r_index, int *r_index_count, int *r_size_hint_x, int *r_size_hint_y);

struct EditorSceneFormatImporterMeshLightmapSurface {
	Ref<Material> material;
	LocalVector<SurfaceTool::Vertex> vertices;
	Mesh::PrimitiveType primitive = Mesh::PrimitiveType::PRIMITIVE_MAX;
	uint32_t format = 0;
	String name;
};

Error ImporterMesh::lightmap_unwrap_cached(const Transform3D &p_base_transform, float p_texel_size, const Vector<uint8_t> &p_src_cache, Vector<uint8_t> &r_dst_cache) {
	ERR_FAIL_COND_V(!array_mesh_lightmap_unwrap_callback, ERR_UNCONFIGURED);
	ERR_FAIL_COND_V_MSG(blend_shapes.size() != 0, ERR_UNAVAILABLE, "Can't unwrap mesh with blend shapes.");

	LocalVector<float> vertices;
	LocalVector<float> normals;
	LocalVector<int> indices;
	LocalVector<float> uv;
	LocalVector<Pair<int, int>> uv_indices;

	Vector<EditorSceneFormatImporterMeshLightmapSurface> lightmap_surfaces;

	// Keep only the scale
	Basis basis = p_base_transform.get_basis();
	Vector3 scale = Vector3(basis.get_axis(0).length(), basis.get_axis(1).length(), basis.get_axis(2).length());

	Transform3D transform;
	transform.scale(scale);

	Basis normal_basis = transform.basis.inverse().transposed();

	for (int i = 0; i < get_surface_count(); i++) {
		EditorSceneFormatImporterMeshLightmapSurface s;
		s.primitive = get_surface_primitive_type(i);

		ERR_FAIL_COND_V_MSG(s.primitive != Mesh::PRIMITIVE_TRIANGLES, ERR_UNAVAILABLE, "Only triangles are supported for lightmap unwrap.");
		Array arrays = get_surface_arrays(i);
		s.material = get_surface_material(i);
		s.name = get_surface_name(i);

		SurfaceTool::create_vertex_array_from_triangle_arrays(arrays, s.vertices, &s.format);

		PackedVector3Array rvertices = arrays[Mesh::ARRAY_VERTEX];
		int vc = rvertices.size();

		PackedVector3Array rnormals = arrays[Mesh::ARRAY_NORMAL];

		int vertex_ofs = vertices.size() / 3;

		vertices.resize((vertex_ofs + vc) * 3);
		normals.resize((vertex_ofs + vc) * 3);
		uv_indices.resize(vertex_ofs + vc);

		for (int j = 0; j < vc; j++) {
			Vector3 v = transform.xform(rvertices[j]);
			Vector3 n = normal_basis.xform(rnormals[j]).normalized();

			vertices[(j + vertex_ofs) * 3 + 0] = v.x;
			vertices[(j + vertex_ofs) * 3 + 1] = v.y;
			vertices[(j + vertex_ofs) * 3 + 2] = v.z;
			normals[(j + vertex_ofs) * 3 + 0] = n.x;
			normals[(j + vertex_ofs) * 3 + 1] = n.y;
			normals[(j + vertex_ofs) * 3 + 2] = n.z;
			uv_indices[j + vertex_ofs] = Pair<int, int>(i, j);
		}

		PackedInt32Array rindices = arrays[Mesh::ARRAY_INDEX];
		int ic = rindices.size();

		float eps = 1.19209290e-7F; // Taken from xatlas.h
		if (ic == 0) {
			for (int j = 0; j < vc / 3; j++) {
				Vector3 p0 = transform.xform(rvertices[j * 3 + 0]);
				Vector3 p1 = transform.xform(rvertices[j * 3 + 1]);
				Vector3 p2 = transform.xform(rvertices[j * 3 + 2]);

				if ((p0 - p1).length_squared() < eps || (p1 - p2).length_squared() < eps || (p2 - p0).length_squared() < eps) {
					continue;
				}

				indices.push_back(vertex_ofs + j * 3 + 0);
				indices.push_back(vertex_ofs + j * 3 + 1);
				indices.push_back(vertex_ofs + j * 3 + 2);
			}

		} else {
			for (int j = 0; j < ic / 3; j++) {
				Vector3 p0 = transform.xform(rvertices[rindices[j * 3 + 0]]);
				Vector3 p1 = transform.xform(rvertices[rindices[j * 3 + 1]]);
				Vector3 p2 = transform.xform(rvertices[rindices[j * 3 + 2]]);

				if ((p0 - p1).length_squared() < eps || (p1 - p2).length_squared() < eps || (p2 - p0).length_squared() < eps) {
					continue;
				}

				indices.push_back(vertex_ofs + rindices[j * 3 + 0]);
				indices.push_back(vertex_ofs + rindices[j * 3 + 1]);
				indices.push_back(vertex_ofs + rindices[j * 3 + 2]);
			}
		}

		lightmap_surfaces.push_back(s);
	}

	//unwrap

	bool use_cache = true; // Used to request cache generation and to know if cache was used
	uint8_t *gen_cache;
	int gen_cache_size;
	float *gen_uvs;
	int *gen_vertices;
	int *gen_indices;
	int gen_vertex_count;
	int gen_index_count;
	int size_x;
	int size_y;

	bool ok = array_mesh_lightmap_unwrap_callback(p_texel_size, vertices.ptr(), normals.ptr(), vertices.size() / 3, indices.ptr(), indices.size(), p_src_cache.ptr(), &use_cache, &gen_cache, &gen_cache_size, &gen_uvs, &gen_vertices, &gen_vertex_count, &gen_indices, &gen_index_count, &size_x, &size_y);

	if (!ok) {
		return ERR_CANT_CREATE;
	}

	//remove surfaces
	clear();

	//create surfacetools for each surface..
	LocalVector<Ref<SurfaceTool>> surfaces_tools;

	for (int i = 0; i < lightmap_surfaces.size(); i++) {
		Ref<SurfaceTool> st;
		st.instantiate();
		st->begin(Mesh::PRIMITIVE_TRIANGLES);
		st->set_material(lightmap_surfaces[i].material);
		st->set_meta("name", lightmap_surfaces[i].name);
		surfaces_tools.push_back(st); //stay there
	}

	print_verbose("Mesh: Gen indices: " + itos(gen_index_count));

	//go through all indices
	for (int i = 0; i < gen_index_count; i += 3) {
		ERR_FAIL_INDEX_V(gen_vertices[gen_indices[i + 0]], (int)uv_indices.size(), ERR_BUG);
		ERR_FAIL_INDEX_V(gen_vertices[gen_indices[i + 1]], (int)uv_indices.size(), ERR_BUG);
		ERR_FAIL_INDEX_V(gen_vertices[gen_indices[i + 2]], (int)uv_indices.size(), ERR_BUG);

		ERR_FAIL_COND_V(uv_indices[gen_vertices[gen_indices[i + 0]]].first != uv_indices[gen_vertices[gen_indices[i + 1]]].first || uv_indices[gen_vertices[gen_indices[i + 0]]].first != uv_indices[gen_vertices[gen_indices[i + 2]]].first, ERR_BUG);

		int surface = uv_indices[gen_vertices[gen_indices[i + 0]]].first;

		for (int j = 0; j < 3; j++) {
			SurfaceTool::Vertex v = lightmap_surfaces[surface].vertices[uv_indices[gen_vertices[gen_indices[i + j]]].second];

			if (lightmap_surfaces[surface].format & Mesh::ARRAY_FORMAT_COLOR) {
				surfaces_tools[surface]->set_color(v.color);
			}
			if (lightmap_surfaces[surface].format & Mesh::ARRAY_FORMAT_TEX_UV) {
				surfaces_tools[surface]->set_uv(v.uv);
			}
			if (lightmap_surfaces[surface].format & Mesh::ARRAY_FORMAT_NORMAL) {
				surfaces_tools[surface]->set_normal(v.normal);
			}
			if (lightmap_surfaces[surface].format & Mesh::ARRAY_FORMAT_TANGENT) {
				Plane t;
				t.normal = v.tangent;
				t.d = v.binormal.dot(v.normal.cross(v.tangent)) < 0 ? -1 : 1;
				surfaces_tools[surface]->set_tangent(t);
			}
			if (lightmap_surfaces[surface].format & Mesh::ARRAY_FORMAT_BONES) {
				surfaces_tools[surface]->set_bones(v.bones);
			}
			if (lightmap_surfaces[surface].format & Mesh::ARRAY_FORMAT_WEIGHTS) {
				surfaces_tools[surface]->set_weights(v.weights);
			}

			Vector2 uv2(gen_uvs[gen_indices[i + j] * 2 + 0], gen_uvs[gen_indices[i + j] * 2 + 1]);
			surfaces_tools[surface]->set_uv2(uv2);

			surfaces_tools[surface]->add_vertex(v.vertex);
		}
	}

	//generate surfaces
	for (unsigned int i = 0; i < surfaces_tools.size(); i++) {
		surfaces_tools[i]->index();
		Array arrays = surfaces_tools[i]->commit_to_arrays();
		add_surface(surfaces_tools[i]->get_primitive(), arrays, Array(), Dictionary(), surfaces_tools[i]->get_material(), surfaces_tools[i]->get_meta("name"));
	}

	set_lightmap_size_hint(Size2(size_x, size_y));

	if (gen_cache_size > 0) {
		r_dst_cache.resize(gen_cache_size);
		memcpy(r_dst_cache.ptrw(), gen_cache, gen_cache_size);
		memfree(gen_cache);
	}

	if (!use_cache) {
		// Cache was not used, free the buffers
		memfree(gen_vertices);
		memfree(gen_indices);
		memfree(gen_uvs);
	}

	return OK;
}

void ImporterMesh::set_lightmap_size_hint(const Size2i &p_size) {
	lightmap_size_hint = p_size;
}

Size2i ImporterMesh::get_lightmap_size_hint() const {
	return lightmap_size_hint;
}

void ImporterMesh::_bind_methods() {
	ClassDB::bind_method(D_METHOD("add_blend_shape", "name"), &ImporterMesh::add_blend_shape);
	ClassDB::bind_method(D_METHOD("get_blend_shape_count"), &ImporterMesh::get_blend_shape_count);
	ClassDB::bind_method(D_METHOD("get_blend_shape_name", "blend_shape_idx"), &ImporterMesh::get_blend_shape_name);

	ClassDB::bind_method(D_METHOD("set_blend_shape_mode", "mode"), &ImporterMesh::set_blend_shape_mode);
	ClassDB::bind_method(D_METHOD("get_blend_shape_mode"), &ImporterMesh::get_blend_shape_mode);

	ClassDB::bind_method(D_METHOD("add_surface", "primitive", "arrays", "blend_shapes", "lods", "material", "name", "flags"), &ImporterMesh::add_surface, DEFVAL(Array()), DEFVAL(Dictionary()), DEFVAL(Ref<Material>()), DEFVAL(String()), DEFVAL(0));

	ClassDB::bind_method(D_METHOD("get_surface_count"), &ImporterMesh::get_surface_count);
	ClassDB::bind_method(D_METHOD("get_surface_primitive_type", "surface_idx"), &ImporterMesh::get_surface_primitive_type);
	ClassDB::bind_method(D_METHOD("get_surface_name", "surface_idx"), &ImporterMesh::get_surface_name);
	ClassDB::bind_method(D_METHOD("get_surface_arrays", "surface_idx"), &ImporterMesh::get_surface_arrays);
	ClassDB::bind_method(D_METHOD("get_surface_blend_shape_arrays", "surface_idx", "blend_shape_idx"), &ImporterMesh::get_surface_blend_shape_arrays);
	ClassDB::bind_method(D_METHOD("get_surface_lod_count", "surface_idx"), &ImporterMesh::get_surface_lod_count);
	ClassDB::bind_method(D_METHOD("get_surface_lod_size", "surface_idx", "lod_idx"), &ImporterMesh::get_surface_lod_size);
	ClassDB::bind_method(D_METHOD("get_surface_lod_indices", "surface_idx", "lod_idx"), &ImporterMesh::get_surface_lod_indices);
	ClassDB::bind_method(D_METHOD("get_surface_material", "surface_idx"), &ImporterMesh::get_surface_material);
	ClassDB::bind_method(D_METHOD("get_surface_format", "surface_idx"), &ImporterMesh::get_surface_format);

	ClassDB::bind_method(D_METHOD("set_surface_name", "surface_idx", "name"), &ImporterMesh::set_surface_name);
	ClassDB::bind_method(D_METHOD("set_surface_material", "surface_idx", "material"), &ImporterMesh::set_surface_material);

	ClassDB::bind_method(D_METHOD("get_mesh", "base_mesh"), &ImporterMesh::get_mesh, DEFVAL(Ref<ArrayMesh>()));
	ClassDB::bind_method(D_METHOD("clear"), &ImporterMesh::clear);

	ClassDB::bind_method(D_METHOD("_set_data", "data"), &ImporterMesh::_set_data);
	ClassDB::bind_method(D_METHOD("_get_data"), &ImporterMesh::_get_data);

	ClassDB::bind_method(D_METHOD("set_lightmap_size_hint", "size"), &ImporterMesh::set_lightmap_size_hint);
	ClassDB::bind_method(D_METHOD("get_lightmap_size_hint"), &ImporterMesh::get_lightmap_size_hint);

	ADD_PROPERTY(PropertyInfo(Variant::DICTIONARY, "_data", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NO_EDITOR), "_set_data", "_get_data");
}